corda/src/heap.cpp
2007-06-20 13:20:25 -06:00

1052 lines
22 KiB
C++

#include "heap.h"
#include "system.h"
#include "common.h"
using namespace vm;
namespace {
// an object must survive TenureThreshold + 2 garbage collections
// before being copied to gen2:
static const unsigned TenureThreshold = 3;
static const unsigned MinimumGen1Size = 64 * 1024;
static const unsigned MinimumGen2Size = 128 * 1024;
class Context;
System* system(Context*);
void NO_RETURN abort(Context*);
void assert(Context*, bool);
class Segment {
public:
class Map {
public:
class Iterator {
public:
Map* map;
unsigned index;
unsigned limit;
Iterator(Map* map, unsigned start, unsigned end):
map(map)
{
assert(map->segment->context, map);
assert(map->segment->context, map->bitsPerRecord == 1);
assert(map->segment->context, map->segment);
index = map->indexOf(map->segment->data + start);
assert(map->segment->context, index == 0 or start != 0);
if (end > map->segment->position) end = map->segment->position;
limit = map->indexOf(map->segment->data + end);
if (end - start % map->scale) ++ limit;
// printf("iterating from %p (index %d) to %p (index %d) "
// "(%d of %d bytes) (scale: %d)\n",
// start, index, end, limit, (end - start) * BytesPerWord,
// map->segment->position * BytesPerWord, map->scale);
}
bool hasMore() {
assert(map->segment->context, map);
unsigned word = wordOf(index);
unsigned bit = bitOf(index);
unsigned wordLimit = wordOf(limit);
unsigned bitLimit = bitOf(limit);
for (; word <= wordLimit and (word < wordLimit or bit < bitLimit);
++word)
{
uintptr_t* p = map->data() + word;
if (*p) {
for (; bit < BitsPerWord and (word < wordLimit or bit < bitLimit);
++bit)
{
if (map->data()[word] & (static_cast<uintptr_t>(1) << bit)) {
index = ::indexOf(word, bit);
// printf("hit at index %d\n", index);
return true;
} else {
// printf("miss at index %d\n", indexOf(word, bit));
}
}
}
bit = 0;
}
index = limit;
return false;
}
unsigned next() {
assert(map->segment->context, hasMore());
assert(map->segment->context, map->segment);
return (index++) * map->scale;
}
};
Segment* segment;
unsigned bitsPerRecord;
unsigned scale;
Map* child;
Map(Segment* segment = 0, unsigned bitsPerRecord = 1,
unsigned scale = 1, Map* child = 0):
segment(segment),
bitsPerRecord(bitsPerRecord),
scale(scale),
child(child)
{
assert(segment->context, bitsPerRecord);
assert(segment->context, scale);
assert(segment->context, powerOfTwo(scale));
}
unsigned offset() {
unsigned n = segment->capacity;
if (child) n += child->footprint(segment->capacity);
return n;
}
uintptr_t* data() {
return segment->data + offset();
}
unsigned size(unsigned capacity) {
unsigned result
= divide(divide(capacity, scale) * bitsPerRecord, BitsPerWord);
assert(segment->context, result);
return result;
}
unsigned size() {
assert(segment->context, segment);
return size(max(segment->capacity, 1));
}
unsigned indexOf(void* p) {
assert(segment->context, segment);
assert(segment->context,
segment->position
and p >= segment->data
and p <= segment->data + segment->position);
assert(segment->context, segment->data);
return ((static_cast<void**>(p)
- reinterpret_cast<void**>(segment->data))
/ scale) * bitsPerRecord;
}
void update(uintptr_t* segmentData) {
uintptr_t* p = segmentData + offset();
memcpy(p, data(), size(segment->position) * BytesPerWord);
if (child) child->update(segmentData);
}
void clear() {
memset(data(), 0, size() * BytesPerWord);
if (child) child->clear();
}
void clear(unsigned i) {
data()[wordOf(i)] &= ~(static_cast<uintptr_t>(1) << bitOf(i));
}
void set(unsigned i) {
data()[wordOf(i)] |= static_cast<uintptr_t>(1) << bitOf(i);
}
void clearOnly(unsigned index) {
for (unsigned i = index, limit = index + bitsPerRecord; i < limit; ++i) {
clear(i);
}
}
void clearOnly(void* p) {
clearOnly(indexOf(p));
}
void clear(void* p) {
clearOnly(p);
if (child) child->clear(p);
}
void setOnly(unsigned index, unsigned v = 1) {
unsigned i = index + bitsPerRecord - 1;
while (true) {
if (v & 1) set(i); else clear(i);
v >>= 1;
if (i == index) break;
--i;
}
}
void setOnly(void* p, unsigned v = 1) {
setOnly(indexOf(p), v);
}
void set(void* p, unsigned v = 1) {
setOnly(p, v);
assert(segment->context, get(p) == v);
if (child) child->set(p, v);
}
unsigned get(void* p) {
unsigned index = indexOf(p);
unsigned v = 0;
for (unsigned i = index, limit = index + bitsPerRecord; i < limit; ++i) {
unsigned wi = bitOf(i);
v <<= 1;
v |= ((data()[wordOf(i)]) & (static_cast<uintptr_t>(1) << wi)) >> wi;
}
return v;
}
unsigned footprint(unsigned capacity) {
unsigned n = size(capacity);
if (child) n += child->footprint(capacity);
return n;
}
void setSegment(Segment* s) {
segment = s;
if (child) child->setSegment(s);
}
};
Context* context;
uintptr_t* data;
unsigned position;
unsigned capacity;
Map* map;
Segment(Context* context, unsigned capacity, Map* map = 0,
bool clearMap = true):
context(context),
data(0),
position(0),
capacity(capacity),
map(map)
{
if (capacity) {
data = static_cast<uintptr_t*>
(system(context)->allocate(footprint(capacity) * BytesPerWord));
if (map) {
map->setSegment(this);
if (clearMap) map->clear();
}
}
}
unsigned footprint(unsigned capacity) {
unsigned n = capacity;
if (map) n += map->size(capacity);
return n;
}
unsigned footprint() {
return footprint(capacity);
}
void* allocate(unsigned size) {
assert(context, size);
assert(context, position + size <= capacity);
void* p = reinterpret_cast<void**>(data) + position;
position += size;
return p;
}
void* add(void* p, unsigned size) {
void* target = allocate(size);
memcpy(target, p, size * BytesPerWord);
return target;
}
void* get(unsigned offset) {
assert(context, offset < position);
return data + offset;
}
unsigned remaining() {
return capacity - position;
}
void replaceWith(Segment* s) {
system(context)->free(data);
data = s->data;
s->data = 0;
position = s->position;
s->position = 0;
capacity = s->capacity;
s->capacity = 0;
if (s->map) {
map = s->map;
map->setSegment(this);
s->map = 0;
} else {
map = 0;
}
}
void grow(unsigned extra) {
if (remaining() < extra) {
unsigned minimumNeeded = position + extra;
unsigned count = minimumNeeded * 2;
minimumNeeded = footprint(minimumNeeded) * BytesPerWord;
count = footprint(count) * BytesPerWord;
uintptr_t* p = static_cast<uintptr_t*>
(system(context)->allocate(&count));
if (count >= minimumNeeded) {
memcpy(p, data, position * BytesPerWord);
if (map) {
map->update(p);
}
data = p;
system(context)->free(data);
} else {
abort(context);
}
}
}
bool contains(void* p) {
return position and p >= data and p < data + position;
}
void dispose() {
system(context)->free(data);
data = 0;
position = 0;
capacity = 0;
map = 0;
}
};
enum CollectionMode {
MinorCollection,
MajorCollection,
OverflowCollection,
Gen2Collection
};
class Context {
public:
Context(System* system):
system(system),
client(0),
gen1(this, 0),
nextGen1(this, 0),
gen2(this, 0),
nextGen2(this, 0)
{ }
void dispose() {
gen1.dispose();
nextGen1.dispose();
gen2.dispose();
nextGen2.dispose();
}
System* system;
Heap::Client* client;
Segment gen1;
Segment nextGen1;
Segment gen2;
Segment nextGen2;
Segment::Map ageMap;
Segment::Map nextAgeMap;
Segment::Map pointerMap;
Segment::Map pageMap;
Segment::Map heapMap;
CollectionMode mode;
};
inline System*
system(Context* c)
{
return c->system;
}
inline void NO_RETURN
abort(Context* c)
{
c->system->abort(); // this should not return
::abort();
}
inline void
assert(Context* c, bool v)
{
if (UNLIKELY(not v)) abort(c);
}
void
initGen1(Context* c)
{
new (&(c->ageMap)) Segment::Map(&(c->gen1), log(TenureThreshold));
new (&(c->gen1)) Segment
(c, MinimumGen1Size / BytesPerWord, &(c->ageMap), false);
}
void
initGen2(Context* c)
{
new (&(c->pointerMap)) Segment::Map(&(c->gen2));
new (&(c->pageMap)) Segment::Map
(&(c->gen2), 1, LikelyPageSize / BytesPerWord, &(c->pointerMap));
new (&(c->heapMap)) Segment::Map
(&(c->gen2), 1, c->pageMap.scale * 1024, &(c->pageMap));
new (&(c->gen2)) Segment(c, MinimumGen2Size / BytesPerWord, &(c->heapMap));
}
void
initNextGen1(Context* c)
{
unsigned size = max(MinimumGen1Size / BytesPerWord,
nextPowerOfTwo(c->gen1.position));
new (&(c->nextAgeMap)) Segment::Map(&(c->nextGen1), log(TenureThreshold));
new (&(c->nextGen1)) Segment(c, size, &(c->nextAgeMap), false);
}
void
initNextGen2(Context* c)
{
unsigned size = max(MinimumGen2Size / BytesPerWord,
nextPowerOfTwo(c->gen2.position));
new (&(c->pointerMap)) Segment::Map(&(c->nextGen2));
new (&(c->pageMap)) Segment::Map
(&(c->nextGen2), 1, LikelyPageSize / BytesPerWord, &(c->pointerMap));
new (&(c->heapMap)) Segment::Map
(&(c->nextGen2), 1, c->pageMap.scale * 1024, &(c->pageMap));
new (&(c->nextGen2)) Segment(c, size, &(c->heapMap));
c->gen2.map = 0;
}
inline object&
follow(object o)
{
return cast<object>(o, 0);
}
inline object&
parent(object o)
{
return cast<object>(o, BytesPerWord);
}
inline uintptr_t*
bitset(object o)
{
return &cast<uintptr_t>(o, BytesPerWord * 2);
}
inline object
copyTo(Context*, Segment* s, object o, unsigned size)
{
if (s->remaining() < size) {
s->grow(size);
}
return static_cast<object>(s->add(o, size));
}
object
copy2(Context* c, object o)
{
unsigned size = c->client->sizeInWords(o);
if (c->gen2.contains(o)) {
assert(c, c->mode == MajorCollection
or c->mode == Gen2Collection);
return copyTo(c, &(c->nextGen2), o, size);
} else if (c->gen1.contains(o)) {
unsigned age = c->ageMap.get(o);
if (age == TenureThreshold) {
if (c->mode == MinorCollection) {
if (c->gen2.data == 0) initGen2(c);
if (c->gen2.remaining() >= size) {
return copyTo(c, &(c->gen2), o, size);
} else {
c->mode = OverflowCollection;
initNextGen2(c);
return copyTo(c, &(c->nextGen2), o, size);
}
} else {
return copyTo(c, &(c->nextGen2), o, size);
}
} else {
o = copyTo(c, &(c->nextGen1), o, size);
c->nextAgeMap.setOnly(o, age + 1);
return o;
}
} else {
assert(c, not c->nextGen1.contains(o));
assert(c, not c->nextGen2.contains(o));
o = copyTo(c, &(c->nextGen1), o, size);
c->nextAgeMap.clear(o);
return o;
}
}
object
copy(Context* c, object o)
{
object r = copy2(c, o);
// leave a pointer to the copy in the original
follow(o) = r;
return r;
}
inline bool
wasCollected(Context* c, object o)
{
return o and (c->nextGen1.contains(follow(o)) or
c->nextGen2.contains(follow(o)));
}
object
update3(Context* c, object *p, bool* needsVisit)
{
if (wasCollected(c, *p)) {
*needsVisit = false;
return follow(*p);
} else {
*needsVisit = true;
return copy(c, *p);
}
}
object
update2(Context* c, object* p, bool* needsVisit)
{
switch (c->mode) {
case MinorCollection:
case OverflowCollection:
if (c->gen2.contains(*p)) {
*needsVisit = false;
return *p;
}
break;
case Gen2Collection:
if (c->gen2.contains(*p)) {
return update3(c, p, needsVisit);
} else {
*needsVisit = false;
return *p;
}
break;
default: break;
}
return update3(c, p, needsVisit);
}
object
update(Context* c, object* p, bool* needsVisit)
{
if (*p == 0) {
*needsVisit = false;
return *p;
}
object r = update2(c, p, needsVisit);
// update heap map.
if (r) {
if (c->mode == MinorCollection) {
if (c->gen2.contains(p) and not c->gen2.contains(r)) {
c->heapMap.set(p);
}
} else {
if (c->nextGen2.contains(p) and not c->nextGen2.contains(r)) {
c->heapMap.set(p);
}
}
}
return r;
}
const uintptr_t BitsetExtensionBit
= (static_cast<uintptr_t>(1) << (BitsPerWord - 1));
void
bitsetInit(uintptr_t* p)
{
memset(p, 0, BytesPerWord);
}
void
bitsetClear(uintptr_t* p, unsigned start, unsigned end)
{
if (end < BitsPerWord - 1) {
// do nothing
} else if (start < BitsPerWord - 1) {
memset(p + 1, 0, (wordOf(end + (BitsPerWord * 2) + 1)) * BytesPerWord);
} else {
unsigned startWord = wordOf(start + (BitsPerWord * 2) + 1);
unsigned endWord = wordOf(end + (BitsPerWord * 2) + 1);
if (endWord > startWord) {
memset(p + startWord + 1, 0, (endWord - startWord) * BytesPerWord);
}
}
}
void
bitsetSet(uintptr_t* p, unsigned i, bool v)
{
if (i >= BitsPerWord - 1) {
i += (BitsPerWord * 2) + 1;
if (v) {
p[0] |= BitsetExtensionBit;
if (p[2] <= wordOf(i) - 3) p[2] = wordOf(i) - 2;
}
}
if (v) {
p[wordOf(i)] |= static_cast<uintptr_t>(1) << bitOf(i);
} else {
p[wordOf(i)] &= ~(static_cast<uintptr_t>(1) << bitOf(i));
}
}
unsigned
bitsetHasMore(uintptr_t* p)
{
switch (*p) {
case 0: return false;
case BitsetExtensionBit: {
uintptr_t length = p[2];
uintptr_t word = wordOf(p[1]);
for (; word < length; ++word) {
if (p[word + 3]) {
p[1] = indexOf(word, 0);
return true;
}
}
p[1] = indexOf(word, 0);
return false;
}
default: return true;
}
}
unsigned
bitsetNext(Context* c, uintptr_t* p)
{
assert(c, bitsetHasMore(p));
switch (*p) {
case 0: abort(c);
case BitsetExtensionBit: {
uintptr_t i = p[1];
uintptr_t word = wordOf(i);
assert(c, word < p[2]);
for (uintptr_t bit = bitOf(i); bit < BitsPerWord; ++bit) {
if (p[word + 3] & (static_cast<uintptr_t>(1) << bit)) {
p[1] = indexOf(word, bit) + 1;
bitsetSet(p, p[1] + BitsPerWord - 2, false);
return p[1] + BitsPerWord - 2;
}
}
abort(c);
}
default: {
for (unsigned i = 0; i < BitsPerWord - 1; ++i) {
if (*p & (static_cast<uintptr_t>(1) << i)) {
bitsetSet(p, i, false);
return i;
}
}
abort(c);
}
}
}
void
collect(Context* c, void** p)
{
object original = *p;
object parent = 0;
bool needsVisit;
*p = update(c, p, &needsVisit);
if (not needsVisit) return;
visit: {
object copy = follow(original);
class Walker : public Heap::Walker {
public:
Walker(Context* c, object copy, uintptr_t* bitset):
c(c),
copy(copy),
bitset(bitset),
first(0),
last(0),
visits(0),
total(0)
{ }
virtual bool visit(unsigned offset) {
bool needsVisit;
object childCopy = update
(c, &cast<object>(copy, offset * BytesPerWord), &needsVisit);
++ total;
if (total == 3) {
bitsetInit(bitset);
}
if (needsVisit) {
++ visits;
if (visits == 1) {
first = offset;
}
if (total >= 3) {
bitsetClear(bitset, last, offset);
last = offset;
bitsetSet(bitset, offset, true);
}
} else {
cast<object>(copy, offset * BytesPerWord) = childCopy;
}
return true;
}
Context* c;
object copy;
uintptr_t* bitset;
unsigned first;
unsigned last;
unsigned visits;
unsigned total;
} walker(c, copy, bitset(original));
c->client->walk(copy, &walker);
if (walker.visits) {
// descend
if (walker.visits > 1) {
::parent(original) = parent;
parent = original;
}
original = cast<object>(copy, walker.first * BytesPerWord);
cast<object>(copy, walker.first * BytesPerWord) = follow(original);
goto visit;
} else {
// ascend
original = parent;
}
}
if (original) {
object copy = follow(original);
class Walker : public Heap::Walker {
public:
Walker(Context* c, uintptr_t* bitset):
c(c),
bitset(bitset),
next(0),
total(0)
{ }
virtual bool visit(unsigned offset) {
switch (++ total) {
case 1:
return true;
case 2:
next = offset;
return true;
case 3:
next = bitsetNext(c, bitset);
return false;
default:
abort(c);
}
}
Context* c;
uintptr_t* bitset;
unsigned next;
unsigned total;
} walker(c, bitset(original));
assert(c, walker.total > 1);
if (walker.total == 3 and bitsetHasMore(bitset(original))) {
parent = original;
} else {
parent = ::parent(original);
}
original = cast<object>(copy, walker.next * BytesPerWord);
cast<object>(copy, walker.next * BytesPerWord) = follow(original);
goto visit;
} else {
return;
}
}
void
collect(Context* c, Segment::Map* map, unsigned start, unsigned end,
bool* dirty, bool expectDirty)
{
bool wasDirty = false;
for (Segment::Map::Iterator it(map, start, end); it.hasMore();) {
wasDirty = true;
if (map->child) {
assert(c, map->scale > 1);
unsigned s = it.next();
unsigned e = s + map->scale;
map->clearOnly(s);
bool childDirty = false;
collect(c, map->child, s, e, &childDirty, true);
if (c->mode == OverflowCollection) {
return;
} else if (childDirty) {
map->setOnly(s);
*dirty = true;
}
} else {
assert(c, map->scale == 1);
object* p = reinterpret_cast<object*>(map->segment->get(it.next()));
map->clearOnly(p);
if (c->nextGen1.contains(*p)) {
map->setOnly(p);
*dirty = true;
} else {
collect(c, p);
if (c->mode == OverflowCollection) {
return;
} else if (c->gen2.contains(*p)) {
// done
} else {
map->setOnly(p);
*dirty = true;
}
}
}
}
assert(c, wasDirty or not expectDirty);
}
class ObjectSegmentIterator {
public:
ObjectSegmentIterator(Context* c, Segment* s, unsigned end):
c(c), s(s), index(0), end(end)
{ }
bool hasNext() {
return index < end;
}
object next() {
assert(c, hasNext());
object p = s->data + (index * BytesPerWord);
index += c->client->sizeInWords(p);
return p;
}
Context* c;
Segment* s;
unsigned index;
unsigned end;
};
void
collect(Context* c, Segment* s, unsigned limit)
{
for (ObjectSegmentIterator it(c, s, limit); it.hasNext();) {
object p = it.next();
class Walker : public Heap::Walker {
public:
Walker(Context* c, object p): c(c), p(p) { }
virtual bool visit(unsigned offset) {
collect(c, &cast<object>(p, offset * BytesPerWord));
return true;
}
Context* c;
object p;
} walker(c, p);
c->client->walk(p, &walker);
}
}
void
collect2(Context* c)
{
if (c->mode == MinorCollection and c->gen2.position) {
unsigned start = 0;
unsigned end = start + c->gen2.position;
bool dirty;
collect(c, &(c->heapMap), start, end, &dirty, false);
} else if (c->mode == Gen2Collection) {
unsigned ng2Position = c->nextGen2.position;
collect(c, &(c->nextGen1), c->nextGen1.position);
collect(c, &(c->nextGen2), ng2Position);
}
class Visitor : public Heap::Visitor {
public:
Visitor(Context* c): c(c) { }
virtual void visit(void** p) {
collect(c, p);
}
Context* c;
} v(c);
c->client->visitRoots(&v);
}
void
collect(Context* c)
{
switch (c->mode) {
case MinorCollection: {
initNextGen1(c);
collect2(c);
if (c->mode == OverflowCollection) {
c->mode = Gen2Collection;
collect2(c);
c->gen2.replaceWith(&(c->nextGen2));
}
c->gen1.replaceWith(&(c->nextGen1));
} break;
case MajorCollection: {
initNextGen1(c);
initNextGen2(c);
c->heapMap.clear();
collect2(c);
c->gen1.replaceWith(&(c->nextGen1));
c->gen2.replaceWith(&(c->nextGen2));
} break;
default: abort(c);
}
}
} // namespace
namespace vm {
Heap*
makeHeap(System* system)
{
class Heap: public vm::Heap {
public:
Heap(System* system): c(system) { }
virtual void collect(CollectionType type, Client* client) {
switch (type) {
case MinorCollection:
c.mode = ::MinorCollection;
break;
case MajorCollection:
c.mode = ::MajorCollection;
break;
default: abort(&c);
}
c.client = client;
::collect(&c);
}
virtual bool needsMark(void** p) {
return *p and c.gen2.contains(p) and not c.gen2.contains(*p);
}
virtual void mark(void** p) {
c.heapMap.set(p);
}
virtual void dispose() {
c.dispose();
c.system->free(this);
}
virtual void* follow(void* p) {
if (wasCollected(&c, p)) {
return ::follow(p);
} else {
return p;
}
}
Context c;
};
return new (system->allocate(sizeof(Heap))) Heap(system);
}
} // namespace vm