corda/psw/urts/linux/sig_handler.cpp
Angie Chinchilla 9441de4c38 Initial release of Intel SGX for Linux.
This release is used in conjunction with the linux-sgx-driver Intial release:
https://github.com/01org/linux-sgx-driver
commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7

Intel-id: 33399

Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
2016-06-23 18:51:53 -04:00

261 lines
9.5 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "arch.h"
#include "sgx_error.h"
#include "tcs.h"
#include "se_trace.h"
#include "xsave.h"
#include "rts.h"
#include "enclave.h"
#include <assert.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
typedef struct _ecall_param_t
{
tcs_t *tcs;
long fn; //long because we need register bandwith align on stack, refer to enter_enclave.h;
void *ocall_table;
void *ms;
CTrustThread *trust_thread;
} ecall_param_t;
#ifdef __x86_64__
#define REG_XIP REG_RIP
#define REG_XAX REG_RAX
#define REG_XBX REG_RBX
#define REG_XSI REG_RSI
#define REG_XBP REG_RBP
/*
* refer to enter_enclave.h
* stack high address <-------------
* |rip|rbp|rbx|r10|r13|r14|r15|r8|rcx|rdx|rsi|rdi|
* ^ ^
* | <-rbp | <-param4
*/
#define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_RBP] - 10 * 8))
#else
#define REG_XIP REG_EIP
#define REG_XAX REG_EAX
#define REG_XBX REG_EBX
#define REG_XSI REG_ESI
#define REG_XBP REG_EBP
/*
* refer to enter_enclave.h
* stack high address <-------------
* |param4|param3|param2|param2|param0|eip|ebp|
* ^
* | <-ebp
*/
#define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_EBP] + 2 * 4))
#endif
extern "C" void *get_aep();
extern "C" void *get_eenterp();
extern "C" void *get_eretp();
static struct sigaction g_old_sigact[_NSIG];
void reg_sig_handler();
void sig_handler(int signum, siginfo_t* siginfo, void *priv)
{
SE_TRACE(SE_TRACE_DEBUG, "signal handler is triggered\n");
ucontext_t* context = reinterpret_cast<ucontext_t *>(priv);
unsigned int *xip = reinterpret_cast<unsigned int *>(context->uc_mcontext.gregs[REG_XIP]);
size_t xax = context->uc_mcontext.gregs[REG_XAX];
#ifndef NDEBUG
/* `xbx' is only used in assertions. */
size_t xbx = context->uc_mcontext.gregs[REG_XBX];
#endif
ecall_param_t *param = ECALL_PARAM;
//the case of exception on ERESUME or within enclave.
//We can't distinguish ERESUME exception from exception within enclave. We assume it is the exception within enclave.
//If it is ERESUME exception, it will raise another exception in ecall and ecall will return error.
if(xip == get_aep()
&& SE_ERESUME == xax)
{
assert(ENCLU == (*xip & 0xffffff));
//suppose the exception is within enclave.
SE_TRACE(SE_TRACE_NOTICE, "exception on ERESUME\n");
//The ecall looks recursively, but it will not cause infinite call.
//If exception is raised in trts again and again, the SSA will overflow, and finally it is EENTER exception.
assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
CEnclave *enclave = param->trust_thread->get_enclave();
unsigned int ret = enclave->ecall(ECMD_EXCEPT, param->ocall_table, NULL);
if(SGX_SUCCESS == ret)
{
//ERESUME execute
return;
}
//If the exception is caused by enclave lost or internal stack overrun, then return the error code to ecall caller elegantly.
else if(SGX_ERROR_ENCLAVE_LOST == ret || SGX_ERROR_STACK_OVERRUN == ret)
{
//enter_enlcave function will return with ret which is from tRTS;
context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
context->uc_mcontext.gregs[REG_XSI] = ret;
return;
}
//If we can't fix the exception within enclave, then give the handle to other signal hanlder.
//Call the previous signal handler. The default signal handler should terminate the application.
enclave->rdunlock();
CEnclavePool::instance()->unref_enclave(enclave);
}
//the case of exception on EENTER instruction.
else if(xip == get_eenterp()
&& SE_EENTER == xax)
{
assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
assert(ENCLU == (*xip & 0xffffff));
SE_TRACE(SE_TRACE_NOTICE, "exception on EENTER\n");
//enter_enlcave function will return with SE_ERROR_ENCLAVE_LOST
context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
context->uc_mcontext.gregs[REG_XSI] = SGX_ERROR_ENCLAVE_LOST;
return;
}
SE_TRACE(SE_TRACE_DEBUG, "NOT enclave signal\n");
//it is not SE exception. if the old signal handler is default signal handler, we reset signal handler.
//raise the signal again, and the default signal handler will be called.
if(SIG_DFL == g_old_sigact[signum].sa_handler)
{
signal(signum, SIG_DFL);
raise(signum);
}
//if there is old signal handler, we need transfer the signal to the old signal handler;
else
{
if(!(g_old_sigact[signum].sa_flags & SA_NODEFER))
sigaddset(&g_old_sigact[signum].sa_mask, signum);
sigset_t cur_set;
pthread_sigmask(SIG_SETMASK, &g_old_sigact[signum].sa_mask, &cur_set);
if(g_old_sigact[signum].sa_flags & SA_SIGINFO)
{
g_old_sigact[signum].sa_sigaction(signum, siginfo, priv);
}
else
{
g_old_sigact[signum].sa_handler(signum);
}
pthread_sigmask(SIG_SETMASK, &cur_set, NULL);
//If the g_old_sigact set SA_RESETHAND, it will break the chain which means
//g_old_sigact->next_old_sigact will not be called. Our signal handler does not
//responsable for that. We just follow what os do on SA_RESETHAND.
if(g_old_sigact[signum].sa_flags & SA_RESETHAND)
g_old_sigact[signum].sa_handler = SIG_DFL;
}
}
void reg_sig_handler()
{
int ret = 0;
struct sigaction sig_act;
SE_TRACE(SE_TRACE_DEBUG, "signal handler is registered\n");
memset(&sig_act, 0, sizeof(sig_act));
sig_act.sa_sigaction = sig_handler;
sig_act.sa_flags = SA_SIGINFO | SA_NODEFER | SA_RESTART;
sigemptyset(&sig_act.sa_mask);
if(sigprocmask(SIG_SETMASK, NULL, &sig_act.sa_mask))
{
SE_TRACE(SE_TRACE_WARNING, "%s\n", strerror(errno));
}
else
{
sigdelset(&sig_act.sa_mask, SIGSEGV);
sigdelset(&sig_act.sa_mask, SIGFPE);
sigdelset(&sig_act.sa_mask, SIGILL);
sigdelset(&sig_act.sa_mask, SIGBUS);
sigdelset(&sig_act.sa_mask, SIGTRAP);
}
ret = sigaction(SIGSEGV, &sig_act, &g_old_sigact[SIGSEGV]);
if (0 != ret) abort();
ret = sigaction(SIGFPE, &sig_act, &g_old_sigact[SIGFPE]);
if (0 != ret) abort();
ret = sigaction(SIGILL, &sig_act, &g_old_sigact[SIGILL]);
if (0 != ret) abort();
ret = sigaction(SIGBUS, &sig_act, &g_old_sigact[SIGBUS]);
if (0 != ret) abort();
ret = sigaction(SIGTRAP, &sig_act, &g_old_sigact[SIGTRAP]);
if (0 != ret) abort();
}
//trust_thread is saved at stack for ocall.
#define enter_enclave __morestack
extern "C" int enter_enclave(const tcs_t *tcs, const long fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread);
int do_ecall(const int fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread)
{
int status = SGX_ERROR_UNEXPECTED;
#ifdef SE_SIM
CEnclave* enclave = trust_thread->get_enclave();
//check if it is current pid, it is to simulate fork() scenario on HW
sgx_enclave_id_t eid = enclave->get_enclave_id();
if((pid_t)(eid >> 32) != getpid())
return SGX_ERROR_ENCLAVE_LOST;
#endif
tcs_t *tcs = trust_thread->get_tcs();
//seh_handler.cpp have the same code to save and restore pf register.
//put the save register code here, because we want remind maintainer we should do it near EENTER
uint8_t buffer[FXSAVE_SIZE];
save_and_clean_xfeature_regs(buffer);
status = enter_enclave(tcs, fn, ocall_table, ms, trust_thread);
restore_xfeature_regs(buffer);
return status;
}
int do_ocall(const bridge_fn_t bridge, void *ms)
{
int error = SGX_ERROR_UNEXPECTED;
error = bridge(ms);
save_and_clean_xfeature_regs(NULL);
return error;
}