corda/sdk/simulation/tinst/t_instructions.cpp
llly 6662022bf8 Linux 1.7 Open Source Gold release
Signed-off-by: Li, Xun <xun.li@email.com>
2016-12-20 09:47:15 +09:00

352 lines
14 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
// t_instructions.cpp -- It simulates Enclave instructions.
#include <string.h>
#include <stdlib.h>
#include "arch.h"
#include "util.h"
#include "lowlib.h"
#include "sgx_trts.h"
#include "trts_inst.h"
#include "deriv.h"
#include "t_instructions.h"
#include "td_mngr.h"
////////////////////////////////////////////////////////////////////////
global_data_sim_t g_global_data_sim = {NULL, {{0}}, 0};
#define GP() abort()
#define GP_ON(cond) do { if (unlikely(cond)) GP(); } while (0)
////////////////////////////////////////////////////////////////////////
// Simulation for EGETKEY
////////////////////////////////////////////////////////////////////////
// The hard-coded OwnerEpoch.
static const se_owner_epoch_t SIMU_OWNER_EPOCH_MSR = {
0x54, 0x48, 0x49, 0x53, 0x49, 0x53, 0x4f, 0x57,
0x4e, 0x45, 0x52, 0x45, 0x50, 0x4f, 0x43, 0x48,
};
#define check_cpu_svn(kr) do { \
if(memcmp(&kr->cpu_svn, &UPGRADED_CPUSVN, sizeof(UPGRADED_CPUSVN)) && \
memcmp(&kr->cpu_svn, &DEFAULT_CPUSVN, sizeof(DEFAULT_CPUSVN)) && \
memcmp(&kr->cpu_svn, &DOWNGRADED_CPUSVN, sizeof(DOWNGRADED_CPUSVN))){ \
return EGETKEY_INVALID_CPUSVN; \
} \
if ( (!memcmp(&g_global_data_sim.cpusvn_sim, &DEFAULT_CPUSVN, sizeof(DEFAULT_CPUSVN)) && \
!memcmp(&kr->cpu_svn, &UPGRADED_CPUSVN, sizeof(UPGRADED_CPUSVN))) || \
(!memcmp(&g_global_data_sim.cpusvn_sim, &DOWNGRADED_CPUSVN, sizeof(DOWNGRADED_CPUSVN)) && \
memcmp(&kr->cpu_svn, &DOWNGRADED_CPUSVN, sizeof(DOWNGRADED_CPUSVN)))){ \
return EGETKEY_INVALID_CPUSVN; \
} \
} while(0)
#define check_isv_svn(kr, secs) do { \
if (kr->isv_svn > secs->isv_svn) { \
return EGETKEY_INVALID_ISVSVN; \
} \
} while(0)
#define check_attr_flag(secs, flag) do { \
if ((secs->attributes.flags & flag) == 0) { \
return EGETKEY_INVALID_ATTRIBUTE; \
} \
} while(0)
// The hardware EGETKEY instruction will set ZF on failure.
//
// In simulation mode, we can not guarentee that the ZF is always set
// between _EGETKEY ending its life and tRTS testing ZF. Since there
// are additional assembly code in between.
//
// In simulation mode, we check return code instead of ZF.
// c.f. do_egetkey() in trts/linux/trts_pic.S
static int _EGETKEY(sgx_key_request_t* kr, sgx_key_128bit_t okey)
{
// check alignment of KEYREQUEST
GP_ON(((size_t)kr & (KEY_REQUEST_ALIGN_SIZE - 1)) != 0);
// check to see if KEYREQEUST is inside the current enclave
GP_ON(!sgx_is_within_enclave(kr, sizeof(sgx_key_request_t)));
// check alignment of OUTPUTDATA
GP_ON(((size_t)okey & (KEY_ALIGN_SIZE - 1)) != 0);
// check to see if OUTPUTDATA is inside the current enclave
GP_ON(!sgx_is_within_enclave(okey, sizeof(sgx_key_128bit_t)));
// check reserved bits are not set
GP_ON((kr->key_policy & ~(SGX_KEYPOLICY_MRENCLAVE | SGX_KEYPOLICY_MRSIGNER)) != 0);
// check to see if reserved space in KEYREQUEST are valid
const uint8_t* u8ptr = (uint8_t *)(&(kr->reserved1));
for (unsigned i = 0; i < sizeof(kr->reserved1); ++i)
GP_ON(u8ptr[i] != (uint8_t)0);
u8ptr = (uint8_t *)(&(kr->reserved2));
for (unsigned i = 0; i < sizeof(kr->reserved2); ++i)
GP_ON(u8ptr[i] != (uint8_t)0);
secs_t* cur_secs = g_global_data_sim.secs_ptr;
sgx_attributes_t tmp_attr;
derivation_data_t dd;
memset(&dd, 0, sizeof(dd));
dd.key_name = kr->key_name;
// Determine which enclave attributes that must be included in the key.
// Attributes that must always be included INIT & DEBUG.
memset(&tmp_attr, 0, sizeof(tmp_attr));
tmp_attr.flags = kr->attribute_mask.flags | SGX_FLAGS_INITTED | SGX_FLAGS_DEBUG;
tmp_attr.flags &= cur_secs->attributes.flags;
tmp_attr.xfrm = kr->attribute_mask.xfrm & cur_secs->attributes.xfrm;
// HW supports CPUSVN to be set as 0.
// To be consistent with HW behaviour, we replace the cpusvn as DEFAULT_CPUSVN if the input cpusvn is 0.
if(!memcmp(&kr->cpu_svn, &dd.ddpk.cpu_svn, sizeof(sgx_cpu_svn_t)))
{
memcpy(&kr->cpu_svn, &DEFAULT_CPUSVN, sizeof(sgx_cpu_svn_t));
}
switch (kr->key_name) {
case SGX_KEYSELECT_SEAL:
check_isv_svn(kr, cur_secs);
check_cpu_svn(kr);
// assemble derivation data
dd.size = sizeof(dd_seal_key_t);
if (kr->key_policy & SGX_KEYPOLICY_MRENCLAVE) {
memcpy(&dd.ddsk.mrenclave, &cur_secs->mr_enclave, sizeof(sgx_measurement_t));
}
if (kr->key_policy & SGX_KEYPOLICY_MRSIGNER) {
memcpy(&dd.ddsk.mrsigner, &cur_secs->mr_signer, sizeof(sgx_measurement_t));
}
memcpy(&dd.ddsk.tmp_attr, &tmp_attr, sizeof(sgx_attributes_t));
memcpy(&dd.ddsk.attribute_mask, &kr->attribute_mask, sizeof(sgx_attributes_t));
memcpy(dd.ddsk.csr_owner_epoch, SIMU_OWNER_EPOCH_MSR, sizeof(se_owner_epoch_t));
memcpy(&dd.ddsk.cpu_svn,&kr->cpu_svn,sizeof(sgx_cpu_svn_t));
dd.ddsk.isv_svn = kr->isv_svn;
dd.ddsk.isv_prod_id = cur_secs->isv_prod_id;
memcpy(&dd.ddsk.key_id, &kr->key_id, sizeof(sgx_key_id_t));
break;
case SGX_KEYSELECT_REPORT:
// assemble derivation data
dd.size = sizeof(dd_report_key_t);
memcpy(&dd.ddrk.attributes, &cur_secs->attributes, sizeof(sgx_attributes_t));
memcpy(dd.ddrk.csr_owner_epoch, SIMU_OWNER_EPOCH_MSR, sizeof(se_owner_epoch_t));
memcpy(&dd.ddrk.cpu_svn,&(g_global_data_sim.cpusvn_sim),sizeof(sgx_cpu_svn_t));
memcpy(&dd.ddrk.mrenclave, &cur_secs->mr_enclave, sizeof(sgx_measurement_t));
memcpy(&dd.ddrk.key_id, &kr->key_id, sizeof(sgx_key_id_t));
break;
case SGX_KEYSELECT_EINITOKEN:
check_attr_flag(cur_secs, SGX_FLAGS_EINITOKEN_KEY);
check_isv_svn(kr, cur_secs);
check_cpu_svn(kr);
// assemble derivation data
dd.size = sizeof(dd_license_key_t);
memcpy(&dd.ddlk.attributes, &cur_secs->attributes, sizeof(sgx_attributes_t));
memcpy(dd.ddlk.csr_owner_epoch, SIMU_OWNER_EPOCH_MSR, sizeof(se_owner_epoch_t));
memcpy(&dd.ddlk.cpu_svn,&kr->cpu_svn,sizeof(sgx_cpu_svn_t));
dd.ddlk.isv_svn = kr->isv_svn;
dd.ddlk.isv_prod_id = cur_secs->isv_prod_id;
memcpy(&dd.ddlk.key_id, &kr->key_id, sizeof(sgx_key_id_t));
break;
case SGX_KEYSELECT_PROVISION: // Pass through. Only key_name differs.
case SGX_KEYSELECT_PROVISION_SEAL:
check_attr_flag(cur_secs, SGX_FLAGS_PROVISION_KEY);
check_isv_svn(kr, cur_secs);
check_cpu_svn(kr);
// assemble derivation data
dd.size = sizeof(dd_provision_key_t);
memcpy(&dd.ddpk.tmp_attr, &tmp_attr, sizeof(sgx_attributes_t));
memcpy(&dd.ddpk.attribute_mask, &kr->attribute_mask, sizeof(sgx_attributes_t));
memcpy(&dd.ddpk.cpu_svn,&kr->cpu_svn,sizeof(sgx_cpu_svn_t));
dd.ddpk.isv_svn = kr->isv_svn;
dd.ddpk.isv_prod_id = cur_secs->isv_prod_id;
memcpy(&dd.ddpk.mrsigner, &cur_secs->mr_signer, sizeof(sgx_measurement_t));
break;
default:
return EGETKEY_INVALID_KEYNAME;
}
derive_key(&dd, okey);
return 0;
}
////////////////////////////////////////////////////////////////////////
// Simulation for EREPORT
////////////////////////////////////////////////////////////////////////
static void _EREPORT(const sgx_target_info_t* ti, const sgx_report_data_t* rd, sgx_report_t* report)
{
// check alignment of TARGETINFO
GP_ON(((size_t)ti & (TARGET_INFO_ALIGN_SIZE - 1)) != 0);
// check to see if TARGETINFO is inside the current enclave
GP_ON(!sgx_is_within_enclave(ti, sizeof(sgx_target_info_t)));
// check alignment of REPORTDATA
GP_ON(((size_t)rd & (REPORT_DATA_ALIGN_SIZE - 1)) != 0);
// check to see if REPORTDATA is inside the current enclave
GP_ON(!sgx_is_within_enclave(rd, sizeof(sgx_report_data_t)));
// check alignment of OUTPUTDATA
GP_ON(((size_t)report & (REPORT_ALIGN_SIZE - 1)) != 0);
// check to see if OUTPUTDATA is inside the current enclave
GP_ON(!sgx_is_within_enclave(report, sizeof(sgx_report_t)));
secs_t* cur_secs = g_global_data_sim.secs_ptr;
SE_DECLSPEC_ALIGN(REPORT_ALIGN_SIZE) sgx_report_t tmp_report;
// assemble REPORT Data
memset(&tmp_report, 0, sizeof(tmp_report));
memcpy(&tmp_report.body.cpu_svn,&(g_global_data_sim.cpusvn_sim),sizeof(sgx_cpu_svn_t));
tmp_report.body.isv_prod_id = cur_secs->isv_prod_id;
tmp_report.body.isv_svn = cur_secs->isv_svn;
memcpy(&tmp_report.body.attributes, &cur_secs->attributes, sizeof(sgx_attributes_t));
memcpy(&tmp_report.body.report_data, rd, sizeof(sgx_report_data_t));
memcpy(&tmp_report.body.mr_enclave, &cur_secs->mr_enclave, sizeof(sgx_measurement_t));
memcpy(&tmp_report.body.mr_signer, &cur_secs->mr_signer, sizeof(sgx_measurement_t));
memcpy(&tmp_report.key_id, get_base_key(SGX_KEYSELECT_REPORT), sizeof(sgx_key_id_t)/2);
// derive the report key
derivation_data_t dd;
memset(&dd, 0, sizeof(dd));
dd.size = sizeof(dd_report_key_t);
dd.key_name = SGX_KEYSELECT_REPORT;
memcpy(&dd.ddrk.mrenclave, &ti->mr_enclave, sizeof(sgx_measurement_t));
memcpy(&dd.ddrk.attributes, &ti->attributes, sizeof(sgx_attributes_t));
memcpy(dd.ddrk.csr_owner_epoch, SIMU_OWNER_EPOCH_MSR, sizeof(se_owner_epoch_t));
memcpy(&dd.ddrk.cpu_svn,&(g_global_data_sim.cpusvn_sim),sizeof(sgx_cpu_svn_t));
memcpy(&dd.ddrk.key_id, &tmp_report.key_id, sizeof(sgx_key_id_t));
// calculate the derived key
sgx_key_128bit_t tmp_report_key;
memset(tmp_report_key, 0, sizeof(tmp_report_key));
derive_key(&dd, tmp_report_key);
// call cryptographic CMAC function
// CMAC data are *NOT* including MAC and KEYID
cmac(&tmp_report_key, reinterpret_cast<uint8_t*>(&tmp_report.body),
sizeof(tmp_report.body), &tmp_report.mac);
memcpy(report, &tmp_report, sizeof(sgx_report_t));
}
////////////////////////////////////////////////////////////////////////
static void
_EEXIT(uintptr_t dest, uintptr_t xcx, uintptr_t xdx, uintptr_t xsi, uintptr_t xdi)
{
// By simulator convention, XDX contains XBP and XCX contains XSP.
enclu_regs_t regs;
// when the code jump back to the ip after EENTER, the simulation code unwind the stack
// by adding 6*sizeof(uintptr_t), so we substract it in advance.
regs.xsp = xcx - 6 * sizeof(uintptr_t);
regs.xbp = xdx;
regs.xip = dest;
tcs_t *tcs = GET_TCS_PTR(xdx);
GP_ON(tcs == NULL);
// restore the used _tls_array
GP_ON(td_mngr_restore_td(tcs) == false);
// check thread is in use or not
tcs_sim_t *tcs_sim = reinterpret_cast<tcs_sim_t *>(tcs->reserved);
GP_ON(tcs_sim->tcs_state != TCS_STATE_ACTIVE);
tcs_sim->tcs_state = TCS_STATE_INACTIVE;
regs.xax = 0;
regs.xbx = dest;
regs.xcx = tcs_sim->saved_aep;
regs.xsi = xsi;
regs.xdi = xdi;
load_regs(&regs);
// Never returns.....
}
// Master entry functions
#pragma GCC push_options
#pragma GCC optimize ("O0")
uintptr_t _SE3(uintptr_t xax, uintptr_t xbx, uintptr_t xcx,
uintptr_t xdx, uintptr_t xsi, uintptr_t xdi)
{
switch (xax)
{
case SE_EEXIT:
_EEXIT(xbx, xcx, xdx, xsi, xdi);
// never reach here
return 0;
case SE_EGETKEY:
return _EGETKEY(reinterpret_cast<sgx_key_request_t *>(xbx),
reinterpret_cast<uint8_t *>(xcx));
case SE_EREPORT:
_EREPORT(reinterpret_cast<sgx_target_info_t*>(xbx),
reinterpret_cast<sgx_report_data_t*>(xcx),
reinterpret_cast<sgx_report_t*>(xdx));
return 0;
}
GP();
return (uintptr_t)-1;
}
#pragma GCC pop_options