corda/psw/urts/loader.cpp
Angie Chinchilla 9441de4c38 Initial release of Intel SGX for Linux.
This release is used in conjunction with the linux-sgx-driver Intial release:
https://github.com/01org/linux-sgx-driver
commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7

Intel-id: 33399

Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
2016-06-23 18:51:53 -04:00

780 lines
27 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "se_wrapper.h"
#include "se_error_internal.h"
#include "arch.h"
#include "util.h"
#include "loader.h"
#include "se_page_attr.h"
#include "enclave.h"
#include "enclave_creator.h"
#include "routine.h"
#include "sgx_attributes.h"
#include "se_vendor.h"
#include "se_detect.h"
#include "binparser.h"
#include <assert.h>
#include <vector>
#include <algorithm>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <sys/mman.h>
// enclave creator instance
extern EnclaveCreator* g_enclave_creator;
EnclaveCreator* get_enclave_creator(void)
{
return g_enclave_creator;
}
CLoader::CLoader(uint8_t *mapped_file_base, BinParser &parser)
: m_mapped_file_base(mapped_file_base)
, m_enclave_id(0)
, m_start_addr(NULL)
, m_metadata(NULL)
, m_parser(parser)
{
memset(&m_secs, 0, sizeof(m_secs));
}
CLoader::~CLoader()
{
}
sgx_enclave_id_t CLoader::get_enclave_id() const
{
return m_enclave_id;
}
const void* CLoader::get_start_addr() const
{
return m_start_addr;
}
const std::vector<tcs_t *>& CLoader::get_tcs_list() const
{
return m_tcs_list;
}
const secs_t& CLoader::get_secs() const
{
return m_secs;
}
void* CLoader::get_symbol_address(const char * const symbol)
{
uint64_t rva = m_parser.get_symbol_rva(symbol);
if(0 == rva)
return NULL;
return GET_PTR(void, m_start_addr, rva);
}
int CLoader::build_mem_region(const section_info_t * const sec_info)
{
int ret = SGX_SUCCESS;
uint8_t added_page[SE_PAGE_SIZE];
uint64_t offset = 0;
uint8_t *raw_ptr = NULL;
uint64_t rva = 0;
sec_info_t sinfo;
memset(&sinfo, 0, sizeof(sinfo));
rva = sec_info->rva + offset;
while(offset < TRIM_TO_PAGE(sec_info->raw_data_size))
{
raw_ptr = sec_info->raw_data + offset;
sinfo.flags = sec_info->flag;
//check if the page is writable.
if(sec_info->bitmap && sec_info->bitmap->size())
{
uint64_t page_frame = rva >> SE_PAGE_SHIFT;
//NOTE:
// Current enclave size is not beyond 64G, so the type-casting from (uint64>>15) to (size_t) is OK.
// In the future, if the max enclave size is extended to beyond (1<<49), this type-casting will not work.
// It only impacts the enclave signing process. (32bit signing tool to sign 64 bit enclaves)
if((*sec_info->bitmap)[(size_t)(page_frame / 8)] & (1 << (page_frame % 8)))
sinfo.flags = sec_info->flag | SI_FLAG_W;
}
//call driver API to add page; raw_ptr needn't be page align, driver will handle page align;
if(SGX_SUCCESS != (ret = get_enclave_creator()->add_enclave_page(ENCLAVE_ID_IOCTL, raw_ptr, rva, sinfo, ADD_EXTEND_PAGE)))
{
//if add page failed , we should remove enclave somewhere;
return ret;
}
offset += SE_PAGE_SIZE;
rva = sec_info->rva + offset;
}
//add the remaider of last page of raw data
if(!IS_PAGE_ALIGNED(sec_info->raw_data_size))
{
sinfo.flags = sec_info->flag;
//the padding be 0
memset(added_page, 0, SE_PAGE_SIZE);
raw_ptr = sec_info->raw_data + offset;
rva = sec_info->rva + offset;
memcpy_s(added_page, SE_PAGE_SIZE, raw_ptr, sec_info->raw_data_size & (SE_PAGE_SIZE-1));
//check if the page is writable.
if(sec_info->bitmap && sec_info->bitmap->size())
{
uint64_t page_frame = rva >> SE_PAGE_SHIFT;
//NOTE:
// Current enclave size is not beyond 64G, so the type-casting from (uint64>>15) to (size_t) is OK.
// In the future, if the max enclave size is extended to beyond (1<<49), this type-casting will not work.
// It only impacts the enclave signing process. (32bit signing tool to sign 64 bit enclaves)
if((*sec_info->bitmap)[(size_t)(page_frame / 8)] & (1 << (page_frame % 8)))
sinfo.flags = sec_info->flag | SI_FLAG_W;
}
//call driver to add page;
if(SGX_SUCCESS != (ret = get_enclave_creator()->add_enclave_page(ENCLAVE_ID_IOCTL, added_page, rva, sinfo, ADD_EXTEND_PAGE)))
{
//if add page failed , we should remove enclave somewhere;
return ret;
}
rva += SE_PAGE_SIZE;
}
//add unintialized page.If the section have no raw data, the offset should be 0.
if(ROUND_TO_PAGE(sec_info->virtual_size) > ROUND_TO_PAGE(sec_info->raw_data_size))
{
size_t size = (size_t)(ROUND_TO_PAGE(sec_info->virtual_size) - ROUND_TO_PAGE(sec_info->raw_data_size));
sinfo.flags = sec_info->flag;
if(SGX_SUCCESS != (ret = build_pages(rva, size, 0, sinfo, ADD_EXTEND_PAGE)))
return ret;
}
return SGX_SUCCESS;
}
int CLoader::build_sections(vector<uint8_t> *bitmap)
{
int ret = SGX_SUCCESS;
std::vector<Section*> sections = m_parser.get_sections();
for(unsigned int i = 0; i < sections.size() ; i++)
{
//since build_mem_region require the sec_info.rva be page aligned, we need handle the first page.
//build the first page;
uint64_t offset = (sections[i]->get_rva() & (SE_PAGE_SIZE -1));
uint64_t size = SE_PAGE_SIZE - offset;
uint8_t first_page[SE_PAGE_SIZE];
//the raw data may be smaller than the size, we get the min of them
if(sections[i]->raw_data_size() < size)
size = sections[i]->raw_data_size();
//the padding is '0'
memset(first_page, 0, SE_PAGE_SIZE);
memcpy_s(&first_page[offset], (size_t)size, sections[i]->raw_data(), (size_t)size);
section_info_t sec_info = { first_page, SE_PAGE_SIZE, sections[i]->get_rva() & (~(SE_PAGE_SIZE - 1)), SE_PAGE_SIZE, sections[i]->get_si_flags(), bitmap };
if(SGX_SUCCESS != (ret = build_mem_region(&sec_info)))
{
return ret;
}
//if there is more pages, then build the next paged aligned pages
if((sections[i]->virtual_size() + offset) > SE_PAGE_SIZE)
{
sec_info.raw_data = GET_PTR(uint8_t, sections[i]->raw_data(), size);
sec_info.raw_data_size = sections[i]->raw_data_size() - size;
sec_info.rva = sections[i]->get_rva() + (SE_PAGE_SIZE - offset);
assert(0 == (sec_info.rva & (SE_PAGE_SIZE - 1)));
//we need use (SE_PAGE_SIZE - offset), because (SE_PAGE_SIZE - offset) may larger than size
sec_info.virtual_size = sections[i]->virtual_size() - (SE_PAGE_SIZE - offset);
sec_info.flag = sections[i]->get_si_flags();
sec_info.bitmap = bitmap;
if(SGX_SUCCESS != (ret = build_mem_region(&sec_info)))
{
return ret;
}
}
}
return SGX_SUCCESS;
}
int CLoader::build_pages(const uint64_t start_rva, const uint64_t size, void *source, const sec_info_t &sinfo, const uint32_t attr)
{
int ret = SGX_SUCCESS;
uint64_t offset = 0;
uint64_t rva = start_rva;
while(offset < size)
{
//call driver to add page;
if(SGX_SUCCESS != (ret = get_enclave_creator()->add_enclave_page(ENCLAVE_ID_IOCTL, source, rva, sinfo, attr)))
{
//if add page failed , we should remove enclave somewhere;
return ret;
}
offset += SE_PAGE_SIZE;
rva += SE_PAGE_SIZE;
}
return SGX_SUCCESS;
}
int CLoader::build_context(const uint64_t start_rva, layout_entry_t *layout)
{
int ret = SGX_ERROR_UNEXPECTED;
uint8_t added_page[SE_PAGE_SIZE];
sec_info_t sinfo;
memset(&sinfo, 0, sizeof(sinfo));
uint64_t rva = start_rva + layout->rva;
if (layout->content_offset)
{
// assume TCS is only 1 page
if(layout->si_flags == SI_FLAGS_TCS)
{
memset(added_page, 0, SE_PAGE_SIZE);
memcpy_s(added_page, SE_PAGE_SIZE, GET_PTR(uint8_t, m_metadata, layout->content_offset), layout->content_size);
tcs_t *ptcs = reinterpret_cast<tcs_t*>(added_page);
ptcs->ossa += rva;
ptcs->ofs_base += rva;
ptcs->ogs_base += rva;
m_tcs_list.push_back(GET_PTR(tcs_t, m_start_addr, rva));
sinfo.flags = layout->si_flags;
if(SGX_SUCCESS != (ret = build_pages(rva, layout->page_count << SE_PAGE_SHIFT, added_page, sinfo, layout->attributes)))
{
return ret;
}
}
else // guard page should not have content_offset != 0
{
section_info_t sec_info = {GET_PTR(uint8_t, m_metadata, layout->content_offset), layout->content_size, rva, layout->page_count << SE_PAGE_SHIFT, layout->si_flags, NULL};
if(SGX_SUCCESS != (ret = build_mem_region(&sec_info)))
{
return ret;
}
}
}
else if (layout->si_flags != SI_FLAG_NONE)
{
sinfo.flags = layout->si_flags;
void *source = NULL;
if(layout->content_size)
{
for(uint32_t *p = (uint32_t *)added_page; p < GET_PTR(uint32_t, added_page, SE_PAGE_SIZE); p++)
{
*p = layout->content_size;
}
source = added_page;
}
if(SGX_SUCCESS != (ret = build_pages(rva, layout->page_count << SE_PAGE_SHIFT, source, sinfo, layout->attributes)))
{
return ret;
}
}
return SGX_SUCCESS;
}
int CLoader::build_contexts(layout_t *layout_start, layout_t *layout_end, uint64_t delta)
{
int ret = SGX_ERROR_UNEXPECTED;
for(layout_t *layout = layout_start; layout < layout_end; layout++)
{
if (!IS_GROUP_ID(layout->group.id))
{
if(SGX_SUCCESS != (ret = build_context(delta, &layout->entry)))
{
return ret;
}
}
else
{
uint64_t step = 0;
for(uint32_t j = 0; j < layout->group.load_times; j++)
{
step += layout->group.load_step;
if(SGX_SUCCESS != (ret = build_contexts(&layout[-layout->group.entry_count], layout, step)))
{
return ret;
}
}
}
}
return SGX_SUCCESS;
}
int CLoader::build_secs(sgx_attributes_t * const secs_attr, sgx_misc_attribute_t * const misc_attr)
{
memset(&m_secs, 0, sizeof(secs_t)); //should set resvered field of secs as 0.
//create secs structure.
m_secs.base = 0; //base is allocated by driver. set it as 0
m_secs.size = m_metadata->enclave_size;
m_secs.misc_select = misc_attr->misc_select;
memcpy_s(&m_secs.attributes, sizeof(m_secs.attributes), secs_attr, sizeof(m_secs.attributes));
m_secs.ssa_frame_size = m_metadata->ssa_frame_size;
EnclaveCreator *enclave_creator = get_enclave_creator();
if(NULL == enclave_creator)
return SGX_ERROR_UNEXPECTED;
int ret = enclave_creator->create_enclave(&m_secs, &m_enclave_id, &m_start_addr, is_ae(&m_metadata->enclave_css));
if(SGX_SUCCESS == ret)
{
SE_TRACE(SE_TRACE_NOTICE, "enclave start address = %p, size = %x\n", m_start_addr, m_metadata->enclave_size);
}
return ret;
}
int CLoader::build_image(SGXLaunchToken * const lc, sgx_attributes_t * const secs_attr, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t * const misc_attr)
{
int ret = SGX_SUCCESS;
if(SGX_SUCCESS != (ret = build_secs(secs_attr, misc_attr)))
{
SE_TRACE(SE_TRACE_WARNING, "build secs failed\n");
return ret;
};
// read reloc bitmap before patch the enclave file
// If load_enclave_ex try to load the enclave for the 2nd time,
// the enclave image is already patched, and parser cannot read the information.
// For linux, there's no map conflict. We assume load_enclave_ex will not do the retry.
vector<uint8_t> bitmap;
if(!m_parser.get_reloc_bitmap(bitmap))
return SGX_ERROR_INVALID_ENCLAVE;
// patch enclave file
patch_entry_t *patch_start = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset);
patch_entry_t *patch_end = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset + m_metadata->dirs[DIR_PATCH].size);
for(patch_entry_t *patch = patch_start; patch < patch_end; patch++)
{
memcpy_s(GET_PTR(void, m_parser.get_start_addr(), patch->dst), patch->size, GET_PTR(void, m_metadata, patch->src), patch->size);
}
//build sections, copy export function table as well;
if(SGX_SUCCESS != (ret = build_sections(&bitmap)))
{
SE_TRACE(SE_TRACE_WARNING, "build sections failed\n");
goto fail;
}
// build heap/thread context
if (SGX_SUCCESS != (ret = build_contexts(GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset),
GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size),
0)))
{
SE_TRACE(SE_TRACE_WARNING, "build heap/thread context failed\n");
goto fail;
}
//initialize Enclave
ret = get_enclave_creator()->init_enclave(ENCLAVE_ID_IOCTL, const_cast<enclave_css_t *>(&m_metadata->enclave_css), lc, prd_css_file);
if(SGX_SUCCESS != ret)
{
SE_TRACE(SE_TRACE_WARNING, "init_enclave failed\n");
goto fail;
}
return SGX_SUCCESS;
fail:
get_enclave_creator()->destroy_enclave(ENCLAVE_ID_IOCTL);
return ret;
}
bool CLoader::is_metadata_buffer(uint32_t offset, uint32_t size)
{
if((offsetof(metadata_t, data) > offset) || (offset >= m_metadata->size))
{
return false;
}
uint32_t end = offset + size;
if ((end < offset) || (end < size) || (end > m_metadata->size))
{
return false;
}
return true;
}
bool CLoader::is_enclave_buffer(uint64_t offset, uint64_t size)
{
if(offset >= m_metadata->enclave_size)
{
return false;
}
uint64_t end = offset + size;
if ((end < offset) || (end < size) || (end > m_metadata->enclave_size))
{
return false;
}
return true;
}
int CLoader::validate_layout_table()
{
layout_t *layout_start = GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset);
layout_t *layout_end = GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size);
vector<pair<uint64_t, uint64_t>> rva_vector;
for (layout_t *layout = layout_start; layout < layout_end; layout++)
{
if(!IS_GROUP_ID(layout->entry.id)) // layout entry
{
rva_vector.push_back(make_pair(layout->entry.rva, layout->entry.page_count << SE_PAGE_SHIFT));
if(layout->entry.content_offset)
{
if(false == is_metadata_buffer(layout->entry.content_offset, layout->entry.content_size))
{
return SGX_ERROR_INVALID_METADATA;
}
}
}
else // layout group
{
if (layout->group.entry_count > (uint32_t)(PTR_DIFF(layout, layout_start)/sizeof(layout_t)))
{
return SGX_ERROR_INVALID_METADATA;
}
uint64_t load_step = 0;
for(uint32_t i = 0; i < layout->group.load_times; i++)
{
load_step += layout->group.load_step;
if(load_step > m_metadata->enclave_size)
{
return SGX_ERROR_INVALID_METADATA;
}
for(layout_entry_t *entry = &layout[-layout->group.entry_count].entry; entry < &layout->entry; entry++)
{
if(IS_GROUP_ID(entry->id))
{
return SGX_ERROR_INVALID_METADATA;
}
rva_vector.push_back(make_pair(entry->rva + load_step, entry->page_count << SE_PAGE_SHIFT));
// no need to check integer overflow for entry->rva + load_step, because
// entry->rva and load_step are less than enclave_size, whose size is no more than 37 bit
}
}
}
}
sort(rva_vector.begin(), rva_vector.end());
for (vector<pair<uint64_t, uint64_t>>::iterator it = rva_vector.begin(); it != rva_vector.end(); it++)
{
if(!IS_PAGE_ALIGNED(it->first))
{
return SGX_ERROR_INVALID_METADATA;
}
if(false == is_enclave_buffer(it->first, it->second))
{
return SGX_ERROR_INVALID_METADATA;
}
if((it+1) != rva_vector.end())
{
if((it->first+it->second) > (it+1)->first)
{
return SGX_ERROR_INVALID_METADATA;
}
}
}
return SGX_SUCCESS;
}
int CLoader::validate_patch_table()
{
patch_entry_t *patch_start = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset);
patch_entry_t *patch_end = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset + m_metadata->dirs[DIR_PATCH].size);
for(patch_entry_t *patch = patch_start; patch < patch_end; patch++)
{
if(false == is_metadata_buffer(patch->src, patch->size))
{
return SGX_ERROR_INVALID_METADATA;
}
if(false == is_enclave_buffer(patch->dst, patch->size))
{
return SGX_ERROR_INVALID_METADATA;
}
}
return SGX_SUCCESS;
}
int CLoader::validate_metadata()
{
if(!m_metadata)
return SGX_ERROR_INVALID_METADATA;
uint64_t version = META_DATA_MAKE_VERSION(MAJOR_VERSION,MINOR_VERSION );
//if the version of metadata does NOT match the version of metadata in urts, we should NOT launch enclave.
if(m_metadata->version != version)
{
SE_TRACE(SE_TRACE_WARNING, "Mismatch between the metadata urts required and the metadata in use.\n");
return SGX_ERROR_INVALID_VERSION;
}
if(m_metadata->size > sizeof(metadata_t))
{
return SGX_ERROR_INVALID_METADATA;
}
if(m_metadata->tcs_policy > TCS_POLICY_UNBIND)
return SGX_ERROR_INVALID_METADATA;
if(m_metadata->ssa_frame_size < SSA_FRAME_SIZE_MIN || m_metadata->ssa_frame_size > SSA_FRAME_SIZE_MAX)
return SGX_ERROR_INVALID_METADATA;
uint64_t size = m_metadata->enclave_size;
if(size > m_parser.get_enclave_max_size())
{
return SGX_ERROR_INVALID_METADATA;
}
while ((size != 0) && ((size & 1) != 1))
{
size = size >> 1;
}
if(size != 1)
{
return SGX_ERROR_INVALID_METADATA;
}
// check dirs
for(uint32_t i = 0; i < DIR_NUM; i++)
{
if(false == is_metadata_buffer(m_metadata->dirs[i].offset, m_metadata->dirs[i].size))
{
return SGX_ERROR_INVALID_METADATA;
}
}
// check layout table
int status = validate_layout_table();
if(SGX_SUCCESS != status)
{
return status;
}
// check patch table
status = validate_patch_table();
if(SGX_SUCCESS != status)
{
return status;
}
return SGX_SUCCESS;
}
bool CLoader::is_ae(const enclave_css_t *enclave_css)
{
assert(NULL != enclave_css);
if(INTEL_VENDOR_ID == enclave_css->header.module_vendor
&& AE_PRODUCT_ID == enclave_css->body.isv_prod_id)
return true;
return false;
}
int CLoader::load_enclave(SGXLaunchToken *lc, int debug, const metadata_t *metadata, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t *misc_attr)
{
int ret = SGX_SUCCESS;
sgx_misc_attribute_t sgx_misc_attr;
memset(&sgx_misc_attr, 0, sizeof(sgx_misc_attribute_t));
m_metadata = metadata;
ret = validate_metadata();
if(SGX_SUCCESS != ret)
{
SE_TRACE(SE_TRACE_ERROR, "The metadata setting is not correct\n");
return ret;
}
ret = get_enclave_creator()->get_misc_attr(&sgx_misc_attr, const_cast<metadata_t *>(m_metadata), lc, debug);
if(SGX_SUCCESS != ret)
{
return ret;
}
ret = build_image(lc, &sgx_misc_attr.secs_attr, prd_css_file, &sgx_misc_attr);
//return platform capability if fail. Otherwise, return secs.attr.
if(SGX_SUCCESS == ret)
{
if(misc_attr)
{
memcpy_s(misc_attr, sizeof(sgx_misc_attribute_t), &sgx_misc_attr, sizeof(sgx_misc_attribute_t));
//When run here EINIT success, so SGX_FLAGS_INITTED should be set by ucode. uRTS align it with EINIT instruction.
misc_attr->secs_attr.flags |= SGX_FLAGS_INITTED;
}
}
else
{
if(misc_attr)
{
sgx_misc_attribute_t plat_cap;
memset(&plat_cap, 0, sizeof(plat_cap));
get_enclave_creator()->get_plat_cap(&plat_cap);
memcpy_s(misc_attr, sizeof(sgx_misc_attribute_t), &plat_cap, sizeof(sgx_misc_attribute_t));
}
}
return ret;
}
int CLoader::load_enclave_ex(SGXLaunchToken *lc, bool debug, const metadata_t *metadata, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t *misc_attr)
{
unsigned int ret = SGX_SUCCESS, map_conflict_count = 3;
bool retry = true;
while (retry)
{
ret = this->load_enclave(lc, debug, metadata, prd_css_file, misc_attr);
switch(ret)
{
//If CreateEnclave failed due to power transition, we retry it.
case SGX_ERROR_ENCLAVE_LOST: //caused by loading enclave while power transition occurs
break;
//If memroy map conflict occurs, we only retry 3 times.
case SGX_ERROR_MEMORY_MAP_CONFLICT:
if(0 == map_conflict_count)
retry = false;
else
map_conflict_count--;
break;
//We don't re-load enclave due to other error code.
default:
retry = false;
break;
}
}
return ret;
}
int CLoader::destroy_enclave()
{
return get_enclave_creator()->destroy_enclave(ENCLAVE_ID_IOCTL);
}
int CLoader::set_memory_protection()
{
uint64_t rva = 0;
uint64_t len = 0;
uint64_t last_section_end = 0;
unsigned int i = 0;
int ret = 0;
//for sections
std::vector<Section*> sections = m_parser.get_sections();
for(i = 0; i < sections.size() ; i++)
{
//require the sec_info.rva be page aligned, we need handle the first page.
//the first page;
uint64_t offset = (sections[i]->get_rva() & (SE_PAGE_SIZE -1));
uint64_t size = SE_PAGE_SIZE - offset;
//the raw data may be smaller than the size, we get the min of them
if(sections[i]->raw_data_size() < size)
size = sections[i]->raw_data_size();
len = SE_PAGE_SIZE;
//if there is more pages, then calc the next paged aligned pages
if((sections[i]->virtual_size() + offset) > SE_PAGE_SIZE)
{
uint64_t raw_data_size = sections[i]->raw_data_size() - size;
//we need use (SE_PAGE_SIZE - offset), because (SE_PAGE_SIZE - offset) may larger than size
uint64_t virtual_size = sections[i]->virtual_size() - (SE_PAGE_SIZE - offset);
len += ROUND_TO_PAGE(raw_data_size);
if(ROUND_TO_PAGE(virtual_size) > ROUND_TO_PAGE(raw_data_size))
{
len += ROUND_TO_PAGE(virtual_size) - ROUND_TO_PAGE(raw_data_size);
}
}
rva = TRIM_TO_PAGE(sections[i]->get_rva()) + (uint64_t)m_start_addr;
ret = mprotect((void*)rva, (size_t)len, (int)(sections[i]->get_si_flags()&SI_MASK_MEM_ATTRIBUTE));
if(ret != 0)
{
SE_TRACE(SE_TRACE_WARNING, "section[%d]:mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%" PRIu64 ") failed\n",
i, rva, len, (sections[i]->get_si_flags()));
return SGX_ERROR_UNEXPECTED;
}
//there is a gap between sections, need to set those to NONE access
if(last_section_end != 0)
{
ret = mprotect((void*)last_section_end, (size_t)(rva - last_section_end), (int)(SI_FLAG_NONE & SI_MASK_MEM_ATTRIBUTE));
if(ret != 0)
{
SE_TRACE(SE_TRACE_WARNING, "set protection for gap before section[%d]:mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%" PRIu64 ") failed\n",
i, last_section_end, rva - last_section_end, SI_FLAG_NONE);
return SGX_ERROR_UNEXPECTED;
}
}
last_section_end = rva + len;
}
ret = set_context_protection(GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset),
GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size),
0);
if (SGX_SUCCESS != ret)
{
return ret;
}
return SGX_SUCCESS;
}
int CLoader::set_context_protection(layout_t *layout_start, layout_t *layout_end, uint64_t delta)
{
int ret = SGX_ERROR_UNEXPECTED;
for(layout_t *layout = layout_start; layout < layout_end; layout++)
{
if (!IS_GROUP_ID(layout->group.id))
{
int prot = 0 ;
if(layout->entry.attributes == SI_FLAG_NONE)
{
prot = SI_FLAG_NONE & SI_MASK_MEM_ATTRIBUTE;
}
else
{
prot = SI_FLAGS_RW & SI_MASK_MEM_ATTRIBUTE;
}
ret = mprotect(GET_PTR(void, m_start_addr, layout->entry.rva + delta),
(size_t)(layout->entry.page_count << SE_PAGE_SHIFT),
prot);
if(ret != 0)
{
SE_TRACE(SE_TRACE_WARNING, "mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%d) failed\n",
(uint64_t)m_start_addr + layout->entry.rva + delta,
(uint64_t)(layout->entry.page_count << SE_PAGE_SHIFT),
prot);
return SGX_ERROR_UNEXPECTED;
}
}
else
{
uint64_t step = 0;
for(uint32_t j = 0; j < layout->group.load_times; j++)
{
step += layout->group.load_step;
if(SGX_SUCCESS != (ret = set_context_protection(&layout[-layout->group.entry_count], layout, step)))
{
return ret;
}
}
}
}
return SGX_SUCCESS;
}