corda/sdk/tlibcrypto/sgx_ecc256.cpp
Angie Chinchilla 9441de4c38 Initial release of Intel SGX for Linux.
This release is used in conjunction with the linux-sgx-driver Intial release:
https://github.com/01org/linux-sgx-driver
commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7

Intel-id: 33399

Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
2016-06-23 18:51:53 -04:00

485 lines
19 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sgx_ecc256_common.h"
/*
* Elliptic Curve Crytpography - Based on GF(p), 256 bit
*/
/* Allocates and initializes ecc context
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Output: sgx_ecc_state_handle_t *p_ecc_handle - Pointer to the handle of ECC crypto system */
sgx_status_t sgx_ecc256_open_context(sgx_ecc_state_handle_t* p_ecc_handle)
{
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = NULL;
// default use 256r1 parameter
int ctx_size = 0;
if (p_ecc_handle == NULL)
return SGX_ERROR_INVALID_PARAMETER;
ipp_ret = ippsECCPGetSize(256, &ctx_size);
if (ipp_ret != ippStsNoErr)
return SGX_ERROR_UNEXPECTED;
p_ecc_state = (IppsECCPState*)(malloc(ctx_size));
if (p_ecc_state == NULL)
return SGX_ERROR_OUT_OF_MEMORY;
ipp_ret = ippsECCPInit(256, p_ecc_state);
if (ipp_ret != ippStsNoErr)
{
SAFE_FREE(p_ecc_state);
*p_ecc_handle = NULL;
return SGX_ERROR_UNEXPECTED;
}
ipp_ret = ippsECCPSetStd(IppECCPStd256r1, p_ecc_state);
if (ipp_ret != ippStsNoErr)
{
SAFE_FREE(p_ecc_state);
*p_ecc_handle = NULL;
return SGX_ERROR_UNEXPECTED;
}
*p_ecc_handle = p_ecc_state;
return SGX_SUCCESS;
}
/* Cleans up ecc context
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Output: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system */
sgx_status_t sgx_ecc256_close_context(sgx_ecc_state_handle_t ecc_handle)
{
if (ecc_handle == NULL)
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
int ctx_size = 0;
IppStatus ipp_ret = ippsECCPGetSize(256, &ctx_size);
if (ipp_ret != ippStsNoErr)
{
free(p_ecc_state);
return SGX_SUCCESS;
}
memset_s(p_ecc_state, ctx_size, 0, ctx_size);
free(p_ecc_state);
return SGX_SUCCESS;
}
/* Populates private/public key pair - caller code allocates memory
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* Outputs: sgx_ec256_private_t *p_private - Pointer to the private key
* sgx_ec256_public_t *p_public - Pointer to the public key */
sgx_status_t sgx_ecc256_create_key_pair(sgx_ec256_private_t *p_private,
sgx_ec256_public_t *p_public,
sgx_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private == NULL) || (p_public == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppsBigNumState* dh_priv_BN = NULL;
IppsECCPPointState* point_pub = NULL;
IppsBigNumState* pub_gx = NULL;
IppsBigNumState* pub_gy = NULL;
IppStatus ipp_ret = ippStsNoErr;
int ecPointSize = 0;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
do
{
//init eccp point
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point_pub = (IppsECCPPointState*)(malloc(ecPointSize));
if (!point_pub)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_pub);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &dh_priv_BN);
ERROR_BREAK(ipp_ret);
// Use the true random number (DRNG)
// Notice that IPP ensures the private key generated is non-zero
ipp_ret = ippsECCPGenKeyPair(dh_priv_BN, point_pub, p_ecc_state, (IppBitSupplier)sgx_ipp_DRNGen, NULL);
ERROR_BREAK(ipp_ret);
//convert point_result to oct string
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPGetPoint(pub_gx, pub_gy, point_pub, p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sgn = IppsBigNumPOS;
Ipp32u *pdata = NULL;
// ippsRef_BN is in bits not bytes (versus old ippsGet_BN)
int length = 0;
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gx);
ERROR_BREAK(ipp_ret);
memset(p_public->gx, 0, sizeof(p_public->gx));
ipp_ret = check_copy_size(sizeof(p_public->gx), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_public->gx, pdata, ROUND_TO(length, 8) / 8);
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gy);
ERROR_BREAK(ipp_ret);
memset(p_public->gy, 0, sizeof(p_public->gy));
ipp_ret = check_copy_size(sizeof(p_public->gy), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_public->gy, pdata, ROUND_TO(length, 8) / 8);
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, dh_priv_BN);
ERROR_BREAK(ipp_ret);
memset(p_private->r, 0, sizeof(p_private->r));
ipp_ret = check_copy_size(sizeof(p_private->r), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_private->r, pdata, ROUND_TO(length, 8) / 8);
} while (0);
//Clear temp buffer before free.
if (point_pub) memset_s(point_pub, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_pub);
sgx_ipp_secure_free_BN(pub_gx, SGX_ECP256_KEY_SIZE);
sgx_ipp_secure_free_BN(pub_gy, SGX_ECP256_KEY_SIZE);
sgx_ipp_secure_free_BN(dh_priv_BN, SGX_ECP256_KEY_SIZE);
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}
/* Checks whether the input point is a valid point on the given elliptic curve
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sgx_ec256_public_t *p_point - Pointer to perform validity check on - LITTLE ENDIAN
* Output: int *p_valid - Return 0 if the point is an invalid point on ECC curve */
sgx_status_t sgx_ecc256_check_point(const sgx_ec256_public_t *p_point,
const sgx_ecc_state_handle_t ecc_handle,
int *p_valid)
{
if ((ecc_handle == NULL) || (p_point == NULL) || (p_valid == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppsECCPPointState* point2check = NULL;
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppECResult ipp_result = ippECValid;
int ecPointSize = 0;
IppsBigNumState* BN_gx = NULL;
IppsBigNumState* BN_gy = NULL;
// Intialize return to false
*p_valid = 0;
do
{
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point2check = (IppsECCPPointState*)malloc(ecPointSize);
if (!point2check)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point2check);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gx, sizeof(p_point->gx), &BN_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gy, sizeof(p_point->gy), &BN_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetPoint(BN_gx, BN_gy, point2check, p_ecc_state);
ERROR_BREAK(ipp_ret);
// Check to see if the point is a valid point on the Elliptic curve and is not infinity
ipp_ret = ippsECCPCheckPoint(point2check, &ipp_result, p_ecc_state);
ERROR_BREAK(ipp_ret);
if (ipp_result == ippECValid)
{
*p_valid = 1;
}
} while (0);
// Clear temp buffer before free.
if (point2check)
memset_s(point2check, ecPointSize, 0, ecPointSize);
SAFE_FREE(point2check);
sgx_ipp_secure_free_BN(BN_gx, sizeof(p_point->gx));
sgx_ipp_secure_free_BN(BN_gy, sizeof(p_point->gy));
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}
/* Computes DH shared key based on private B key (local) and remote public Ga Key
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sgx_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN
* sgx_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN
* Output: sgx_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN
x-coordinate of (privKeyB - pubKeyA) */
sgx_status_t sgx_ecc256_compute_shared_dhkey(sgx_ec256_private_t *p_private_b,
sgx_ec256_public_t *p_public_ga,
sgx_ec256_dh_shared_t *p_shared_key,
sgx_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppsBigNumState* BN_dh_privB = NULL;
IppsBigNumState* BN_dh_share = NULL;
IppsBigNumState* pubA_gx = NULL;
IppsBigNumState* pubA_gy = NULL;
IppsECCPPointState* point_pubA = NULL;
IppStatus ipp_ret = ippStsNoErr;
int ecPointSize = 0;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppECResult ipp_result = ippECValid;
do
{
ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sgx_ec256_private_t), &BN_dh_privB);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point_pubA = (IppsECCPPointState*)(malloc(ecPointSize));
if (!point_pubA)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_pubA);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state);
ERROR_BREAK(ipp_ret);
// Check to see if the point is a valid point on the Elliptic curve and is not infinity
ipp_ret = ippsECCPCheckPoint(point_pubA, &ipp_result, p_ecc_state);
if (ipp_result != ippECValid)
{
break;
}
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share);
ERROR_BREAK(ipp_ret);
/* This API generates shareA = x-coordinate of (privKeyB*pubKeyA) */
ipp_ret = ippsECCPSharedSecretDH(BN_dh_privB, point_pubA, BN_dh_share, p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sgn = IppsBigNumPOS;
int length = 0;
Ipp32u * pdata = NULL;
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share);
ERROR_BREAK(ipp_ret);
memset(p_shared_key->s, 0, sizeof(p_shared_key->s));
ipp_ret = check_copy_size(sizeof(p_shared_key->s), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_shared_key->s, pdata, ROUND_TO(length, 8) / 8);
} while (0);
// Clear temp buffer before free.
if (point_pubA) memset_s(point_pubA, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_pubA);
sgx_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx));
sgx_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy));
sgx_ipp_secure_free_BN(BN_dh_privB, sizeof(sgx_ec256_private_t));
sgx_ipp_secure_free_BN(BN_dh_share, sizeof(sgx_ec256_dh_shared_t));
if (ipp_result != ippECValid)
{
return SGX_ERROR_INVALID_PARAMETER;
}
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}
/* Computes 512-bit DH shared key based on private B key (local) and remote public Ga Key
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sgx_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN
* sgx_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN
* Output: sgx_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN
x-coordinate of (privKeyB - pubKeyA) */
sgx_status_t sgx_ecc256_compute_shared_dhkey512(sgx_ec256_private_t *p_private_b,
sgx_ec256_public_t *p_public_ga,
sgx_ec256_dh_shared512_t *p_shared_key,
sgx_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppsBigNumState* BN_dh_privB = NULL;
IppsBigNumState* BN_dh_share512_x = NULL;
IppsBigNumState* BN_dh_share512_y = NULL;
IppsBigNumState* pubA_gx = NULL;
IppsBigNumState* pubA_gy = NULL;
IppsECCPPointState* point_pubA = NULL;
IppsECCPPointState* point_R = NULL;
IppStatus ipp_ret = ippStsNoErr;
int ecPointSize = 0;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
do
{
ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sgx_ec256_private_t), &BN_dh_privB);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point_pubA = (IppsECCPPointState*)( malloc(ecPointSize) );
if(!point_pubA)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_pubA);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state);
ERROR_BREAK(ipp_ret);
point_R = (IppsECCPPointState*)( malloc(ecPointSize) );
if(!point_R)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_R);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share512_x);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share512_y);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPMulPointScalar(point_pubA, BN_dh_privB, point_R, p_ecc_state);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPGetPoint(BN_dh_share512_x, BN_dh_share512_y, point_R, p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sgn = IppsBigNumPOS;
int length = 0;
Ipp32u *pdata = NULL;
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share512_x);
ERROR_BREAK(ipp_ret);
memset(p_shared_key->x, 0, sizeof(p_shared_key->x));
memcpy(p_shared_key->x, pdata, ROUND_TO(length, 8)/8);
// Clear memory securely
memset_s(pdata, sizeof(p_shared_key->x), 0, ROUND_TO(length, 8)/8);
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share512_y);
ERROR_BREAK(ipp_ret);
memset(p_shared_key->y, 0, sizeof(p_shared_key->y));
memcpy(p_shared_key->y, pdata, ROUND_TO(length, 8)/8);
// Clear memory securely
memset_s(pdata, sizeof(p_shared_key->x), 0, ROUND_TO(length, 8)/8);
}while(0);
// Clear temp buffer before free.
if (point_pubA) memset_s(point_pubA, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_pubA);
if (point_R) memset_s(point_R, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_R);
sgx_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx));
sgx_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy));
sgx_ipp_secure_free_BN(BN_dh_privB, sizeof(sgx_ec256_private_t));
sgx_ipp_secure_free_BN(BN_dh_share512_x, sizeof(sgx_ec256_dh_shared_t));
sgx_ipp_secure_free_BN(BN_dh_share512_y, sizeof(sgx_ec256_dh_shared_t));
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}