mirror of
https://github.com/corda/corda.git
synced 2025-01-24 21:37:05 +00:00
6662022bf8
Signed-off-by: Li, Xun <xun.li@email.com>
374 lines
14 KiB
C++
374 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
|
|
#include "sgx_ecc256_common.h"
|
|
|
|
|
|
/*
|
|
* Elliptic Curve Crytpography - Based on GF(p), 256 bit
|
|
*/
|
|
/* Allocates and initializes ecc context
|
|
* Parameters:
|
|
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
|
|
* Output: sgx_ecc_state_handle_t *p_ecc_handle - Pointer to the handle of ECC crypto system */
|
|
sgx_status_t sgx_ecc256_open_context(sgx_ecc_state_handle_t* p_ecc_handle)
|
|
{
|
|
IppStatus ipp_ret = ippStsNoErr;
|
|
IppsECCPState* p_ecc_state = NULL;
|
|
// default use 256r1 parameter
|
|
int ctx_size = 0;
|
|
|
|
if (p_ecc_handle == NULL)
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
ipp_ret = ippsECCPGetSize(256, &ctx_size);
|
|
if (ipp_ret != ippStsNoErr)
|
|
return SGX_ERROR_UNEXPECTED;
|
|
p_ecc_state = (IppsECCPState*)(malloc(ctx_size));
|
|
if (p_ecc_state == NULL)
|
|
return SGX_ERROR_OUT_OF_MEMORY;
|
|
ipp_ret = ippsECCPInit(256, p_ecc_state);
|
|
if (ipp_ret != ippStsNoErr)
|
|
{
|
|
SAFE_FREE(p_ecc_state);
|
|
*p_ecc_handle = NULL;
|
|
return SGX_ERROR_UNEXPECTED;
|
|
}
|
|
ipp_ret = ippsECCPSetStd(IppECCPStd256r1, p_ecc_state);
|
|
if (ipp_ret != ippStsNoErr)
|
|
{
|
|
SAFE_FREE(p_ecc_state);
|
|
*p_ecc_handle = NULL;
|
|
return SGX_ERROR_UNEXPECTED;
|
|
}
|
|
*p_ecc_handle = p_ecc_state;
|
|
return SGX_SUCCESS;
|
|
}
|
|
|
|
/* Cleans up ecc context
|
|
* Parameters:
|
|
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
|
|
* Output: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system */
|
|
sgx_status_t sgx_ecc256_close_context(sgx_ecc_state_handle_t ecc_handle)
|
|
{
|
|
if (ecc_handle == NULL)
|
|
{
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
|
|
int ctx_size = 0;
|
|
IppStatus ipp_ret = ippsECCPGetSize(256, &ctx_size);
|
|
if (ipp_ret != ippStsNoErr)
|
|
{
|
|
free(p_ecc_state);
|
|
return SGX_SUCCESS;
|
|
}
|
|
memset_s(p_ecc_state, ctx_size, 0, ctx_size);
|
|
free(p_ecc_state);
|
|
return SGX_SUCCESS;
|
|
}
|
|
|
|
/* Populates private/public key pair - caller code allocates memory
|
|
* Parameters:
|
|
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
|
|
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
|
|
* Outputs: sgx_ec256_private_t *p_private - Pointer to the private key
|
|
* sgx_ec256_public_t *p_public - Pointer to the public key */
|
|
sgx_status_t sgx_ecc256_create_key_pair(sgx_ec256_private_t *p_private,
|
|
sgx_ec256_public_t *p_public,
|
|
sgx_ecc_state_handle_t ecc_handle)
|
|
{
|
|
if ((ecc_handle == NULL) || (p_private == NULL) || (p_public == NULL))
|
|
{
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
IppsBigNumState* dh_priv_BN = NULL;
|
|
IppsECCPPointState* point_pub = NULL;
|
|
IppsBigNumState* pub_gx = NULL;
|
|
IppsBigNumState* pub_gy = NULL;
|
|
IppStatus ipp_ret = ippStsNoErr;
|
|
int ecPointSize = 0;
|
|
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
|
|
|
|
do
|
|
{
|
|
//init eccp point
|
|
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
|
|
ERROR_BREAK(ipp_ret);
|
|
point_pub = (IppsECCPPointState*)(malloc(ecPointSize));
|
|
if (!point_pub)
|
|
{
|
|
ipp_ret = ippStsNoMemErr;
|
|
break;
|
|
}
|
|
ipp_ret = ippsECCPPointInit(256, point_pub);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &dh_priv_BN);
|
|
ERROR_BREAK(ipp_ret);
|
|
// Use the true random number (DRNG)
|
|
// Notice that IPP ensures the private key generated is non-zero
|
|
ipp_ret = ippsECCPGenKeyPair(dh_priv_BN, point_pub, p_ecc_state, (IppBitSupplier)sgx_ipp_DRNGen, NULL);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
//convert point_result to oct string
|
|
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gx);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gy);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = ippsECCPGetPoint(pub_gx, pub_gy, point_pub, p_ecc_state);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
IppsBigNumSGN sgn = IppsBigNumPOS;
|
|
Ipp32u *pdata = NULL;
|
|
// ippsRef_BN is in bits not bytes (versus old ippsGet_BN)
|
|
int length = 0;
|
|
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gx);
|
|
ERROR_BREAK(ipp_ret);
|
|
memset(p_public->gx, 0, sizeof(p_public->gx));
|
|
ipp_ret = check_copy_size(sizeof(p_public->gx), ROUND_TO(length, 8) / 8);
|
|
ERROR_BREAK(ipp_ret);
|
|
memcpy(p_public->gx, pdata, ROUND_TO(length, 8) / 8);
|
|
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gy);
|
|
ERROR_BREAK(ipp_ret);
|
|
memset(p_public->gy, 0, sizeof(p_public->gy));
|
|
ipp_ret = check_copy_size(sizeof(p_public->gy), ROUND_TO(length, 8) / 8);
|
|
ERROR_BREAK(ipp_ret);
|
|
memcpy(p_public->gy, pdata, ROUND_TO(length, 8) / 8);
|
|
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, dh_priv_BN);
|
|
ERROR_BREAK(ipp_ret);
|
|
memset(p_private->r, 0, sizeof(p_private->r));
|
|
ipp_ret = check_copy_size(sizeof(p_private->r), ROUND_TO(length, 8) / 8);
|
|
ERROR_BREAK(ipp_ret);
|
|
memcpy(p_private->r, pdata, ROUND_TO(length, 8) / 8);
|
|
} while (0);
|
|
|
|
//Clear temp buffer before free.
|
|
if (point_pub) memset_s(point_pub, ecPointSize, 0, ecPointSize);
|
|
SAFE_FREE(point_pub);
|
|
sgx_ipp_secure_free_BN(pub_gx, SGX_ECP256_KEY_SIZE);
|
|
sgx_ipp_secure_free_BN(pub_gy, SGX_ECP256_KEY_SIZE);
|
|
sgx_ipp_secure_free_BN(dh_priv_BN, SGX_ECP256_KEY_SIZE);
|
|
|
|
switch (ipp_ret)
|
|
{
|
|
case ippStsNoErr: return SGX_SUCCESS;
|
|
case ippStsNoMemErr:
|
|
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
|
|
case ippStsNullPtrErr:
|
|
case ippStsLengthErr:
|
|
case ippStsOutOfRangeErr:
|
|
case ippStsSizeErr:
|
|
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
|
|
default: return SGX_ERROR_UNEXPECTED;
|
|
}
|
|
}
|
|
|
|
/* Checks whether the input point is a valid point on the given elliptic curve
|
|
* Parameters:
|
|
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
|
|
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
|
|
* sgx_ec256_public_t *p_point - Pointer to perform validity check on - LITTLE ENDIAN
|
|
* Output: int *p_valid - Return 0 if the point is an invalid point on ECC curve */
|
|
sgx_status_t sgx_ecc256_check_point(const sgx_ec256_public_t *p_point,
|
|
const sgx_ecc_state_handle_t ecc_handle,
|
|
int *p_valid)
|
|
{
|
|
if ((ecc_handle == NULL) || (p_point == NULL) || (p_valid == NULL))
|
|
{
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
IppsECCPPointState* point2check = NULL;
|
|
IppStatus ipp_ret = ippStsNoErr;
|
|
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
|
|
IppECResult ipp_result = ippECValid;
|
|
int ecPointSize = 0;
|
|
IppsBigNumState* BN_gx = NULL;
|
|
IppsBigNumState* BN_gy = NULL;
|
|
|
|
// Intialize return to false
|
|
*p_valid = 0;
|
|
|
|
do
|
|
{
|
|
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
|
|
ERROR_BREAK(ipp_ret);
|
|
point2check = (IppsECCPPointState*)malloc(ecPointSize);
|
|
if (!point2check)
|
|
{
|
|
ipp_ret = ippStsNoMemErr;
|
|
break;
|
|
}
|
|
ipp_ret = ippsECCPPointInit(256, point2check);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gx, sizeof(p_point->gx), &BN_gx);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gy, sizeof(p_point->gy), &BN_gy);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
ipp_ret = ippsECCPSetPoint(BN_gx, BN_gy, point2check, p_ecc_state);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
// Check to see if the point is a valid point on the Elliptic curve and is not infinity
|
|
ipp_ret = ippsECCPCheckPoint(point2check, &ipp_result, p_ecc_state);
|
|
ERROR_BREAK(ipp_ret);
|
|
if (ipp_result == ippECValid)
|
|
{
|
|
*p_valid = 1;
|
|
}
|
|
} while (0);
|
|
|
|
// Clear temp buffer before free.
|
|
if (point2check)
|
|
memset_s(point2check, ecPointSize, 0, ecPointSize);
|
|
SAFE_FREE(point2check);
|
|
|
|
sgx_ipp_secure_free_BN(BN_gx, sizeof(p_point->gx));
|
|
sgx_ipp_secure_free_BN(BN_gy, sizeof(p_point->gy));
|
|
|
|
switch (ipp_ret)
|
|
{
|
|
case ippStsNoErr: return SGX_SUCCESS;
|
|
case ippStsNoMemErr:
|
|
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
|
|
case ippStsNullPtrErr:
|
|
case ippStsLengthErr:
|
|
case ippStsOutOfRangeErr:
|
|
case ippStsSizeErr:
|
|
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
|
|
default: return SGX_ERROR_UNEXPECTED;
|
|
}
|
|
}
|
|
|
|
/* Computes DH shared key based on private B key (local) and remote public Ga Key
|
|
* Parameters:
|
|
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
|
|
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
|
|
* sgx_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN
|
|
* sgx_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN
|
|
* Output: sgx_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN
|
|
x-coordinate of (privKeyB - pubKeyA) */
|
|
sgx_status_t sgx_ecc256_compute_shared_dhkey(sgx_ec256_private_t *p_private_b,
|
|
sgx_ec256_public_t *p_public_ga,
|
|
sgx_ec256_dh_shared_t *p_shared_key,
|
|
sgx_ecc_state_handle_t ecc_handle)
|
|
{
|
|
if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL))
|
|
{
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
IppsBigNumState* BN_dh_privB = NULL;
|
|
IppsBigNumState* BN_dh_share = NULL;
|
|
IppsBigNumState* pubA_gx = NULL;
|
|
IppsBigNumState* pubA_gy = NULL;
|
|
IppsECCPPointState* point_pubA = NULL;
|
|
IppStatus ipp_ret = ippStsNoErr;
|
|
int ecPointSize = 0;
|
|
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
|
|
IppECResult ipp_result = ippECValid;
|
|
|
|
do
|
|
{
|
|
ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sgx_ec256_private_t), &BN_dh_privB);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
|
|
ERROR_BREAK(ipp_ret);
|
|
point_pubA = (IppsECCPPointState*)(malloc(ecPointSize));
|
|
if (!point_pubA)
|
|
{
|
|
ipp_ret = ippStsNoMemErr;
|
|
break;
|
|
}
|
|
ipp_ret = ippsECCPPointInit(256, point_pubA);
|
|
ERROR_BREAK(ipp_ret);
|
|
ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state);
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
// Check to see if the point is a valid point on the Elliptic curve and is not infinity
|
|
ipp_ret = ippsECCPCheckPoint(point_pubA, &ipp_result, p_ecc_state);
|
|
if (ipp_result != ippECValid)
|
|
{
|
|
break;
|
|
}
|
|
ERROR_BREAK(ipp_ret);
|
|
|
|
ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share);
|
|
ERROR_BREAK(ipp_ret);
|
|
/* This API generates shareA = x-coordinate of (privKeyB*pubKeyA) */
|
|
ipp_ret = ippsECCPSharedSecretDH(BN_dh_privB, point_pubA, BN_dh_share, p_ecc_state);
|
|
ERROR_BREAK(ipp_ret);
|
|
IppsBigNumSGN sgn = IppsBigNumPOS;
|
|
int length = 0;
|
|
Ipp32u * pdata = NULL;
|
|
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share);
|
|
ERROR_BREAK(ipp_ret);
|
|
memset(p_shared_key->s, 0, sizeof(p_shared_key->s));
|
|
ipp_ret = check_copy_size(sizeof(p_shared_key->s), ROUND_TO(length, 8) / 8);
|
|
ERROR_BREAK(ipp_ret);
|
|
memcpy(p_shared_key->s, pdata, ROUND_TO(length, 8) / 8);
|
|
} while (0);
|
|
|
|
// Clear temp buffer before free.
|
|
if (point_pubA) memset_s(point_pubA, ecPointSize, 0, ecPointSize);
|
|
SAFE_FREE(point_pubA);
|
|
sgx_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx));
|
|
sgx_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy));
|
|
sgx_ipp_secure_free_BN(BN_dh_privB, sizeof(sgx_ec256_private_t));
|
|
sgx_ipp_secure_free_BN(BN_dh_share, sizeof(sgx_ec256_dh_shared_t));
|
|
|
|
|
|
if (ipp_result != ippECValid)
|
|
{
|
|
return SGX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
switch (ipp_ret)
|
|
{
|
|
case ippStsNoErr: return SGX_SUCCESS;
|
|
case ippStsNoMemErr:
|
|
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
|
|
case ippStsNullPtrErr:
|
|
case ippStsLengthErr:
|
|
case ippStsOutOfRangeErr:
|
|
case ippStsSizeErr:
|
|
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
|
|
default: return SGX_ERROR_UNEXPECTED;
|
|
}
|
|
}
|
|
|