corda/src/machine.cpp

2958 lines
72 KiB
C++

#include "jnienv.h"
#include "machine.h"
#include "util.h"
#include "stream.h"
#include "constants.h"
#include "processor.h"
using namespace vm;
namespace {
bool
find(Thread* t, Thread* o)
{
if (t == o) return true;
for (Thread* p = t->peer; p; p = p->peer) {
if (p == o) return true;
}
if (t->child) return find(t->child, o);
return false;
}
void
join(Thread* t, Thread* o)
{
if (t != o) {
o->systemThread->join();
o->state = Thread::JoinedState;
}
}
unsigned
count(Thread* t, Thread* o)
{
unsigned c = 0;
if (t != o) ++ c;
for (Thread* p = t->peer; p; p = p->peer) {
c += count(p, o);
}
if (t->child) c += count(t->child, o);
return c;
}
Thread**
fill(Thread* t, Thread* o, Thread** array)
{
if (t != o) *(array++) = t;
for (Thread* p = t->peer; p; p = p->peer) {
array = fill(p, o, array);
}
if (t->child) array = fill(t->child, o, array);
return array;
}
void
dispose(Thread* t, Thread* o, bool remove)
{
if (remove) {
// debug
expect(t, find(t->m->rootThread, o));
unsigned c = count(t->m->rootThread, o);
Thread* threads[c];
fill(t->m->rootThread, o, threads);
// end debug
if (o->parent) {
Thread* previous = 0;
for (Thread* p = o->parent->child; p;) {
if (p == o) {
if (p == o->parent->child) {
o->parent->child = p->peer;
} else {
previous->peer = p->peer;
}
break;
} else {
previous = p;
p = p->peer;
}
}
for (Thread* p = o->child; p;) {
Thread* next = p->peer;
p->peer = o->parent->child;
o->parent->child = p;
p->parent = o->parent;
p = next;
}
} else if (o->child) {
t->m->rootThread = o->child;
for (Thread* p = o->peer; p;) {
Thread* next = p->peer;
p->peer = t->m->rootThread;
t->m->rootThread = p;
p = next;
}
} else if (o->peer) {
t->m->rootThread = o->peer;
} else {
abort(t);
}
// debug
expect(t, not find(t->m->rootThread, o));
for (unsigned i = 0; i < c; ++i) {
expect(t, find(t->m->rootThread, threads[i]));
}
// end debug
}
o->dispose();
}
void
joinAll(Thread* m, Thread* o)
{
for (Thread* p = o->child; p;) {
Thread* child = p;
p = p->peer;
joinAll(m, child);
}
join(m, o);
}
void
disposeAll(Thread* m, Thread* o)
{
for (Thread* p = o->child; p;) {
Thread* child = p;
p = p->peer;
disposeAll(m, child);
}
dispose(m, o, false);
}
void
killZombies(Thread* t, Thread* o)
{
for (Thread* p = o->child; p;) {
Thread* child = p;
p = p->peer;
killZombies(t, child);
}
switch (o->state) {
case Thread::ZombieState:
join(t, o);
// fall through
case Thread::JoinedState:
dispose(t, o, true);
default: break;
}
}
unsigned
footprint(Thread* t)
{
unsigned n = t->heapOffset + t->heapIndex;
for (Thread* c = t->child; c; c = c->peer) {
n += footprint(c);
}
return n;
}
void
visitRoots(Thread* t, Heap::Visitor* v)
{
if (t->state != Thread::ZombieState) {
v->visit(&(t->javaThread));
v->visit(&(t->exception));
t->m->processor->visitObjects(t, v);
for (Thread::Protector* p = t->protector; p; p = p->next) {
p->visit(v);
}
}
for (Thread* c = t->child; c; c = c->peer) {
visitRoots(c, v);
}
}
void
walk(Thread*, Heap::Walker* w, uint32_t* mask, unsigned fixedSize,
unsigned arrayElementSize, unsigned arrayLength)
{
unsigned fixedSizeInWords = ceiling(fixedSize, BytesPerWord);
unsigned arrayElementSizeInWords
= ceiling(arrayElementSize, BytesPerWord);
for (unsigned i = 0; i < fixedSizeInWords; ++i) {
if (mask[i / 32] & (static_cast<uint32_t>(1) << (i % 32))) {
if (not w->visit(i)) {
return;
}
}
}
bool arrayObjectElements = false;
for (unsigned j = 0; j < arrayElementSizeInWords; ++j) {
unsigned k = fixedSizeInWords + j;
if (mask[k / 32] & (static_cast<uint32_t>(1) << (k % 32))) {
arrayObjectElements = true;
break;
}
}
if (arrayObjectElements) {
for (unsigned i = 0; i < arrayLength; ++i) {
for (unsigned j = 0; j < arrayElementSizeInWords; ++j) {
unsigned k = fixedSizeInWords + j;
if (mask[k / 32] & (static_cast<uint32_t>(1) << (k % 32))) {
if (not w->visit
(fixedSizeInWords + (i * arrayElementSizeInWords) + j))
{
return;
}
}
}
}
}
}
void
walk(Thread* t, Heap::Walker* w, object o)
{
object class_ = static_cast<object>(t->m->heap->follow(objectClass(t, o)));
object objectMask = static_cast<object>
(t->m->heap->follow(classObjectMask(t, class_)));
if (objectMask) {
unsigned fixedSize = classFixedSize(t, class_);
unsigned arrayElementSize = classArrayElementSize(t, class_);
unsigned arrayLength
= (arrayElementSize ?
cast<uintptr_t>(o, fixedSize - BytesPerWord) : 0);
uint32_t mask[intArrayLength(t, objectMask)];
memcpy(mask, &intArrayBody(t, objectMask, 0),
intArrayLength(t, objectMask) * 4);
walk(t, w, mask, fixedSize, arrayElementSize, arrayLength);
} else if (classVmFlags(t, class_) & SingletonFlag) {
unsigned length = singletonLength(t, o);
if (length) {
walk(t, w, singletonMask(t, o),
(singletonCount(t, o) + 2) * BytesPerWord, 0, 0);
} else {
w->visit(0);
}
} else {
w->visit(0);
}
}
void
finalizerTargetUnreachable(Thread* t, Heap::Visitor* v, object* p)
{
v->visit(&finalizerTarget(t, *p));
object finalizer = *p;
*p = finalizerNext(t, finalizer);
finalizerNext(t, finalizer) = t->m->finalizeQueue;
t->m->finalizeQueue = finalizer;
}
void
referenceTargetUnreachable(Thread* t, Heap::Visitor* v, object* p)
{
if (DebugReferences) {
fprintf(stderr, "target %p unreachable for reference %p\n",
jreferenceTarget(t, *p), *p);
}
v->visit(p);
jreferenceTarget(t, *p) = 0;
if (jreferenceQueue(t, *p)
and t->m->heap->status(jreferenceQueue(t, *p)) != Heap::Unreachable)
{
// queue is reachable - add the reference
v->visit(&jreferenceQueue(t, *p));
object q = jreferenceQueue(t, *p);
set(t, *p, JreferenceJNext, *p);
if (referenceQueueFront(t, q)) {
set(t, referenceQueueRear(t, q), JreferenceJNext, *p);
} else {
set(t, q, ReferenceQueueFront, *p);
}
set(t, q, ReferenceQueueRear, *p);
jreferenceQueue(t, *p) = 0;
}
*p = jreferenceVmNext(t, *p);
}
void
referenceUnreachable(Thread* t, Heap::Visitor* v, object* p)
{
if (DebugReferences) {
fprintf(stderr, "reference %p unreachable (target %p)\n",
*p, jreferenceTarget(t, *p));
}
if (jreferenceQueue(t, *p)
and t->m->heap->status(jreferenceQueue(t, *p)) != Heap::Unreachable)
{
// queue is reachable - add the reference
referenceTargetUnreachable(t, v, p);
} else {
*p = jreferenceVmNext(t, *p);
}
}
void
referenceTargetReachable(Thread* t, Heap::Visitor* v, object* p)
{
if (DebugReferences) {
fprintf(stderr, "target %p reachable for reference %p\n",
jreferenceTarget(t, *p), *p);
}
v->visit(p);
v->visit(&jreferenceTarget(t, *p));
if (t->m->heap->status(jreferenceQueue(t, *p)) == Heap::Unreachable) {
jreferenceQueue(t, *p) = 0;
} else {
v->visit(&jreferenceQueue(t, *p));
}
}
void
postVisit(Thread* t, Heap::Visitor* v)
{
Machine* m = t->m;
bool major = m->heap->collectionType() == Heap::MajorCollection;
for (object* p = &(m->finalizeQueue); *p; p = &(finalizerNext(t, *p))) {
v->visit(p);
v->visit(&finalizerTarget(t, *p));
}
for (object* p = &(m->finalizeQueue); *p; p = &(finalizerNext(t, *p))) {
v->visit(p);
v->visit(&finalizerTarget(t, *p));
}
object firstNewTenuredFinalizer = 0;
object lastNewTenuredFinalizer = 0;
for (object* p = &(m->finalizers); *p;) {
v->visit(p);
if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) {
// target is unreachable - queue it up for finalization
finalizerTargetUnreachable(t, v, p);
} else {
// target is reachable
v->visit(&finalizerTarget(t, *p));
if (m->heap->status(*p) == Heap::Tenured) {
// the finalizer is tenured, so we remove it from
// m->finalizers and later add it to m->tenuredFinalizers
if (lastNewTenuredFinalizer == 0) {
lastNewTenuredFinalizer = *p;
}
object finalizer = *p;
*p = finalizerNext(t, finalizer);
finalizerNext(t, finalizer) = firstNewTenuredFinalizer;
firstNewTenuredFinalizer = finalizer;
} else {
p = &finalizerNext(t, *p);
}
}
}
object firstNewTenuredWeakReference = 0;
object lastNewTenuredWeakReference = 0;
for (object* p = &(m->weakReferences); *p;) {
if (m->heap->status(*p) == Heap::Unreachable) {
// reference is unreachable
referenceUnreachable(t, v, p);
} else if (m->heap->status(jreferenceTarget(t, *p))
== Heap::Unreachable)
{
// target is unreachable
referenceTargetUnreachable(t, v, p);
} else {
// both reference and target are reachable
referenceTargetReachable(t, v, p);
if (m->heap->status(*p) == Heap::Tenured) {
// the reference is tenured, so we remove it from
// m->weakReferences and later add it to
// m->tenuredWeakReferences
if (lastNewTenuredWeakReference == 0) {
lastNewTenuredWeakReference = *p;
}
object reference = *p;
*p = jreferenceVmNext(t, reference);
jreferenceVmNext(t, reference) = firstNewTenuredWeakReference;
firstNewTenuredWeakReference = reference;
} else {
p = &jreferenceVmNext(t, *p);
}
}
}
if (major) {
for (object* p = &(m->tenuredFinalizers); *p;) {
v->visit(p);
if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) {
// target is unreachable - queue it up for finalization
finalizerTargetUnreachable(t, v, p);
} else {
// target is reachable
v->visit(&finalizerTarget(t, *p));
p = &finalizerNext(t, *p);
}
}
for (object* p = &(m->tenuredWeakReferences); *p;) {
if (m->heap->status(*p) == Heap::Unreachable) {
// reference is unreachable
referenceUnreachable(t, v, p);
} else if (m->heap->status(jreferenceTarget(t, *p))
== Heap::Unreachable)
{
// target is unreachable
referenceTargetUnreachable(t, v, p);
} else {
// both reference and target are reachable
referenceTargetReachable(t, v, p);
p = &jreferenceVmNext(t, *p);
}
}
}
if (lastNewTenuredFinalizer) {
finalizerNext(t, lastNewTenuredFinalizer) = m->tenuredFinalizers;
m->tenuredFinalizers = firstNewTenuredFinalizer;
}
if (lastNewTenuredWeakReference) {
jreferenceVmNext(t, lastNewTenuredWeakReference) = m->tenuredWeakReferences;
m->tenuredWeakReferences = firstNewTenuredWeakReference;
}
}
void
postCollect(Thread* t)
{
#ifdef VM_STRESS
t->allocator.free(t->defaultHeap, Thread::HeapSizeInBytes);
t->defaultHeap = static_cast<uintptr_t*>
(t->allocator.allocate(Thread::HeapSizeInBytes));
#endif
t->heap = t->defaultHeap;
t->heapOffset = 0;
t->heapIndex = 0;
for (Thread* c = t->child; c; c = c->peer) {
postCollect(c);
}
}
object
makeByteArray(Thread* t, const char* format, va_list a)
{
const int Size = 256;
char buffer[Size];
int r = vsnprintf(buffer, Size - 1, format, a);
expect(t, r >= 0 and r < Size - 1);
object s = makeByteArray(t, strlen(buffer) + 1, false);
memcpy(&byteArrayBody(t, s, 0), buffer, byteArrayLength(t, s));
return s;
}
unsigned
mangledSize(int8_t c)
{
switch (c) {
case '_':
case ';':
case '[':
return 2;
case '$':
return 6;
default:
return 1;
}
}
unsigned
mangle(int8_t c, int8_t* dst)
{
switch (c) {
case '/':
dst[0] = '_';
return 1;
case '_':
dst[0] = '_';
dst[1] = '1';
return 2;
case ';':
dst[0] = '_';
dst[1] = '2';
return 2;
case '[':
dst[0] = '_';
dst[1] = '3';
return 2;
case '$':
memcpy(dst, "_00024", 6);
return 6;
default:
dst[0] = c;
return 1;
}
}
object
makeJNIName(Thread* t, object method, bool decorate)
{
unsigned size = 5;
object className = ::className(t, methodClass(t, method));
PROTECT(t, className);
for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) {
size += mangledSize(byteArrayBody(t, className, i));
}
++ size;
object methodName = ::methodName(t, method);
PROTECT(t, methodName);
for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) {
size += mangledSize(byteArrayBody(t, methodName, i));
}
object methodSpec = ::methodSpec(t, method);
PROTECT(t, methodSpec);
if (decorate) {
size += 2;
for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1
and byteArrayBody(t, methodSpec, i) != ')'; ++i)
{
size += mangledSize(byteArrayBody(t, methodSpec, i));
}
}
object name = makeByteArray(t, size + 1, false);
unsigned index = 0;
memcpy(&byteArrayBody(t, name, index), "Java_", 5);
index += 5;
for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) {
index += mangle(byteArrayBody(t, className, i),
&byteArrayBody(t, name, index));
}
byteArrayBody(t, name, index++) = '_';
for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) {
index += mangle(byteArrayBody(t, methodName, i),
&byteArrayBody(t, name, index));
}
if (decorate) {
byteArrayBody(t, name, index++) = '_';
byteArrayBody(t, name, index++) = '_';
for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1
and byteArrayBody(t, methodSpec, i) != ')'; ++i)
{
index += mangle(byteArrayBody(t, methodSpec, i),
&byteArrayBody(t, name, index));
}
}
byteArrayBody(t, name, index++) = 0;
assert(t, index == size + 1);
return name;
}
object
parseUtf8(Thread* t, Stream& s, unsigned length)
{
object value = makeByteArray(t, length + 1, false);
unsigned vi = 0;
for (unsigned si = 0; si < length; ++si) {
unsigned a = s.read1();
if (a & 0x80) {
// todo: handle non-ASCII characters properly
if (a & 0x20) {
// 3 bytes
si += 2;
assert(t, si < length);
/*unsigned b = */s.read1();
/*unsigned c = */s.read1();
byteArrayBody(t, value, vi++) = '_';
} else {
// 2 bytes
++ si;
assert(t, si < length);
unsigned b = s.read1();
if (a == 0xC0 and b == 0x80) {
byteArrayBody(t, value, vi++) = 0;
} else {
byteArrayBody(t, value, vi++) = '_';
}
}
} else {
byteArrayBody(t, value, vi++) = a;
}
}
if (vi < length) {
PROTECT(t, value);
object v = makeByteArray(t, vi + 1, false);
memcpy(&byteArrayBody(t, v, 0), &byteArrayBody(t, value, 0), vi);
value = v;
}
byteArrayBody(t, value, vi) = 0;
return value;
}
unsigned
parsePoolEntry(Thread* t, Stream& s, uint32_t* index, object pool, unsigned i)
{
PROTECT(t, pool);
s.setPosition(index[i]);
switch (s.read1()) {
case CONSTANT_Integer:
case CONSTANT_Float: {
singletonValue(t, pool, i) = s.read4();
} return 1;
case CONSTANT_Long:
case CONSTANT_Double: {
uint64_t v = s.read8();
memcpy(&singletonValue(t, pool, i), &v, 8);
} return 2;
case CONSTANT_Utf8: {
if (singletonObject(t, pool, i) == 0) {
object value = parseUtf8(t, s, s.read2());
set(t, pool, SingletonBody + (i * BytesPerWord), value);
}
} return 1;
case CONSTANT_Class: {
if (singletonObject(t, pool, i) == 0) {
unsigned si = s.read2() - 1;
parsePoolEntry(t, s, index, pool, si);
object value = singletonObject(t, pool, si);
set(t, pool, SingletonBody + (i * BytesPerWord), value);
}
} return 1;
case CONSTANT_String: {
if (singletonObject(t, pool, i) == 0) {
unsigned si = s.read2() - 1;
parsePoolEntry(t, s, index, pool, si);
object value = singletonObject(t, pool, si);
value = makeString(t, value, 0, byteArrayLength(t, value) - 1, 0);
value = intern(t, value);
set(t, pool, SingletonBody + (i * BytesPerWord), value);
}
} return 1;
case CONSTANT_NameAndType: {
if (singletonObject(t, pool, i) == 0) {
unsigned ni = s.read2() - 1;
unsigned ti = s.read2() - 1;
parsePoolEntry(t, s, index, pool, ni);
parsePoolEntry(t, s, index, pool, ti);
object name = singletonObject(t, pool, ni);
object type = singletonObject(t, pool, ti);
object value = makePair(t, name, type);
set(t, pool, SingletonBody + (i * BytesPerWord), value);
}
} return 1;
case CONSTANT_Fieldref:
case CONSTANT_Methodref:
case CONSTANT_InterfaceMethodref: {
if (singletonObject(t, pool, i) == 0) {
unsigned ci = s.read2() - 1;
unsigned nti = s.read2() - 1;
parsePoolEntry(t, s, index, pool, ci);
parsePoolEntry(t, s, index, pool, nti);
object class_ = singletonObject(t, pool, ci);
object nameAndType = singletonObject(t, pool, nti);
object value = makeReference
(t, class_, pairFirst(t, nameAndType), pairSecond(t, nameAndType));
set(t, pool, SingletonBody + (i * BytesPerWord), value);
}
} return 1;
default: abort(t);
}
}
object
parsePool(Thread* t, Stream& s)
{
unsigned count = s.read2() - 1;
object pool = makeSingleton(t, count);
PROTECT(t, pool);
if (count) {
uint32_t* index = static_cast<uint32_t*>
(t->m->heap->allocate(t, count * 4, false));
for (unsigned i = 0; i < count; ++i) {
index[i] = s.position();
switch (s.read1()) {
case CONSTANT_Class:
case CONSTANT_String:
singletonMarkObject(t, pool, i);
s.skip(2);
break;
case CONSTANT_Integer:
case CONSTANT_Float:
s.skip(4);
break;
case CONSTANT_NameAndType:
case CONSTANT_Fieldref:
case CONSTANT_Methodref:
case CONSTANT_InterfaceMethodref:
singletonMarkObject(t, pool, i);
s.skip(4);
break;
case CONSTANT_Long:
case CONSTANT_Double:
s.skip(8);
++ i;
break;
case CONSTANT_Utf8:
singletonMarkObject(t, pool, i);
s.skip(s.read2());
break;
default: abort(t);
}
}
unsigned end = s.position();
for (unsigned i = 0; i < count;) {
i += parsePoolEntry(t, s, index, pool, i);
}
t->m->heap->free(index, count * 4, false);
s.setPosition(end);
}
return pool;
}
void
addInterfaces(Thread* t, object class_, object map)
{
object table = classInterfaceTable(t, class_);
if (table) {
unsigned increment = 2;
if (classFlags(t, class_) & ACC_INTERFACE) {
increment = 1;
}
PROTECT(t, map);
PROTECT(t, table);
for (unsigned i = 0; i < arrayLength(t, table); i += increment) {
object interface = arrayBody(t, table, i);
object name = className(t, interface);
hashMapInsertMaybe(t, map, name, interface, byteArrayHash,
byteArrayEqual);
}
}
}
void
parseInterfaceTable(Thread* t, Stream& s, object class_, object pool)
{
PROTECT(t, class_);
PROTECT(t, pool);
object map = makeHashMap(t, 0, 0);
PROTECT(t, map);
if (classSuper(t, class_)) {
addInterfaces(t, classSuper(t, class_), map);
}
unsigned count = s.read2();
for (unsigned i = 0; i < count; ++i) {
object name = singletonObject(t, pool, s.read2() - 1);
PROTECT(t, name);
object interface = resolveClass(t, name);
PROTECT(t, interface);
hashMapInsertMaybe(t, map, name, interface, byteArrayHash, byteArrayEqual);
addInterfaces(t, interface, map);
}
object interfaceTable = 0;
if (hashMapSize(t, map)) {
unsigned length = hashMapSize(t, map) ;
if ((classFlags(t, class_) & ACC_INTERFACE) == 0) {
length *= 2;
}
interfaceTable = makeArray(t, length, true);
PROTECT(t, interfaceTable);
unsigned i = 0;
object it = hashMapIterator(t, map);
PROTECT(t, it);
for (; it; it = hashMapIteratorNext(t, it)) {
object interface = resolveClass
(t, tripleFirst(t, hashMapIteratorNode(t, it)));
if (UNLIKELY(t->exception)) return;
set(t, interfaceTable, ArrayBody + (i * BytesPerWord), interface);
++ i;
if ((classFlags(t, class_) & ACC_INTERFACE) == 0) {
if (classVirtualTable(t, interface)) {
// we'll fill in this table in parseMethodTable():
object vtable = makeArray
(t, arrayLength(t, classVirtualTable(t, interface)), true);
set(t, interfaceTable, ArrayBody + (i * BytesPerWord), vtable);
}
++i;
}
}
}
set(t, class_, ClassInterfaceTable, interfaceTable);
}
void
parseFieldTable(Thread* t, Stream& s, object class_, object pool)
{
PROTECT(t, class_);
PROTECT(t, pool);
unsigned memberOffset = BytesPerWord;
if (classSuper(t, class_)) {
memberOffset = classFixedSize(t, classSuper(t, class_));
}
unsigned count = s.read2();
if (count) {
unsigned staticOffset = BytesPerWord * 2;
unsigned staticCount = 0;
object fieldTable = makeArray(t, count, true);
PROTECT(t, fieldTable);
object staticValueTable = makeIntArray(t, count, false);
PROTECT(t, staticValueTable);
uint8_t staticTypes[count];
for (unsigned i = 0; i < count; ++i) {
unsigned flags = s.read2();
unsigned name = s.read2();
unsigned spec = s.read2();
unsigned value = 0;
unsigned code = fieldCode
(t, byteArrayBody(t, singletonObject(t, pool, spec - 1), 0));
unsigned attributeCount = s.read2();
for (unsigned j = 0; j < attributeCount; ++j) {
object name = singletonObject(t, pool, s.read2() - 1);
unsigned length = s.read4();
if (strcmp(reinterpret_cast<const int8_t*>("ConstantValue"),
&byteArrayBody(t, name, 0)) == 0)
{
value = s.read2();
} else {
s.skip(length);
}
}
object field = makeField
(t,
0, // vm flags
code,
flags,
0, // offset
singletonObject(t, pool, name - 1),
singletonObject(t, pool, spec - 1),
class_);
if (flags & ACC_STATIC) {
unsigned size = fieldSize(t, code);
unsigned excess = staticOffset % size;
if (excess) {
staticOffset += BytesPerWord - excess;
}
fieldOffset(t, field) = staticOffset;
staticOffset += size;
intArrayBody(t, staticValueTable, staticCount) = value;
staticTypes[staticCount++] = code;
} else {
if (value) {
abort(t); // todo: handle non-static field initializers
}
unsigned excess = memberOffset % fieldSize(t, code);
if (excess) {
memberOffset += BytesPerWord - excess;
}
fieldOffset(t, field) = memberOffset;
memberOffset += fieldSize(t, code);
}
set(t, fieldTable, ArrayBody + (i * BytesPerWord), field);
}
set(t, class_, ClassFieldTable, fieldTable);
if (staticCount) {
unsigned footprint = ceiling(staticOffset - (BytesPerWord * 2),
BytesPerWord);
object staticTable = makeSingleton(t, footprint);
uint8_t* body = reinterpret_cast<uint8_t*>
(&singletonBody(t, staticTable, 0));
for (unsigned i = 0, offset = 0; i < staticCount; ++i) {
unsigned size = fieldSize(t, staticTypes[i]);
unsigned excess = offset % size;
if (excess) {
offset += BytesPerWord - excess;
}
unsigned value = intArrayBody(t, staticValueTable, i);
if (value) {
switch (staticTypes[i]) {
case ByteField:
case BooleanField:
body[offset] = singletonValue(t, pool, value - 1);
break;
case CharField:
case ShortField:
*reinterpret_cast<uint16_t*>(body + offset)
= singletonValue(t, pool, value - 1);
break;
case IntField:
case FloatField:
*reinterpret_cast<uint32_t*>(body + offset)
= singletonValue(t, pool, value - 1);
break;
case LongField:
case DoubleField:
memcpy(body + offset, &singletonValue(t, pool, value - 1), 8);
break;
case ObjectField:
memcpy(body + offset,
&singletonObject(t, pool, value - 1),
BytesPerWord);
break;
default: abort(t);
}
} else {
memset(body + offset, 0, size);
}
if (staticTypes[i] == ObjectField) {
singletonMarkObject(t, staticTable, offset / BytesPerWord);
}
offset += size;
}
set(t, class_, ClassStaticTable, staticTable);
}
}
classFixedSize(t, class_) = pad(memberOffset);
if (classSuper(t, class_)
and memberOffset == classFixedSize(t, classSuper(t, class_)))
{
set(t, class_, ClassObjectMask,
classObjectMask(t, classSuper(t, class_)));
} else {
object mask = makeIntArray
(t, ceiling(classFixedSize(t, class_), 32 * BytesPerWord), true);
intArrayBody(t, mask, 0) = 1;
object superMask = 0;
if (classSuper(t, class_)) {
superMask = classObjectMask(t, classSuper(t, class_));
if (superMask) {
memcpy(&intArrayBody(t, mask, 0),
&intArrayBody(t, superMask, 0),
ceiling(classFixedSize(t, classSuper(t, class_)),
32 * BytesPerWord)
* 4);
}
}
bool sawReferenceField = false;
object fieldTable = classFieldTable(t, class_);
if (fieldTable) {
for (int i = arrayLength(t, fieldTable) - 1; i >= 0; --i) {
object field = arrayBody(t, fieldTable, i);
if ((fieldFlags(t, field) & ACC_STATIC) == 0
and fieldCode(t, field) == ObjectField)
{
unsigned index = fieldOffset(t, field) / BytesPerWord;
intArrayBody(t, mask, (index / 32)) |= 1 << (index % 32);
sawReferenceField = true;
}
}
}
if (superMask or sawReferenceField) {
set(t, class_, ClassObjectMask, mask);
}
}
}
object
parseCode(Thread* t, Stream& s, object pool)
{
PROTECT(t, pool);
unsigned maxStack = s.read2();
unsigned maxLocals = s.read2();
unsigned length = s.read4();
object code = makeCode(t, pool, 0, 0, maxStack, maxLocals, length, false);
s.read(&codeBody(t, code, 0), length);
PROTECT(t, code);
unsigned ehtLength = s.read2();
if (ehtLength) {
object eht = makeExceptionHandlerTable(t, ehtLength, false);
for (unsigned i = 0; i < ehtLength; ++i) {
ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i);
exceptionHandlerStart(eh) = s.read2();
exceptionHandlerEnd(eh) = s.read2();
exceptionHandlerIp(eh) = s.read2();
exceptionHandlerCatchType(eh) = s.read2();
}
set(t, code, CodeExceptionHandlerTable, eht);
}
unsigned attributeCount = s.read2();
for (unsigned j = 0; j < attributeCount; ++j) {
object name = singletonObject(t, pool, s.read2() - 1);
unsigned length = s.read4();
if (strcmp(reinterpret_cast<const int8_t*>("LineNumberTable"),
&byteArrayBody(t, name, 0)) == 0)
{
unsigned lntLength = s.read2();
object lnt = makeLineNumberTable(t, lntLength, false);
for (unsigned i = 0; i < lntLength; ++i) {
LineNumber* ln = lineNumberTableBody(t, lnt, i);
lineNumberIp(ln) = s.read2();
lineNumberLine(ln) = s.read2();
}
set(t, code, CodeLineNumberTable, lnt);
} else {
s.skip(length);
}
}
return code;
}
void
scanMethodSpec(Thread* t, const char* s, unsigned* parameterCount,
unsigned* returnCode)
{
unsigned count = 0;
MethodSpecIterator it(t, s);
for (; it.hasNext(); it.next()) {
++ count;
}
*parameterCount = count;
*returnCode = fieldCode(t, *it.returnSpec());
}
void
parseMethodTable(Thread* t, Stream& s, object class_, object pool)
{
PROTECT(t, class_);
PROTECT(t, pool);
object virtualMap = makeHashMap(t, 0, 0);
PROTECT(t, virtualMap);
object nativeMap = makeHashMap(t, 0, 0);
PROTECT(t, nativeMap);
unsigned virtualCount = 0;
unsigned declaredVirtualCount = 0;
object superVirtualTable = 0;
PROTECT(t, superVirtualTable);
if (classFlags(t, class_) & ACC_INTERFACE) {
object itable = classInterfaceTable(t, class_);
if (itable) {
PROTECT(t, itable);
for (unsigned i = 0; i < arrayLength(t, itable); ++i) {
object vtable = classVirtualTable(t, arrayBody(t, itable, i));
if (vtable) {
PROTECT(t, vtable);
for (unsigned j = 0; j < arrayLength(t, vtable); ++j) {
object method = arrayBody(t, vtable, j);
object n = hashMapFindNode
(t, virtualMap, method, methodHash, methodEqual);
if (n == 0) {
method = makeMethod
(t,
methodVmFlags(t, method),
methodReturnCode(t, method),
methodParameterCount(t, method),
methodParameterFootprint(t, method),
methodFlags(t, method),
virtualCount++,
methodName(t, method),
methodSpec(t, method),
class_,
0,
0);
hashMapInsert(t, virtualMap, method, method, methodHash);
}
}
}
}
}
} else {
if (classSuper(t, class_)) {
superVirtualTable = classVirtualTable(t, classSuper(t, class_));
}
if (superVirtualTable) {
virtualCount = arrayLength(t, superVirtualTable);
for (unsigned i = 0; i < virtualCount; ++i) {
object method = arrayBody(t, superVirtualTable, i);
hashMapInsert(t, virtualMap, method, method, methodHash);
}
}
}
object newVirtuals = makeList(t, 0, 0, 0);
PROTECT(t, newVirtuals);
unsigned count = s.read2();
if (count) {
object methodTable = makeArray(t, count, true);
PROTECT(t, methodTable);
for (unsigned i = 0; i < count; ++i) {
unsigned flags = s.read2();
unsigned name = s.read2();
unsigned spec = s.read2();
object code = 0;
unsigned attributeCount = s.read2();
for (unsigned j = 0; j < attributeCount; ++j) {
object name = singletonObject(t, pool, s.read2() - 1);
unsigned length = s.read4();
if (strcmp(reinterpret_cast<const int8_t*>("Code"),
&byteArrayBody(t, name, 0)) == 0)
{
code = parseCode(t, s, pool);
} else {
s.skip(length);
}
}
const char* specString = reinterpret_cast<const char*>
(&byteArrayBody(t, singletonObject(t, pool, spec - 1), 0));
unsigned parameterCount;
unsigned returnCode;
scanMethodSpec(t, specString, &parameterCount, &returnCode);
object method = t->m->processor->makeMethod
(t,
0, // vm flags
returnCode,
parameterCount,
parameterFootprint(t, specString, flags & ACC_STATIC),
flags,
0, // offset
singletonObject(t, pool, name - 1),
singletonObject(t, pool, spec - 1),
class_,
code);
PROTECT(t, method);
if (methodVirtual(t, method)) {
++ declaredVirtualCount;
object p = hashMapFindNode
(t, virtualMap, method, methodHash, methodEqual);
if (p) {
methodOffset(t, method) = methodOffset(t, tripleFirst(t, p));
set(t, p, TripleSecond, method);
} else {
methodOffset(t, method) = virtualCount++;
listAppend(t, newVirtuals, method);
hashMapInsert(t, virtualMap, method, method, methodHash);
}
} else {
methodOffset(t, method) = i;
if (strcmp(reinterpret_cast<const int8_t*>("<clinit>"),
&byteArrayBody(t, methodName(t, method), 0)) == 0)
{
methodVmFlags(t, method) |= ClassInitFlag;
classVmFlags(t, class_) |= NeedInitFlag;
}
}
if (flags & ACC_NATIVE) {
object p = hashMapFindNode
(t, nativeMap, methodName(t, method), byteArrayHash, byteArrayEqual);
if (p) {
set(t, p, TripleSecond, method);
} else {
hashMapInsert(t, nativeMap, methodName(t, method), 0, byteArrayHash);
}
}
set(t, methodTable, ArrayBody + (i * BytesPerWord), method);
}
for (unsigned i = 0; i < count; ++i) {
object method = arrayBody(t, methodTable, i);
if (methodFlags(t, method) & ACC_NATIVE) {
PROTECT(t, method);
object overloaded = hashMapFind
(t, nativeMap, methodName(t, method), byteArrayHash, byteArrayEqual);
object jniName = makeJNIName(t, method, overloaded);
set(t, method, MethodCode, jniName);
}
}
set(t, class_, ClassMethodTable, methodTable);
}
if (declaredVirtualCount == 0
and (classFlags(t, class_) & ACC_INTERFACE) == 0)
{
// inherit virtual table from superclass
set(t, class_, ClassVirtualTable, superVirtualTable);
if (classInterfaceTable(t, classSuper(t, class_))
and arrayLength(t, classInterfaceTable(t, class_))
== arrayLength(t, classInterfaceTable(t, classSuper(t, class_))))
{
// inherit interface table from superclass
set(t, class_, ClassInterfaceTable,
classInterfaceTable(t, classSuper(t, class_)));
}
} else if (virtualCount) {
// generate class vtable
object vtable = makeArray(t, virtualCount, true);
unsigned i = 0;
if (classFlags(t, class_) & ACC_INTERFACE) {
PROTECT(t, vtable);
for (object it = hashMapIterator(t, virtualMap); it;
it = hashMapIteratorNext(t, it))
{
object method = tripleFirst(t, hashMapIteratorNode(t, it));
assert(t, arrayBody(t, vtable, methodOffset(t, method)) == 0);
set(t, vtable, ArrayBody + (methodOffset(t, method) * BytesPerWord),
method);
++ i;
}
} else {
if (superVirtualTable) {
for (; i < arrayLength(t, superVirtualTable); ++i) {
object method = arrayBody(t, superVirtualTable, i);
method = hashMapFind(t, virtualMap, method, methodHash, methodEqual);
set(t, vtable, ArrayBody + (i * BytesPerWord), method);
}
}
for (object p = listFront(t, newVirtuals); p; p = pairSecond(t, p)) {
set(t, vtable, ArrayBody + (i * BytesPerWord), pairFirst(t, p));
++ i;
}
}
assert(t, arrayLength(t, vtable) == i);
set(t, class_, ClassVirtualTable, vtable);
if ((classFlags(t, class_) & ACC_INTERFACE) == 0) {
// generate interface vtables
object itable = classInterfaceTable(t, class_);
if (itable) {
PROTECT(t, itable);
for (unsigned i = 0; i < arrayLength(t, itable); i += 2) {
object ivtable = classVirtualTable(t, arrayBody(t, itable, i));
if (ivtable) {
object vtable = arrayBody(t, itable, i + 1);
for (unsigned j = 0; j < arrayLength(t, ivtable); ++j) {
object method = arrayBody(t, ivtable, j);
method = hashMapFind
(t, virtualMap, method, methodHash, methodEqual);
assert(t, method);
set(t, vtable, ArrayBody + (j * BytesPerWord), method);
}
}
}
}
}
}
}
void
updateClassTables(Thread* t, object newClass, object oldClass)
{
object fieldTable = classFieldTable(t, newClass);
if (fieldTable) {
for (unsigned i = 0; i < arrayLength(t, fieldTable); ++i) {
set(t, arrayBody(t, fieldTable, i), FieldClass, newClass);
}
}
if (classFlags(t, newClass) & ACC_INTERFACE) {
object virtualTable = classVirtualTable(t, newClass);
if (virtualTable) {
for (unsigned i = 0; i < arrayLength(t, virtualTable); ++i) {
if (methodClass(t, arrayBody(t, virtualTable, i)) == oldClass) {
set(t, arrayBody(t, virtualTable, i), MethodClass, newClass);
}
}
}
} else {
object methodTable = classMethodTable(t, newClass);
if (methodTable) {
for (unsigned i = 0; i < arrayLength(t, methodTable); ++i) {
set(t, arrayBody(t, methodTable, i), MethodClass, newClass);
}
}
}
}
void
updateBootstrapClass(Thread* t, object bootstrapClass, object class_)
{
expect(t, bootstrapClass != class_);
// verify that the classes have the same layout
expect(t, classSuper(t, bootstrapClass) == classSuper(t, class_));
expect(t, bootstrapClass == arrayBody(t, t->m->types, Machine::ClassType)
or classFixedSize(t, bootstrapClass) == classFixedSize(t, class_));
expect(t,
(classVmFlags(t, bootstrapClass) & ReferenceFlag)
or (classObjectMask(t, bootstrapClass) == 0
and classObjectMask(t, class_) == 0)
or intArrayEqual(t, classObjectMask(t, bootstrapClass),
classObjectMask(t, class_)));
PROTECT(t, bootstrapClass);
PROTECT(t, class_);
ENTER(t, Thread::ExclusiveState);
classVmFlags(t, bootstrapClass) &= ~BootstrapFlag;
classVmFlags(t, bootstrapClass) |= classVmFlags(t, class_);
classFlags(t, bootstrapClass) = classFlags(t, class_);
set(t, bootstrapClass, ClassSuper, classSuper(t, class_));
set(t, bootstrapClass, ClassInterfaceTable, classInterfaceTable(t, class_));
set(t, bootstrapClass, ClassVirtualTable, classVirtualTable(t, class_));
set(t, bootstrapClass, ClassFieldTable, classFieldTable(t, class_));
set(t, bootstrapClass, ClassMethodTable, classMethodTable(t, class_));
set(t, bootstrapClass, ClassStaticTable, classStaticTable(t, class_));
updateClassTables(t, bootstrapClass, class_);
}
object
makeArrayClass(Thread* t, unsigned dimensions, object spec,
object elementClass)
{
// todo: arrays should implement Cloneable and Serializable
object vtable = classVirtualTable
(t, arrayBody(t, t->m->types, Machine::JobjectType));
object c = t->m->processor->makeClass
(t,
0,
0,
dimensions,
2 * BytesPerWord,
BytesPerWord,
classObjectMask(t, arrayBody(t, t->m->types, Machine::ArrayType)),
spec,
arrayBody(t, t->m->types, Machine::JobjectType),
0,
vtable,
0,
0,
elementClass,
t->m->loader,
arrayLength(t, vtable));
t->m->processor->initVtable(t, c);
return c;
}
object
makeArrayClass(Thread* t, object spec)
{
PROTECT(t, spec);
const char* s = reinterpret_cast<const char*>(&byteArrayBody(t, spec, 0));
const char* start = s;
unsigned dimensions = 0;
for (; *s == '['; ++s) ++ dimensions;
object elementSpec;
switch (*s) {
case 'L': {
++ s;
const char* elementSpecStart = s;
while (*s and *s != ';') ++ s;
elementSpec = makeByteArray(t, s - elementSpecStart + 1, false);
memcpy(&byteArrayBody(t, elementSpec, 0),
&byteArrayBody(t, spec, elementSpecStart - start),
s - elementSpecStart);
byteArrayBody(t, elementSpec, s - elementSpecStart) = 0;
} break;
default:
if (dimensions > 1) {
char c = *s;
elementSpec = makeByteArray(t, 3, false);
byteArrayBody(t, elementSpec, 0) = '[';
byteArrayBody(t, elementSpec, 1) = c;
byteArrayBody(t, elementSpec, 2) = 0;
-- dimensions;
} else {
abort(t);
}
}
object elementClass = hashMapFind
(t, t->m->bootstrapClassMap, elementSpec, byteArrayHash, byteArrayEqual);
if (elementClass == 0) {
elementClass = resolveClass(t, elementSpec);
if (UNLIKELY(t->exception)) return 0;
}
return makeArrayClass(t, dimensions, spec, elementClass);
}
void
removeMonitor(Thread* t, object o)
{
object p = hashMapRemove(t, t->m->monitorMap, o, objectHash, objectEqual);
assert(t, p);
if (DebugMonitors) {
fprintf(stderr, "dispose monitor %p for object %x\n",
static_cast<System::Monitor*>(pointerValue(t, p)),
objectHash(t, o));
}
static_cast<System::Monitor*>(pointerValue(t, p))->dispose();
}
void
removeString(Thread* t, object o)
{
hashMapRemove(t, t->m->stringMap, o, stringHash, objectEqual);
}
void
invoke(Thread* t, const char* className, int argc, const char** argv)
{
enter(t, Thread::ActiveState);
object args = makeObjectArray
(t, arrayBody(t, t->m->types, Machine::StringType), argc, true);
PROTECT(t, args);
for (int i = 0; i < argc; ++i) {
object arg = makeString(t, "%s", argv[i]);
set(t, args, ArrayBody + (i * BytesPerWord), arg);
}
t->m->processor->invoke
(t, className, "main", "([Ljava/lang/String;)V", 0, args);
}
void
bootClass(Thread* t, Machine::Type type, int superType, uint32_t objectMask,
unsigned fixedSize, unsigned arrayElementSize, unsigned vtableLength)
{
object super = (superType >= 0 ? arrayBody(t, t->m->types, superType) : 0);
object mask;
if (objectMask) {
if (super
and classObjectMask(t, super)
and intArrayBody(t, classObjectMask(t, super), 0)
== static_cast<int32_t>(objectMask))
{
mask = classObjectMask(t, arrayBody(t, t->m->types, superType));
} else {
mask = makeIntArray(t, 1, false);
intArrayBody(t, mask, 0) = objectMask;
}
} else {
mask = 0;
}
super = (superType >= 0 ? arrayBody(t, t->m->types, superType) : 0);
object class_ = t->m->processor->makeClass
(t, 0, BootstrapFlag, 0, fixedSize, arrayElementSize, mask, 0, super, 0, 0,
0, 0, 0, t->m->loader, vtableLength);
set(t, t->m->types, ArrayBody + (type * BytesPerWord), class_);
}
void
bootJavaClass(Thread* t, Machine::Type type, int superType, const char* name,
int vtableLength, object bootMethod)
{
PROTECT(t, bootMethod);
object n = makeByteArray(t, name);
object class_ = arrayBody(t, t->m->types, type);
set(t, class_, ClassName, n);
object vtable;
if (vtableLength >= 0) {
PROTECT(t, class_);
vtable = makeArray(t, vtableLength, false);
for (int i = 0; i < vtableLength; ++ i) {
arrayBody(t, vtable, i) = bootMethod;
}
} else {
vtable = classVirtualTable(t, arrayBody(t, t->m->types, superType));
}
set(t, class_, ClassVirtualTable, vtable);
t->m->processor->initVtable(t, class_);
hashMapInsert(t, t->m->bootstrapClassMap, n, class_, byteArrayHash);
}
class HeapClient: public Heap::Client {
public:
HeapClient(Machine* m): m(m) { }
virtual void visitRoots(Heap::Visitor* v) {
v->visit(&(m->loader));
v->visit(&(m->bootstrapClassMap));
v->visit(&(m->monitorMap));
v->visit(&(m->stringMap));
v->visit(&(m->types));
v->visit(&(m->jniInterfaceTable));
for (Reference* r = m->jniReferences; r; r = r->next) {
v->visit(&(r->target));
}
for (Thread* t = m->rootThread; t; t = t->peer) {
::visitRoots(t, v);
}
postVisit(m->rootThread, v);
}
virtual void collect(void* context, Heap::CollectionType type) {
Thread* t = static_cast<Thread*>(context);
ENTER(t, Thread::ExclusiveState);
collect(t, type);
}
virtual bool isFixed(void* p) {
return objectFixed(m->rootThread, static_cast<object>(p));
}
virtual unsigned sizeInWords(void* p) {
Thread* t = m->rootThread;
object o = static_cast<object>(m->heap->follow(mask(p)));
unsigned n = baseSize(t, o, static_cast<object>
(m->heap->follow(objectClass(t, o))));
if (objectExtended(t, o)) {
++ n;
}
return n;
}
virtual unsigned copiedSizeInWords(void* p) {
Thread* t = m->rootThread;
object o = static_cast<object>(m->heap->follow(mask(p)));
assert(t, not objectFixed(t, o));
unsigned n = baseSize(t, o, static_cast<object>
(m->heap->follow(objectClass(t, o))));
if (objectExtended(t, o) or hashTaken(t, o)) {
++ n;
}
return n;
}
virtual void copy(void* srcp, void* dstp) {
Thread* t = m->rootThread;
object src = static_cast<object>(m->heap->follow(mask(srcp)));
assert(t, not objectFixed(t, src));
object class_ = static_cast<object>
(m->heap->follow(objectClass(t, src)));
unsigned base = baseSize(t, src, class_);
unsigned n = extendedSize(t, src, base);
object dst = static_cast<object>(dstp);
memcpy(dst, src, n * BytesPerWord);
if (hashTaken(t, src)) {
cast<uintptr_t>(dst, 0) &= PointerMask;
cast<uintptr_t>(dst, 0) |= ExtendedMark;
extendedWord(t, dst, base) = takeHash(t, src);
}
}
virtual void walk(void* p, Heap::Walker* w) {
object o = static_cast<object>(m->heap->follow(mask(p)));
::walk(m->rootThread, w, o);
}
void dispose() {
m->heap->free(this, sizeof(*this), false);
}
private:
Machine* m;
};
} // namespace
namespace vm {
Machine::Machine(System* system, Heap* heap, Finder* finder,
Processor* processor):
vtable(&javaVMVTable),
system(system),
heapClient(new (heap->allocate(0, sizeof(HeapClient), false))
HeapClient(this)),
heap(heap),
finder(finder),
processor(processor),
rootThread(0),
exclusive(0),
jniReferences(0),
builtins(0),
activeCount(0),
liveCount(0),
fixedFootprint(0),
localThread(0),
stateLock(0),
heapLock(0),
classLock(0),
referenceLock(0),
libraries(0),
loader(0),
bootstrapClassMap(0),
monitorMap(0),
stringMap(0),
types(0),
jniInterfaceTable(0),
finalizers(0),
tenuredFinalizers(0),
finalizeQueue(0),
weakReferences(0),
tenuredWeakReferences(0),
unsafe(false),
heapPoolIndex(0)
{
heap->setClient(heapClient);
populateJNITables(&javaVMVTable, &jniEnvVTable);
if (not system->success(system->make(&localThread)) or
not system->success(system->make(&stateLock)) or
not system->success(system->make(&heapLock)) or
not system->success(system->make(&classLock)) or
not system->success(system->make(&referenceLock)) or
not system->success(system->load(&libraries, 0, false, 0)))
{
system->abort();
}
}
void
Machine::dispose()
{
localThread->dispose();
stateLock->dispose();
heapLock->dispose();
classLock->dispose();
referenceLock->dispose();
if (libraries) {
libraries->dispose();
}
for (Reference* r = jniReferences; r;) {
Reference* tmp = r;
r = r->next;
heap->free(tmp, sizeof(*tmp), false);
}
for (unsigned i = 0; i < heapPoolIndex; ++i) {
heap->free(heapPool[i], Thread::HeapSizeInBytes, false);
}
static_cast<HeapClient*>(heapClient)->dispose();
heap->free(this, sizeof(*this), false);
}
Thread::Thread(Machine* m, object javaThread, Thread* parent):
vtable(&(m->jniEnvVTable)),
m(m),
parent(parent),
peer((parent ? parent->child : 0)),
child(0),
state(NoState),
criticalLevel(0),
systemThread(0),
javaThread(javaThread),
exception(0),
heapIndex(0),
heapOffset(0),
protector(0),
runnable(this),
defaultHeap(static_cast<uintptr_t*>
(m->heap->allocate(parent, HeapSizeInBytes, false))),
heap(defaultHeap)
#ifdef VM_STRESS
, stress(false)
#endif // VM_STRESS
{ }
void
Thread::init()
{
if (parent == 0) {
assert(this, m->rootThread == 0);
assert(this, javaThread == 0);
m->rootThread = this;
m->unsafe = true;
if (not m->system->success(m->system->attach(&runnable))) {
abort(this);
}
Thread* t = this;
t->m->loader = allocate(t, sizeof(void*) * 3, true);
memset(t->m->loader, 0, sizeof(void*) * 2);
t->m->types = allocate(t, pad((TypeCount + 2) * BytesPerWord), true);
arrayLength(t, t->m->types) = TypeCount;
memset(&arrayBody(t, t->m->types, 0), 0, TypeCount * BytesPerWord);
#include "type-initializations.cpp"
object arrayClass = arrayBody(t, t->m->types, Machine::ArrayType);
set(t, t->m->types, 0, arrayClass);
object loaderClass = arrayBody
(t, t->m->types, Machine::SystemClassLoaderType);
set(t, t->m->loader, 0, loaderClass);
object objectClass = arrayBody(t, m->types, Machine::JobjectType);
object classClass = arrayBody(t, m->types, Machine::ClassType);
set(t, classClass, 0, classClass);
set(t, classClass, ClassSuper, objectClass);
object intArrayClass = arrayBody(t, m->types, Machine::IntArrayType);
set(t, intArrayClass, 0, classClass);
set(t, intArrayClass, ClassSuper, objectClass);
m->unsafe = false;
classVmFlags(t, arrayBody(t, m->types, Machine::SingletonType))
|= SingletonFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JreferenceType))
|= ReferenceFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::WeakReferenceType))
|= ReferenceFlag | WeakReferenceFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::PhantomReferenceType))
|= ReferenceFlag | WeakReferenceFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JbooleanType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JbyteType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JcharType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JshortType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JintType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JlongType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JfloatType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JdoubleType))
|= PrimitiveFlag;
classVmFlags(t, arrayBody(t, m->types, Machine::JvoidType))
|= PrimitiveFlag;
m->bootstrapClassMap = makeHashMap(this, 0, 0);
{ object loaderMap = makeHashMap(this, 0, 0);
set(t, m->loader, SystemClassLoaderMap, loaderMap);
}
m->monitorMap = makeWeakHashMap(this, 0, 0);
m->stringMap = makeWeakHashMap(this, 0, 0);
m->jniInterfaceTable = makeVector(this, 0, 0, false);
m->localThread->set(this);
{ object bootCode = makeCode(t, 0, 0, 0, 0, 0, 1, false);
codeBody(t, bootCode, 0) = impdep1;
object bootMethod = makeMethod
(t, 0, 0, 0, 0, 0, 0, 0, 0, 0, bootCode, 0);
PROTECT(t, bootMethod);
#include "type-java-initializations.cpp"
}
} else {
peer = parent->child;
parent->child = this;
}
if (javaThread) {
threadPeer(this, javaThread) = reinterpret_cast<jlong>(this);
} else {
this->javaThread = makeThread
(this, reinterpret_cast<int64_t>(this), 0, 0, 0, 0, m->loader);
}
}
void
Thread::exit()
{
if (state != Thread::ExitState and
state != Thread::ZombieState)
{
enter(this, Thread::ExclusiveState);
if (m->liveCount == 1) {
vm::exit(this);
} else {
enter(this, Thread::ZombieState);
}
}
}
void
Thread::dispose()
{
if (systemThread) {
systemThread->dispose();
}
m->heap->free(defaultHeap, Thread::HeapSizeInBytes, false);
m->processor->dispose(this);
}
void
exit(Thread* t)
{
enter(t, Thread::ExitState);
joinAll(t, t->m->rootThread);
for (object* p = &(t->m->finalizers); *p;) {
object f = *p;
*p = finalizerNext(t, *p);
void (*function)(Thread*, object);
memcpy(&function, &finalizerFinalize(t, f), BytesPerWord);
function(t, finalizerTarget(t, f));
}
for (object* p = &(t->m->tenuredFinalizers); *p;) {
object f = *p;
*p = finalizerNext(t, *p);
void (*function)(Thread*, object);
memcpy(&function, &finalizerFinalize(t, f), BytesPerWord);
function(t, finalizerTarget(t, f));
}
disposeAll(t, t->m->rootThread);
}
void
enter(Thread* t, Thread::State s)
{
stress(t);
if (s == t->state) return;
if (t->state == Thread::ExitState) {
// once in exit state, we stay that way
return;
}
ACQUIRE_RAW(t, t->m->stateLock);
switch (s) {
case Thread::ExclusiveState: {
assert(t, t->state == Thread::ActiveState);
while (t->m->exclusive) {
// another thread got here first.
ENTER(t, Thread::IdleState);
}
t->state = Thread::ExclusiveState;
t->m->exclusive = t;
while (t->m->activeCount > 1) {
t->m->stateLock->wait(t->systemThread, 0);
}
} break;
case Thread::IdleState:
case Thread::ZombieState: {
switch (t->state) {
case Thread::ExclusiveState: {
assert(t, t->m->exclusive == t);
t->m->exclusive = 0;
} break;
case Thread::ActiveState: break;
default: abort(t);
}
assert(t, t->m->activeCount > 0);
-- t->m->activeCount;
if (s == Thread::ZombieState) {
assert(t, t->m->liveCount > 0);
-- t->m->liveCount;
}
t->state = s;
t->m->stateLock->notifyAll(t->systemThread);
} break;
case Thread::ActiveState: {
switch (t->state) {
case Thread::ExclusiveState: {
assert(t, t->m->exclusive == t);
t->state = s;
t->m->exclusive = 0;
t->m->stateLock->notifyAll(t->systemThread);
} break;
case Thread::NoState:
case Thread::IdleState: {
while (t->m->exclusive) {
t->m->stateLock->wait(t->systemThread, 0);
}
++ t->m->activeCount;
if (t->state == Thread::NoState) {
++ t->m->liveCount;
}
t->state = s;
} break;
default: abort(t);
}
} break;
case Thread::ExitState: {
switch (t->state) {
case Thread::ExclusiveState: {
assert(t, t->m->exclusive == t);
t->m->exclusive = 0;
t->m->stateLock->notifyAll(t->systemThread);
} break;
case Thread::ActiveState: break;
default: abort(t);
}
assert(t, t->m->activeCount > 0);
-- t->m->activeCount;
t->state = s;
while (t->m->liveCount > 1) {
t->m->stateLock->wait(t->systemThread, 0);
}
} break;
default: abort(t);
}
}
object
allocate2(Thread* t, unsigned sizeInBytes, bool objectMask)
{
return allocate3
(t, t->m->heap,
ceiling(sizeInBytes, BytesPerWord) > Thread::HeapSizeInWords ?
Machine::FixedAllocation : Machine::MovableAllocation,
sizeInBytes, false, objectMask);
}
object
allocate3(Thread* t, Allocator* allocator, Machine::AllocationType type,
unsigned sizeInBytes, bool executable, bool objectMask)
{
ACQUIRE_RAW(t, t->m->stateLock);
while (t->m->exclusive and t->m->exclusive != t) {
// another thread wants to enter the exclusive state, either for a
// collection or some other reason. We give it a chance here.
ENTER(t, Thread::IdleState);
}
if (type == Machine::FixedAllocation) {
if (t->m->fixedFootprint + sizeInBytes
> Machine::FixedFootprintThresholdInBytes)
{
t->heap = 0;
}
} else if (t->heapIndex + ceiling(sizeInBytes, BytesPerWord)
>= Thread::HeapSizeInWords)
{
t->heap = 0;
if (t->m->heapPoolIndex < Machine::HeapPoolSize) {
t->heap = static_cast<uintptr_t*>
(t->m->heap->tryAllocate(0, Thread::HeapSizeInBytes, false));
if (t->heap) {
t->m->heapPool[t->m->heapPoolIndex++] = t->heap;
t->heapOffset += t->heapIndex;
t->heapIndex = 0;
}
}
}
if (t->heap == 0) {
ENTER(t, Thread::ExclusiveState);
collect(t, Heap::MinorCollection);
}
switch (type) {
case Machine::MovableAllocation: {
return allocateSmall(t, sizeInBytes);
}
case Machine::FixedAllocation: {
unsigned total;
object o = static_cast<object>
(t->m->heap->allocateFixed
(allocator, t, ceiling(sizeInBytes, BytesPerWord), objectMask, &total));
cast<uintptr_t>(o, 0) = FixedMark;
t->m->fixedFootprint += total;
return o;
}
case Machine::ImmortalAllocation: {
unsigned total;
object o = static_cast<object>
(t->m->heap->allocateImmortal
(allocator, t, ceiling(sizeInBytes, BytesPerWord),
executable, objectMask, &total));
cast<uintptr_t>(o, 0) = FixedMark;
return o;
}
default: abort(t);
}
}
object
makeByteArray(Thread* t, const char* format, ...)
{
va_list a;
va_start(a, format);
object s = ::makeByteArray(t, format, a);
va_end(a);
return s;
}
object
makeString(Thread* t, const char* format, ...)
{
va_list a;
va_start(a, format);
object s = ::makeByteArray(t, format, a);
va_end(a);
return makeString(t, s, 0, byteArrayLength(t, s) - 1, 0);
}
void
stringChars(Thread* t, object string, char* chars)
{
object data = stringData(t, string);
if (objectClass(t, data)
== arrayBody(t, t->m->types, Machine::ByteArrayType))
{
memcpy(chars,
&byteArrayBody(t, data, stringOffset(t, string)),
stringLength(t, string));
} else {
for (unsigned i = 0; i < stringLength(t, string); ++i) {
chars[i] = charArrayBody(t, data, stringOffset(t, string) + i);
}
}
chars[stringLength(t, string)] = 0;
}
bool
isAssignableFrom(Thread* t, object a, object b)
{
if (a == b) return true;
if (classFlags(t, a) & ACC_INTERFACE) {
if (classVmFlags(t, b) & BootstrapFlag) {
resolveClass(t, className(t, b));
if (UNLIKELY(t->exception)) {
t->exception = 0;
return false;
}
}
for (; b; b = classSuper(t, b)) {
object itable = classInterfaceTable(t, b);
if (itable) {
for (unsigned i = 0; i < arrayLength(t, itable); i += 2) {
if (arrayBody(t, itable, i) == a) {
return true;
}
}
}
}
} else if (classArrayDimensions(t, a)) {
if (classArrayDimensions(t, b)) {
return isAssignableFrom
(t, classStaticTable(t, a), classStaticTable(t, b));
}
} else {
for (; b; b = classSuper(t, b)) {
if (b == a) {
return true;
}
}
}
return false;
}
bool
instanceOf(Thread* t, object class_, object o)
{
if (o == 0) {
return false;
} else {
return isAssignableFrom(t, class_, objectClass(t, o));
}
}
object
classInitializer(Thread* t, object class_)
{
for (unsigned i = 0; i < arrayLength(t, classMethodTable(t, class_)); ++i) {
object o = arrayBody(t, classMethodTable(t, class_), i);
if (strcmp(reinterpret_cast<const int8_t*>("<clinit>"),
&byteArrayBody(t, methodName(t, o), 0)) == 0)
{
return o;
}
}
abort(t);
}
unsigned
fieldCode(Thread* t, unsigned javaCode)
{
switch (javaCode) {
case 'B':
return ByteField;
case 'C':
return CharField;
case 'D':
return DoubleField;
case 'F':
return FloatField;
case 'I':
return IntField;
case 'J':
return LongField;
case 'S':
return ShortField;
case 'V':
return VoidField;
case 'Z':
return BooleanField;
case 'L':
case '[':
return ObjectField;
default: abort(t);
}
}
unsigned
fieldType(Thread* t, unsigned code)
{
switch (code) {
case VoidField:
return VOID_TYPE;
case ByteField:
case BooleanField:
return INT8_TYPE;
case CharField:
case ShortField:
return INT16_TYPE;
case DoubleField:
return DOUBLE_TYPE;
case FloatField:
return FLOAT_TYPE;
case IntField:
return INT32_TYPE;
case LongField:
return INT64_TYPE;
case ObjectField:
return POINTER_TYPE;
default: abort(t);
}
}
unsigned
primitiveSize(Thread* t, unsigned code)
{
switch (code) {
case VoidField:
return 0;
case ByteField:
case BooleanField:
return 1;
case CharField:
case ShortField:
return 2;
case FloatField:
case IntField:
return 4;
case DoubleField:
case LongField:
return 8;
default: abort(t);
}
}
object
findLoadedClass(Thread* t, object spec)
{
PROTECT(t, spec);
ACQUIRE(t, t->m->classLock);
return hashMapFind(t, systemClassLoaderMap(t, t->m->loader),
spec, byteArrayHash, byteArrayEqual);
}
object
parseClass(Thread* t, const uint8_t* data, unsigned size)
{
class Client : public Stream::Client {
public:
Client(Thread* t): t(t) { }
virtual void NO_RETURN handleError() {
abort(t);
}
private:
Thread* t;
} client(t);
Stream s(&client, data, size);
uint32_t magic = s.read4();
expect(t, magic == 0xCAFEBABE);
s.read2(); // minor version
s.read2(); // major version
object pool = parsePool(t, s);
PROTECT(t, pool);
unsigned flags = s.read2();
unsigned name = s.read2();
object class_ = makeClass(t,
flags,
0, // VM flags
0, // array dimensions
0, // fixed size
0, // array size
0, // object mask
singletonObject(t, pool, name - 1),
0, // super
0, // interfaces
0, // vtable
0, // fields
0, // methods
0, // static table
t->m->loader,
0, // vtable length
false);
PROTECT(t, class_);
unsigned super = s.read2();
if (super) {
object sc = resolveClass(t, singletonObject(t, pool, super - 1));
if (UNLIKELY(t->exception)) return 0;
set(t, class_, ClassSuper, sc);
classVmFlags(t, class_)
|= (classVmFlags(t, sc) & (ReferenceFlag | WeakReferenceFlag));
}
parseInterfaceTable(t, s, class_, pool);
if (UNLIKELY(t->exception)) return 0;
parseFieldTable(t, s, class_, pool);
if (UNLIKELY(t->exception)) return 0;
parseMethodTable(t, s, class_, pool);
if (UNLIKELY(t->exception)) return 0;
object vtable = classVirtualTable(t, class_);
unsigned vtableLength = (vtable ? arrayLength(t, vtable) : 0);
object real = t->m->processor->makeClass
(t,
classFlags(t, class_),
classVmFlags(t, class_),
classArrayDimensions(t, class_),
classFixedSize(t, class_),
classArrayElementSize(t, class_),
classObjectMask(t, class_),
className(t, class_),
classSuper(t, class_),
classInterfaceTable(t, class_),
classVirtualTable(t, class_),
classFieldTable(t, class_),
classMethodTable(t, class_),
classStaticTable(t, class_),
classLoader(t, class_),
vtableLength);
t->m->processor->initVtable(t, real);
updateClassTables(t, real, class_);
return real;
}
object
resolveClass(Thread* t, object spec)
{
PROTECT(t, spec);
ACQUIRE(t, t->m->classLock);
object class_ = hashMapFind(t, systemClassLoaderMap(t, t->m->loader),
spec, byteArrayHash, byteArrayEqual);
if (class_ == 0) {
if (byteArrayBody(t, spec, 0) == '[') {
class_ = hashMapFind
(t, t->m->bootstrapClassMap, spec, byteArrayHash, byteArrayEqual);
if (class_) {
set(t, class_, ClassVirtualTable,
classVirtualTable
(t, arrayBody(t, t->m->types, Machine::JobjectType)));
} else {
class_ = makeArrayClass(t, spec);
}
} else {
char file[byteArrayLength(t, spec) + 6];
memcpy(file, &byteArrayBody(t, spec, 0), byteArrayLength(t, spec) - 1);
memcpy(file + byteArrayLength(t, spec) - 1, ".class", 7);
System::Region* region = t->m->finder->find(file);
if (region) {
if (Verbose) {
fprintf(stderr, "parsing %s\n", &byteArrayBody(t, spec, 0));
}
// parse class file
class_ = parseClass(t, region->start(), region->length());
region->dispose();
if (LIKELY(t->exception == 0)) {
if (Verbose) {
fprintf(stderr, "done parsing %s: %p\n",
&byteArrayBody(t, spec, 0),
class_);
}
object bootstrapClass = hashMapFind
(t, t->m->bootstrapClassMap, spec, byteArrayHash, byteArrayEqual);
if (bootstrapClass) {
PROTECT(t, bootstrapClass);
updateBootstrapClass(t, bootstrapClass, class_);
class_ = bootstrapClass;
}
}
}
}
if (class_) {
PROTECT(t, class_);
hashMapInsert(t, systemClassLoaderMap(t, t->m->loader),
spec, class_, byteArrayHash);
} else if (t->exception == 0) {
object message = makeString(t, "%s", &byteArrayBody(t, spec, 0));
t->exception = makeClassNotFoundException(t, message);
}
}
return class_;
}
object
resolveMethod(Thread* t, const char* className, const char* methodName,
const char* methodSpec)
{
object class_ = resolveClass(t, makeByteArray(t, "%s", className));
if (LIKELY(t->exception == 0)) {
PROTECT(t, class_);
object name = makeByteArray(t, methodName);
PROTECT(t, name);
object spec = makeByteArray(t, methodSpec);
object reference = makeReference(t, class_, name, spec);
return findMethodInClass(t, class_, referenceName(t, reference),
referenceSpec(t, reference));
}
return 0;
}
object
resolveObjectArrayClass(Thread* t, object elementSpec)
{
PROTECT(t, elementSpec);
object spec;
if (byteArrayBody(t, elementSpec, 0) == '[') {
spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 1, false);
byteArrayBody(t, spec, 0) = '[';
memcpy(&byteArrayBody(t, spec, 1),
&byteArrayBody(t, elementSpec, 0),
byteArrayLength(t, elementSpec));
} else {
spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 3, false);
byteArrayBody(t, spec, 0) = '[';
byteArrayBody(t, spec, 1) = 'L';
memcpy(&byteArrayBody(t, spec, 2),
&byteArrayBody(t, elementSpec, 0),
byteArrayLength(t, elementSpec) - 1);
byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 1) = ';';
byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 2) = 0;
}
return resolveClass(t, spec);
}
object
makeObjectArray(Thread* t, object elementClass, unsigned count, bool clear)
{
object arrayClass = resolveObjectArrayClass(t, className(t, elementClass));
PROTECT(t, arrayClass);
object array = makeArray(t, count, clear);
setObjectClass(t, array, arrayClass);
return array;
}
object
findInTable(Thread* t, object table, object name, object spec,
object& (*getName)(Thread*, object),
object& (*getSpec)(Thread*, object))
{
if (table) {
for (unsigned i = 0; i < arrayLength(t, table); ++i) {
object o = arrayBody(t, table, i);
if (strcmp(&byteArrayBody(t, getName(t, o), 0),
&byteArrayBody(t, name, 0)) == 0 and
strcmp(&byteArrayBody(t, getSpec(t, o), 0),
&byteArrayBody(t, spec, 0)) == 0)
{
return o;
}
}
}
return 0;
}
object
findInHierarchy(Thread* t, object class_, object name, object spec,
object (*find)(Thread*, object, object, object),
object (*makeError)(Thread*, object))
{
object originalClass = class_;
PROTECT(t, class_);
object o = 0;
if (classFlags(t, class_) & ACC_INTERFACE) {
if (classVirtualTable(t, class_)) {
o = findInTable
(t, classVirtualTable(t, class_), name, spec, methodName, methodSpec);
}
} else {
for (; o == 0 and class_; class_ = classSuper(t, class_)) {
o = find(t, class_, name, spec);
}
}
if (o == 0) {
object message = makeString
(t, "%s %s not found in %s",
&byteArrayBody(t, name, 0),
&byteArrayBody(t, spec, 0),
&byteArrayBody(t, className(t, originalClass), 0));
t->exception = makeError(t, message);
}
return o;
}
unsigned
parameterFootprint(Thread* t, const char* s, bool static_)
{
unsigned footprint = 0;
for (MethodSpecIterator it(t, s); it.hasNext();) {
switch (*it.next()) {
case 'J':
case 'D':
footprint += 2;
break;
default:
++ footprint;
break;
}
}
if (not static_) {
++ footprint;
}
return footprint;
}
void
addFinalizer(Thread* t, object target, void (*finalize)(Thread*, object))
{
PROTECT(t, target);
ACQUIRE(t, t->m->referenceLock);
void* function;
memcpy(&function, &finalize, BytesPerWord);
object f = makeFinalizer(t, 0, function, 0);
finalizerTarget(t, f) = target;
finalizerNext(t, f) = t->m->finalizers;
t->m->finalizers = f;
}
System::Monitor*
objectMonitor(Thread* t, object o, bool createNew)
{
object p = hashMapFind(t, t->m->monitorMap, o, objectHash, objectEqual);
if (p) {
if (DebugMonitors) {
fprintf(stderr, "found monitor %p for object %x\n",
static_cast<System::Monitor*>(pointerValue(t, p)),
objectHash(t, o));
}
return static_cast<System::Monitor*>(pointerValue(t, p));
} else if (createNew) {
PROTECT(t, o);
ENTER(t, Thread::ExclusiveState);
p = hashMapFind(t, t->m->monitorMap, o, objectHash, objectEqual);
if (p) {
if (DebugMonitors) {
fprintf(stderr, "found monitor %p for object %x\n",
static_cast<System::Monitor*>(pointerValue(t, p)),
objectHash(t, o));
}
return static_cast<System::Monitor*>(pointerValue(t, p));
}
System::Monitor* m;
System::Status s = t->m->system->make(&m);
expect(t, t->m->system->success(s));
if (DebugMonitors) {
fprintf(stderr, "made monitor %p for object %x\n",
m,
objectHash(t, o));
}
p = makePointer(t, m);
hashMapInsert(t, t->m->monitorMap, o, p, objectHash);
addFinalizer(t, o, removeMonitor);
return m;
} else {
return 0;
}
}
object
intern(Thread* t, object s)
{
PROTECT(t, s);
ACQUIRE(t, t->m->referenceLock);
object n = hashMapFindNode(t, t->m->stringMap, s, stringHash, stringEqual);
if (n) {
return jreferenceTarget(t, tripleFirst(t, n));
} else {
hashMapInsert(t, t->m->stringMap, s, 0, stringHash);
addFinalizer(t, s, removeString);
return s;
}
}
void
collect(Thread* t, Heap::CollectionType type)
{
#ifdef VM_STRESS
bool stress = t->stress;
if (not stress) t->stress = true;
#endif
Machine* m = t->m;
m->unsafe = true;
m->heap->collect(type, footprint(m->rootThread));
m->unsafe = false;
postCollect(m->rootThread);
for (object f = m->finalizeQueue; f; f = finalizerNext(t, f)) {
void (*function)(Thread*, object);
memcpy(&function, &finalizerFinalize(t, f), BytesPerWord);
function(t, finalizerTarget(t, f));
}
m->finalizeQueue = 0;
killZombies(t, m->rootThread);
for (unsigned i = 0; i < m->heapPoolIndex; ++i) {
m->heap->free(m->heapPool[i], Thread::HeapSizeInBytes, false);
}
m->heapPoolIndex = 0;
m->fixedFootprint = 0;
#ifdef VM_STRESS
if (not stress) t->stress = false;
#endif
}
void
printTrace(Thread* t, object exception)
{
if (exception == 0) {
exception = makeNullPointerException(t, 0, makeTrace(t), 0);
}
for (object e = exception; e; e = throwableCause(t, e)) {
if (e != exception) {
fprintf(stderr, "caused by: ");
}
fprintf(stderr, "%s", &byteArrayBody
(t, className(t, objectClass(t, e)), 0));
if (throwableMessage(t, e)) {
object m = throwableMessage(t, e);
char message[stringLength(t, m) + 1];
stringChars(t, m, message);
fprintf(stderr, ": %s\n", message);
} else {
fprintf(stderr, "\n");
}
object trace = throwableTrace(t, e);
for (unsigned i = 0; i < arrayLength(t, trace); ++i) {
object e = arrayBody(t, trace, i);
const int8_t* class_ = &byteArrayBody
(t, className(t, methodClass(t, traceElementMethod(t, e))), 0);
const int8_t* method = &byteArrayBody
(t, methodName(t, traceElementMethod(t, e)), 0);
int line = t->m->processor->lineNumber
(t, traceElementMethod(t, e), traceElementIp(t, e));
fprintf(stderr, " at %s.%s ", class_, method);
switch (line) {
case NativeLine:
fprintf(stderr, "(native)\n");
break;
case UnknownLine:
fprintf(stderr, "(unknown line)\n");
break;
default:
fprintf(stderr, "(line %d)\n", line);
}
}
}
}
object
makeTrace(Thread* t, Processor::StackWalker* walker)
{
class Visitor: public Processor::StackVisitor {
public:
Visitor(Thread* t): t(t), trace(0), index(0), protector(t, &trace) { }
virtual bool visit(Processor::StackWalker* walker) {
if (trace == 0) {
trace = makeArray(t, walker->count(), true);
}
object e = makeTraceElement(t, walker->method(), walker->ip());
set(t, trace, ArrayBody + (index * BytesPerWord), e);
++ index;
return true;
}
Thread* t;
object trace;
unsigned index;
Thread::SingleProtector protector;
} v(t);
walker->walk(&v);
return v.trace ? v.trace : makeArray(t, 0, true);
}
object
makeTrace(Thread* t)
{
class Visitor: public Processor::StackVisitor {
public:
Visitor(Thread* t): t(t), trace(0) { }
virtual bool visit(Processor::StackWalker* walker) {
trace = makeTrace(t, walker);
return false;
}
Thread* t;
object trace;
} v(t);
t->m->processor->walkStack(t, &v);
return v.trace ? v.trace : makeArray(t, 0, true);
}
void
noop()
{ }
#include "type-constructors.cpp"
} // namespace vm