#include "jnienv.h" #include "builtin.h" #include "machine.h" #include "stream.h" #include "constants.h" using namespace vm; namespace { bool find(Thread* t, Thread* o) { if (t == o) return true; for (Thread* p = t->peer; p; p = p->peer) { if (p == o) return true; } if (t->child) return find(t->child, o); return false; } void join(Thread* t, Thread* o) { if (t != o) { o->systemThread->join(); } } void dispose(Thread* t, Thread* o, bool remove) { if (remove) { if (o->parent) { if (o->child) { o->parent->child = o->child; if (o->peer) { o->peer->peer = o->child->peer; o->child->peer = o->peer; } } else if (o->peer) { o->parent->child = o->peer; } else { o->parent->child = 0; } } else if (o->child) { t->vm->rootThread = o->child; if (o->peer) { o->peer->peer = o->child->peer; o->child->peer = o->peer; } } else if (o->peer) { t->vm->rootThread = o->peer; } else { abort(t); } assert(t, not find(t->vm->rootThread, o)); } o->dispose(); } void joinAll(Thread* m, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; joinAll(m, child); } join(m, o); } void disposeAll(Thread* m, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; disposeAll(m, child); } dispose(m, o, false); } void killZombies(Thread* t, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; killZombies(t, child); } if (o->state == Thread::ZombieState) { join(t, o); dispose(t, o, true); } } void visitRoots(Thread* t, Heap::Visitor* v) { if (t->state != Thread::ZombieState) { t->heapIndex = 0; v->visit(&(t->javaThread)); v->visit(&(t->code)); v->visit(&(t->exception)); for (unsigned i = 0; i < t->sp; ++i) { if (t->stack[i * 2] == ObjectTag) { v->visit(reinterpret_cast(t->stack + (i * 2) + 1)); } } for (Thread::Protector* p = t->protector; p; p = p->next) { v->visit(p->p); } } for (Thread* c = t->child; c; c = c->peer) { visitRoots(c, v); } } void postVisit(Thread* t, Heap::Visitor* v) { Machine* m = t->vm; object firstNewTenuredFinalizer = 0; object lastNewTenuredFinalizer = 0; for (object* p = &(m->finalizers); *p;) { v->visit(p); if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - queue it up for finalization v->visit(&finalizerTarget(t, *p)); object finalizer = *p; *p = finalizerNext(t, finalizer); finalizerNext(t, finalizer) = m->finalizeQueue; m->finalizeQueue = finalizer; } else { // target is reachable v->visit(&finalizerTarget(t, *p)); if (m->heap->status(*p) == Heap::Tenured) { // the finalizer is tenured, so we remove it from // m->finalizers and later add it to m->tenuredFinalizers if (lastNewTenuredFinalizer == 0) { lastNewTenuredFinalizer = *p; } object finalizer = *p; *p = finalizerNext(t, finalizer); finalizerNext(t, finalizer) = firstNewTenuredFinalizer; firstNewTenuredFinalizer = finalizer; } else { p = &finalizerNext(t, *p); } } } object firstNewTenuredWeakReference = 0; object lastNewTenuredWeakReference = 0; for (object* p = &(m->weakReferences); *p;) { if (m->heap->status(*p) == Heap::Unreachable) { // reference is unreachable - remove it from the list *p = jreferenceNext(t, *p); } else if (m->heap->status(jreferenceTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - clear the reference and remove it // from the list jreferenceTarget(t, *p) = 0; *p = jreferenceNext(t, *p); } else { // both reference and target are reachable v->visit(p); v->visit(&jreferenceTarget(t, *p)); if (m->heap->status(*p) == Heap::Tenured) { // the reference is tenured, so we remove it from // m->weakReferences and later add it to // m->tenuredWeakReferences if (lastNewTenuredWeakReference == 0) { lastNewTenuredWeakReference = *p; } object reference = *p; *p = jreferenceNext(t, reference); jreferenceNext(t, reference) = firstNewTenuredWeakReference; firstNewTenuredWeakReference = reference; } else { p = &jreferenceNext(t, *p); } } } if (m->heap->collectionType() == Heap::MajorCollection) { for (object* p = &(m->tenuredFinalizers); *p;) { v->visit(p); if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - queue it up for finalization v->visit(&finalizerTarget(t, *p)); object finalizer = *p; *p = finalizerNext(t, finalizer); finalizerNext(t, finalizer) = m->finalizeQueue; m->finalizeQueue = finalizer; } else { // target is reachable v->visit(&finalizerTarget(t, *p)); p = &finalizerNext(t, *p); } } for (object* p = &(m->tenuredWeakReferences); *p;) { if (m->heap->status(*p) == Heap::Unreachable) { // reference is unreachable - remove it from the list *p = jreferenceNext(t, *p); } else if (m->heap->status(jreferenceTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - clear the reference and remove it // from the list jreferenceTarget(t, *p) = 0; *p = jreferenceNext(t, *p); } else { // target is reachable v->visit(p); v->visit(&jreferenceTarget(t, *p)); p = &jreferenceNext(t, *p); } } } if (lastNewTenuredFinalizer) { finalizerNext(t, lastNewTenuredFinalizer) = m->tenuredFinalizers; m->tenuredFinalizers = firstNewTenuredFinalizer; } if (lastNewTenuredWeakReference) { jreferenceNext(t, lastNewTenuredWeakReference) = m->tenuredWeakReferences; m->tenuredWeakReferences = firstNewTenuredWeakReference; } } void postCollect(Thread* t) { #ifdef VM_STRESS t->vm->system->free(t->heap); t->heap = static_cast (t->vm->system->allocate(Thread::HeapSizeInBytes)); #endif if (t->large) { t->vm->system->free(t->large); t->large = 0; } for (Thread* c = t->child; c; c = c->peer) { postCollect(c); } } object makeByteArray(Thread* t, const char* format, va_list a) { static const unsigned Size = 256; char buffer[Size]; vsnprintf(buffer, Size - 1, format, a); object s = makeByteArray(t, strlen(buffer) + 1, false); memcpy(&byteArrayBody(t, s, 0), buffer, byteArrayLength(t, s)); return s; } unsigned mangledSize(int8_t c) { switch (c) { case '_': case ';': case '[': return 2; case '$': return 6; default: return 1; } } unsigned mangle(int8_t c, int8_t* dst) { switch (c) { case '/': dst[0] = '_'; return 1; case '_': dst[0] = '_'; dst[1] = '1'; return 2; case ';': dst[0] = '_'; dst[1] = '2'; return 2; case '[': dst[0] = '_'; dst[1] = '3'; return 2; case '$': memcpy(dst, "_00024", 6); return 6; default: dst[0] = c; return 1; } } object makeJNIName(Thread* t, object method, bool decorate) { unsigned size = 5; object className = ::className(t, methodClass(t, method)); PROTECT(t, className); for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) { size += mangledSize(byteArrayBody(t, className, i)); } ++ size; object methodName = ::methodName(t, method); PROTECT(t, methodName); for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) { size += mangledSize(byteArrayBody(t, methodName, i)); } object methodSpec = ::methodSpec(t, method); PROTECT(t, methodSpec); if (decorate) { size += 2; for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1 and byteArrayBody(t, methodSpec, i) != ')'; ++i) { size += mangledSize(byteArrayBody(t, methodSpec, i)); } } object name = makeByteArray(t, size + 1, false); unsigned index = 0; memcpy(&byteArrayBody(t, name, index), "Java_", 5); index += 5; for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) { index += mangle(byteArrayBody(t, className, i), &byteArrayBody(t, name, index)); } byteArrayBody(t, name, index++) = '_'; for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) { index += mangle(byteArrayBody(t, methodName, i), &byteArrayBody(t, name, index)); } if (decorate) { byteArrayBody(t, name, index++) = '_'; byteArrayBody(t, name, index++) = '_'; for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1 and byteArrayBody(t, methodSpec, i) != ')'; ++i) { index += mangle(byteArrayBody(t, className, i), &byteArrayBody(t, name, index)); } } byteArrayBody(t, name, index++) = 0; assert(t, index == size + 1); return name; } object parsePool(Thread* t, Stream& s) { unsigned poolCount = s.read2() - 1; object pool = makeArray(t, poolCount, true); PROTECT(t, pool); for (unsigned i = 0; i < poolCount; ++i) { unsigned c = s.read1(); switch (c) { case CONSTANT_Integer: { object value = makeInt(t, s.read4()); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_Float: { object value = makeFloat(t, s.readFloat()); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_Long: { object value = makeLong(t, s.read8()); set(t, arrayBody(t, pool, i), value); ++i; } break; case CONSTANT_Double: { object value = makeLong(t, s.readDouble()); set(t, arrayBody(t, pool, i), value); ++i; } break; case CONSTANT_Utf8: { unsigned length = s.read2(); object value = makeByteArray(t, length + 1, false); s.read(reinterpret_cast(&byteArrayBody(t, value, 0)), length); byteArrayBody(t, value, length) = 0; set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_Class: { object value = makeIntArray(t, 2, false); intArrayBody(t, value, 0) = c; intArrayBody(t, value, 1) = s.read2(); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_String: { object value = makeIntArray(t, 2, false); intArrayBody(t, value, 0) = c; intArrayBody(t, value, 1) = s.read2(); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_NameAndType: { object value = makeIntArray(t, 3, false); intArrayBody(t, value, 0) = c; intArrayBody(t, value, 1) = s.read2(); intArrayBody(t, value, 2) = s.read2(); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_Fieldref: case CONSTANT_Methodref: case CONSTANT_InterfaceMethodref: { object value = makeIntArray(t, 3, false); intArrayBody(t, value, 0) = c; intArrayBody(t, value, 1) = s.read2(); intArrayBody(t, value, 2) = s.read2(); set(t, arrayBody(t, pool, i), value); } break; default: abort(t); } } for (unsigned i = 0; i < poolCount; ++i) { object o = arrayBody(t, pool, i); if (o and objectClass(t, o) == arrayBody(t, t->vm->types, Machine::IntArrayType)) { switch (intArrayBody(t, o, 0)) { case CONSTANT_Class: { set(t, arrayBody(t, pool, i), arrayBody(t, pool, intArrayBody(t, o, 1) - 1)); } break; case CONSTANT_String: { object bytes = arrayBody(t, pool, intArrayBody(t, o, 1) - 1); object value = makeString (t, bytes, 0, byteArrayLength(t, bytes) - 1, 0); set(t, arrayBody(t, pool, i), value); } break; case CONSTANT_NameAndType: { object name = arrayBody(t, pool, intArrayBody(t, o, 1) - 1); object type = arrayBody(t, pool, intArrayBody(t, o, 2) - 1); object value = makePair(t, name, type); set(t, arrayBody(t, pool, i), value); } break; } } } for (unsigned i = 0; i < poolCount; ++i) { object o = arrayBody(t, pool, i); if (o and objectClass(t, o) == arrayBody(t, t->vm->types, Machine::IntArrayType)) { switch (intArrayBody(t, o, 0)) { case CONSTANT_Fieldref: case CONSTANT_Methodref: case CONSTANT_InterfaceMethodref: { object c = arrayBody(t, pool, intArrayBody(t, o, 1) - 1); object nameAndType = arrayBody(t, pool, intArrayBody(t, o, 2) - 1); object value = makeReference (t, c, pairFirst(t, nameAndType), pairSecond(t, nameAndType)); set(t, arrayBody(t, pool, i), value); } break; } } } return pool; } void addInterfaces(Thread* t, object class_, object map) { object table = classInterfaceTable(t, class_); if (table) { unsigned increment = 2; if (classFlags(t, class_) & ACC_INTERFACE) { increment = 1; } PROTECT(t, map); PROTECT(t, table); for (unsigned i = 0; i < arrayLength(t, table); i += increment) { object interface = arrayBody(t, table, i); object name = className(t, interface); hashMapInsertMaybe(t, map, name, interface, byteArrayHash, byteArrayEqual); } } } void parseInterfaceTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); object map = makeHashMap(t, NormalMap, 0, 0); PROTECT(t, map); if (classSuper(t, class_)) { addInterfaces(t, classSuper(t, class_), map); } unsigned count = s.read2(); for (unsigned i = 0; i < count; ++i) { object name = arrayBody(t, pool, s.read2() - 1); PROTECT(t, name); object interface = resolveClass(t, name); PROTECT(t, interface); hashMapInsertMaybe(t, map, name, interface, byteArrayHash, byteArrayEqual); addInterfaces(t, interface, map); } object interfaceTable = 0; if (hashMapSize(t, map)) { unsigned length = hashMapSize(t, map) ; if ((classFlags(t, class_) & ACC_INTERFACE) == 0) { length *= 2; } interfaceTable = makeArray(t, length, true); PROTECT(t, interfaceTable); unsigned i = 0; object it = hashMapIterator(t, map); PROTECT(t, it); for (; it; it = hashMapIteratorNext(t, it)) { object interface = resolveClass (t, tripleFirst(t, hashMapIteratorNode(t, it))); if (UNLIKELY(t->exception)) return; set(t, arrayBody(t, interfaceTable, i++), interface); if ((classFlags(t, class_) & ACC_INTERFACE) == 0) { // we'll fill in this table in parseMethodTable(): object vtable = makeArray (t, arrayLength(t, classVirtualTable(t, interface)), true); set(t, arrayBody(t, interfaceTable, i++), vtable); } } } set(t, classInterfaceTable(t, class_), interfaceTable); } void parseFieldTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); unsigned memberOffset = BytesPerWord; if (classSuper(t, class_)) { memberOffset = classFixedSize(t, classSuper(t, class_)); } unsigned count = s.read2(); if (count) { unsigned staticOffset = 0; object fieldTable = makeArray(t, count, true); PROTECT(t, fieldTable); for (unsigned i = 0; i < count; ++i) { unsigned flags = s.read2(); unsigned name = s.read2(); unsigned spec = s.read2(); unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { s.read2(); s.skip(s.read4()); } object field = makeField (t, flags, 0, // offset fieldCode(t, byteArrayBody(t, arrayBody(t, pool, spec - 1), 0)), arrayBody(t, pool, name - 1), arrayBody(t, pool, spec - 1), class_); if (flags & ACC_STATIC) { fieldOffset(t, field) = staticOffset++; } else { unsigned excess = memberOffset % BytesPerWord; if (excess and fieldCode(t, field) == ObjectField) { memberOffset += BytesPerWord - excess; } fieldOffset(t, field) = memberOffset; memberOffset += fieldSize(t, field); } set(t, arrayBody(t, fieldTable, i), field); } set(t, classFieldTable(t, class_), fieldTable); if (staticOffset) { object staticTable = makeArray(t, staticOffset, true); set(t, classStaticTable(t, class_), staticTable); } } classFixedSize(t, class_) = pad(memberOffset); if (classSuper(t, class_) and memberOffset == classFixedSize(t, classSuper(t, class_))) { set(t, classObjectMask(t, class_), classObjectMask(t, classSuper(t, class_))); } else { object mask = makeIntArray (t, divide(classFixedSize(t, class_), BitsPerWord * BytesPerWord), true); intArrayBody(t, mask, 0) = 1; bool sawReferenceField = false; for (object c = class_; c; c = classSuper(t, c)) { object fieldTable = classFieldTable(t, c); if (fieldTable) { for (int i = arrayLength(t, fieldTable) - 1; i >= 0; --i) { object field = arrayBody(t, fieldTable, i); if (fieldCode(t, field) == ObjectField) { unsigned index = fieldOffset(t, field) / BytesPerWord; intArrayBody(t, mask, (index / 32)) |= 1 << (index % 32); sawReferenceField = true; } } } } if (sawReferenceField) { set(t, classObjectMask(t, class_), mask); } } } object parseCode(Thread* t, Stream& s, object pool) { unsigned maxStack = s.read2(); unsigned maxLocals = s.read2(); unsigned length = s.read4(); object code = makeCode(t, pool, 0, 0, maxStack, maxLocals, length, false); s.read(&codeBody(t, code, 0), length); PROTECT(t, code); unsigned ehtLength = s.read2(); if (ehtLength) { object eht = makeExceptionHandlerTable(t, ehtLength, false); for (unsigned i = 0; i < ehtLength; ++i) { ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i); exceptionHandlerStart(eh) = s.read2(); exceptionHandlerEnd(eh) = s.read2(); exceptionHandlerIp(eh) = s.read2(); exceptionHandlerCatchType(eh) = s.read2(); } set(t, codeExceptionHandlerTable(t, code), eht); } unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = arrayBody(t, pool, s.read2() - 1); unsigned length = s.read4(); if (strcmp(reinterpret_cast("LineNumberTable"), &byteArrayBody(t, name, 0)) == 0) { unsigned lntLength = s.read2(); object lnt = makeLineNumberTable(t, lntLength, false); for (unsigned i = 0; i < lntLength; ++i) { LineNumber* ln = lineNumberTableBody(t, lnt, i); lineNumberIp(ln) = s.read2(); lineNumberLine(ln) = s.read2(); } set(t, codeLineNumberTable(t, code), lnt); } else { s.skip(length); } } return code; } void parseMethodTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); object virtualMap = makeHashMap(t, NormalMap, 0, 0); PROTECT(t, virtualMap); object nativeMap = makeHashMap(t, NormalMap, 0, 0); PROTECT(t, nativeMap); unsigned virtualCount = 0; unsigned declaredVirtualCount = 0; object superVirtualTable = 0; PROTECT(t, superVirtualTable); if (classFlags(t, class_) & ACC_INTERFACE) { object itable = classInterfaceTable(t, class_); if (itable) { for (unsigned i = 0; i < arrayLength(t, itable); ++i) { object vtable = classVirtualTable(t, arrayBody(t, itable, i)); for (unsigned j = 0; j < virtualCount; ++j) { object method = arrayBody(t, vtable, j); if (hashMapInsertMaybe(t, virtualMap, method, method, methodHash, methodEqual)) { ++ virtualCount; } } } } } else { if (classSuper(t, class_)) { superVirtualTable = classVirtualTable(t, classSuper(t, class_)); } if (superVirtualTable) { virtualCount = arrayLength(t, superVirtualTable); for (unsigned i = 0; i < virtualCount; ++i) { object method = arrayBody(t, superVirtualTable, i); hashMapInsert(t, virtualMap, method, method, methodHash); } } } object newVirtuals = makeList(t, 0, 0, 0); PROTECT(t, newVirtuals); unsigned count = s.read2(); if (count) { object methodTable = makeArray(t, count, true); PROTECT(t, methodTable); for (unsigned i = 0; i < count; ++i) { unsigned flags = s.read2(); unsigned name = s.read2(); unsigned spec = s.read2(); object code = 0; unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = arrayBody(t, pool, s.read2() - 1); unsigned length = s.read4(); if (strcmp(reinterpret_cast("Code"), &byteArrayBody(t, name, 0)) == 0) { code = parseCode(t, s, pool); } else { s.skip(length); } } unsigned parameterCount = ::parameterCount (t, arrayBody(t, pool, spec - 1)); unsigned parameterFootprint = ::parameterFootprint (t, arrayBody(t, pool, spec - 1)); if ((flags & ACC_STATIC) == 0) { ++ parameterCount; ++ parameterFootprint; } object method = makeMethod(t, flags, 0, // offset parameterCount, parameterFootprint, arrayBody(t, pool, name - 1), arrayBody(t, pool, spec - 1), class_, code); PROTECT(t, method); if (flags & ACC_STATIC) { if (strcmp(reinterpret_cast(""), &byteArrayBody(t, methodName(t, method), 0)) == 0) { set(t, classInitializer(t, class_), method); } } else { ++ declaredVirtualCount; object p = hashMapFindNode (t, virtualMap, method, methodHash, methodEqual); if (p) { methodOffset(t, method) = methodOffset(t, tripleFirst(t, p)); set(t, tripleSecond(t, p), method); } else { methodOffset(t, method) = virtualCount++; listAppend(t, newVirtuals, method); hashMapInsert(t, virtualMap, method, method, methodHash); } } if (flags & ACC_NATIVE) { object p = hashMapFindNode (t, nativeMap, method, methodHash, methodEqual); if (p) { set(t, tripleSecond(t, p), method); } else { hashMapInsert(t, virtualMap, method, 0, methodHash); } } set(t, arrayBody(t, methodTable, i), method); } for (unsigned i = 0; i < count; ++i) { object method = arrayBody(t, methodTable, i); if (methodFlags(t, method) & ACC_NATIVE) { object overloaded = hashMapFind (t, nativeMap, method, methodHash, methodEqual); object jniName = makeJNIName(t, method, overloaded); set(t, methodCode(t, method), jniName); } } set(t, classMethodTable(t, class_), methodTable); } if (declaredVirtualCount == 0) { // inherit interface table and virtual table from superclass set(t, classInterfaceTable(t, class_), classInterfaceTable(t, classSuper(t, class_))); set(t, classVirtualTable(t, class_), superVirtualTable); } else if (virtualCount) { // generate class vtable unsigned i = 0; object vtable = makeArray(t, virtualCount, false); if (classFlags(t, class_) & ACC_INTERFACE) { PROTECT(t, vtable); object it = hashMapIterator(t, virtualMap); for (; it; it = hashMapIteratorNext(t, it)) { object method = tripleFirst(t, hashMapIteratorNode(t, it)); set(t, arrayBody(t, vtable, i++), method); } } else { if (superVirtualTable) { for (; i < arrayLength(t, superVirtualTable); ++i) { object method = arrayBody(t, superVirtualTable, i); method = hashMapFind(t, virtualMap, method, methodHash, methodEqual); set(t, arrayBody(t, vtable, i), method); } } for (object p = listFront(t, newVirtuals); p; p = pairSecond(t, p)) { set(t, arrayBody(t, vtable, i++), pairFirst(t, p)); } } set(t, classVirtualTable(t, class_), vtable); if ((classFlags(t, class_) & ACC_INTERFACE) == 0) { // generate interface vtables object itable = classInterfaceTable(t, class_); if (itable) { PROTECT(t, itable); for (unsigned i = 0; i < arrayLength(t, itable); i += 2) { object ivtable = classVirtualTable(t, arrayBody(t, itable, i)); object vtable = arrayBody(t, itable, i + 1); for (unsigned j = 0; j < arrayLength(t, ivtable); ++j) { object method = arrayBody(t, ivtable, j); method = hashMapFind (t, virtualMap, method, methodHash, methodEqual); assert(t, method); set(t, arrayBody(t, vtable, j), method); } } } } } } object parseClass(Thread* t, const uint8_t* data, unsigned size) { class Client : public Stream::Client { public: Client(Thread* t): t(t) { } virtual void NO_RETURN handleEOS() { abort(t); } private: Thread* t; } client(t); Stream s(&client, data, size); uint32_t magic = s.read4(); assert(t, magic == 0xCAFEBABE); s.read2(); // minor version s.read2(); // major version object pool = parsePool(t, s); unsigned flags = s.read2(); unsigned name = s.read2(); object class_ = makeClass(t, flags, 0, // VM flags 0, // array dimensions 0, // fixed size 0, // array size 0, // object mask arrayBody(t, pool, name - 1), 0, // super 0, // interfaces 0, // vtable 0, // fields 0, // methods 0, // static table 0); // initializer PROTECT(t, class_); unsigned super = s.read2(); if (super) { object sc = resolveClass(t, arrayBody(t, pool, super - 1)); if (UNLIKELY(t->exception)) return 0; set(t, classSuper(t, class_), sc); classVmFlags(t, class_) |= classVmFlags(t, sc); } parseInterfaceTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; parseFieldTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; parseMethodTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; return class_; } void updateBootstrapClass(Thread* t, object bootstrapClass, object class_) { expect(t, bootstrapClass != class_); // verify that the classes have the same layout expect(t, classSuper(t, bootstrapClass) == classSuper(t, class_)); expect(t, classFixedSize(t, bootstrapClass) == classFixedSize(t, class_)); expect(t, (classObjectMask(t, bootstrapClass) == 0 and classObjectMask(t, class_) == 0) or intArrayEqual(t, classObjectMask(t, bootstrapClass), classObjectMask(t, class_))); PROTECT(t, bootstrapClass); PROTECT(t, class_); ENTER(t, Thread::ExclusiveState); classFlags(t, bootstrapClass) = classFlags(t, class_); set(t, classSuper(t, bootstrapClass), classSuper(t, class_)); set(t, classInterfaceTable(t, bootstrapClass), classInterfaceTable(t, class_)); set(t, classVirtualTable(t, bootstrapClass), classVirtualTable(t, class_)); set(t, classFieldTable(t, bootstrapClass), classFieldTable(t, class_)); set(t, classMethodTable(t, bootstrapClass), classMethodTable(t, class_)); set(t, classStaticTable(t, bootstrapClass), classStaticTable(t, class_)); set(t, classInitializer(t, bootstrapClass), classInitializer(t, class_)); object fieldTable = classFieldTable(t, class_); if (fieldTable) { for (unsigned i = 0; i < arrayLength(t, fieldTable); ++i) { set(t, fieldClass(t, arrayBody(t, fieldTable, i)), bootstrapClass); } } object methodTable = classMethodTable(t, class_); if (methodTable) { for (unsigned i = 0; i < arrayLength(t, methodTable); ++i) { set(t, methodClass(t, arrayBody(t, methodTable, i)), bootstrapClass); } } } object makeArrayClass(Thread* t, unsigned dimensions, object spec, object elementClass) { return makeClass (t, 0, 0, dimensions, 2 * BytesPerWord, BytesPerWord, classObjectMask(t, arrayBody(t, t->vm->types, Machine::ArrayType)), spec, arrayBody(t, t->vm->types, Machine::JobjectType), elementClass, classVirtualTable(t, arrayBody(t, t->vm->types, Machine::JobjectType)), 0, 0, 0, 0); } object makeArrayClass(Thread* t, object spec) { PROTECT(t, spec); const char* s = reinterpret_cast(&byteArrayBody(t, spec, 0)); const char* start = s; unsigned dimensions = 0; for (; *s == '['; ++s) ++ dimensions; object elementSpec; switch (*s) { case 'L': { ++ s; const char* elementSpecStart = s; while (*s and *s != ';') ++ s; elementSpec = makeByteArray(t, s - elementSpecStart + 1, false); memcpy(&byteArrayBody(t, elementSpec, 0), &byteArrayBody(t, spec, elementSpecStart - start), s - elementSpecStart); byteArrayBody(t, elementSpec, s - elementSpecStart) = 0; } break; default: if (dimensions > 1) { char c = *s; elementSpec = makeByteArray(t, 3, false); byteArrayBody(t, elementSpec, 0) = '['; byteArrayBody(t, elementSpec, 1) = c; byteArrayBody(t, elementSpec, 2) = 0; -- dimensions; } else { abort(t); } } object elementClass = hashMapFind (t, t->vm->bootstrapClassMap, elementSpec, byteArrayHash, byteArrayEqual); if (elementClass == 0) { elementClass = resolveClass(t, elementSpec); if (UNLIKELY(t->exception)) return 0; } return makeArrayClass(t, dimensions, spec, elementClass); } void removeMonitor(Thread* t, object o) { object p = hashMapRemove(t, t->vm->monitorMap, o, objectHash, objectEqual); assert(t, p); if (DebugMonitors) { fprintf(stderr, "dispose monitor %p for object %x\n", static_cast(pointerValue(t, p)), objectHash(t, o)); } static_cast(pointerValue(t, p))->dispose(); } } // namespace namespace vm { Machine::Machine(System* system, Heap* heap, ClassFinder* classFinder): system(system), heap(heap), classFinder(classFinder), rootThread(0), exclusive(0), activeCount(0), liveCount(0), stateLock(0), heapLock(0), classLock(0), finalizerLock(0), libraries(0), classMap(0), bootstrapClassMap(0), builtinMap(0), monitorMap(0), types(0), finalizers(0), tenuredFinalizers(0), finalizeQueue(0), weakReferences(0), tenuredWeakReferences(0), unsafe(false) { jni::populate(&jniEnvVTable); if (not system->success(system->make(&stateLock)) or not system->success(system->make(&heapLock)) or not system->success(system->make(&classLock)) or not system->success(system->make(&finalizerLock))) { system->abort(); } } void Machine::dispose() { stateLock->dispose(); heapLock->dispose(); classLock->dispose(); finalizerLock->dispose(); if (libraries) { libraries->dispose(); } if (rootThread) { rootThread->dispose(); } } Thread::Thread(Machine* m, Allocator* allocator, object javaThread, Thread* parent): vtable(&(m->jniEnvVTable)), vm(m), allocator(allocator), parent(parent), peer((parent ? parent->child : 0)), child(0), state(NoState), systemThread(0), javaThread(javaThread), code(0), exception(0), large(0), ip(0), sp(0), frame(-1), heapIndex(0), protector(0) #ifdef VM_STRESS , stress(false), heap(static_cast(m->system->allocate(HeapSizeInBytes))) #endif // VM_STRESS { if (parent == 0) { assert(this, m->rootThread == 0); assert(this, javaThread == 0); m->rootThread = this; m->unsafe = true; if (not m->system->success(m->system->attach(&systemThread))) { abort(this); } Thread* t = this; #include "type-initializations.cpp" object arrayClass = arrayBody(t, t->vm->types, Machine::ArrayType); set(t, cast(t->vm->types, 0), arrayClass); object objectClass = arrayBody(t, m->types, Machine::JobjectType); object classClass = arrayBody(t, m->types, Machine::ClassType); set(t, cast(classClass, 0), classClass); set(t, classSuper(t, classClass), objectClass); object intArrayClass = arrayBody(t, m->types, Machine::IntArrayType); set(t, cast(intArrayClass, 0), classClass); set(t, classSuper(t, intArrayClass), objectClass); m->unsafe = false; m->bootstrapClassMap = makeHashMap(this, NormalMap, 0, 0); #include "type-java-initializations.cpp" classVmFlags(t, arrayBody(t, m->types, Machine::WeakReferenceType)) |= WeakReferenceFlag; m->classMap = makeHashMap(this, NormalMap, 0, 0); m->builtinMap = makeHashMap(this, NormalMap, 0, 0); m->monitorMap = makeHashMap(this, WeakMap, 0, 0); builtin::populate(t, m->builtinMap); javaThread = makeThread(t, 0, reinterpret_cast(t)); } else { threadPeer(this, javaThread) = reinterpret_cast(this); parent->child = this; } } void Thread::exit() { if (state != Thread::ExitState and state != Thread::ZombieState) { enter(this, Thread::ExclusiveState); if (vm->liveCount == 1) { vm::exit(this); } else { enter(this, Thread::ZombieState); } } } void Thread::dispose() { if (large) { vm->system->free(large); large = 0; } if (systemThread) { systemThread->dispose(); systemThread = 0; } #ifdef VM_STRESS vm->system->free(heap); heap = 0; #endif // VM_STRESS if (allocator) { allocator->free(this); } } void exit(Thread* t) { enter(t, Thread::ExitState); joinAll(t, t->vm->rootThread); for (object* p = &(t->vm->finalizers); *p;) { object f = *p; *p = finalizerNext(t, *p); reinterpret_cast(finalizerFinalize(t, f)) (t, finalizerTarget(t, f)); } for (object* p = &(t->vm->tenuredFinalizers); *p;) { object f = *p; *p = finalizerNext(t, *p); reinterpret_cast(finalizerFinalize(t, f)) (t, finalizerTarget(t, f)); } disposeAll(t, t->vm->rootThread); } void enter(Thread* t, Thread::State s) { stress(t); if (s == t->state) return; ACQUIRE_RAW(t, t->vm->stateLock); switch (s) { case Thread::ExclusiveState: { assert(t, t->state == Thread::ActiveState or t->state == Thread::ExitState); while (t->vm->exclusive) { // another thread got here first. ENTER(t, Thread::IdleState); } t->state = Thread::ExclusiveState; t->vm->exclusive = t; while (t->vm->activeCount > 1) { t->vm->stateLock->wait(t, 0); } } break; case Thread::IdleState: case Thread::ZombieState: { switch (t->state) { case Thread::ExclusiveState: { assert(t, t->vm->exclusive == t); t->vm->exclusive = 0; } break; case Thread::ActiveState: break; default: abort(t); } -- t->vm->activeCount; if (s == Thread::ZombieState) { -- t->vm->liveCount; } t->state = s; t->vm->stateLock->notifyAll(t); } break; case Thread::ActiveState: { switch (t->state) { case Thread::ExclusiveState: { assert(t, t->vm->exclusive == t); t->state = s; t->vm->exclusive = 0; t->vm->stateLock->notifyAll(t); } break; case Thread::NoState: case Thread::IdleState: { while (t->vm->exclusive) { t->vm->stateLock->wait(t, 0); } ++ t->vm->activeCount; if (t->state == Thread::NoState) { ++ t->vm->liveCount; } t->state = s; } break; default: abort(t); } } break; case Thread::ExitState: { switch (t->state) { case Thread::ExclusiveState: { assert(t, t->vm->exclusive == t); t->vm->exclusive = 0; } break; case Thread::ActiveState: break; default: abort(t); } -- t->vm->activeCount; t->state = s; while (t->vm->liveCount > 1) { t->vm->stateLock->wait(t, 0); } } break; default: abort(t); } } object allocate2(Thread* t, unsigned sizeInBytes) { if (sizeInBytes > Thread::HeapSizeInBytes and t->large == 0) { return allocateLarge(t, sizeInBytes); } ACQUIRE_RAW(t, t->vm->stateLock); while (t->vm->exclusive and t->vm->exclusive != t) { // another thread wants to enter the exclusive state, either for a // collection or some other reason. We give it a chance here. ENTER(t, Thread::IdleState); } if (t->heapIndex + divide(sizeInBytes, BytesPerWord) >= Thread::HeapSizeInWords) { ENTER(t, Thread::ExclusiveState); collect(t, Heap::MinorCollection); } if (sizeInBytes > Thread::HeapSizeInBytes) { return allocateLarge(t, sizeInBytes); } else { return allocateSmall(t, sizeInBytes); } } object makeByteArray(Thread* t, const char* format, ...) { va_list a; va_start(a, format); object s = ::makeByteArray(t, format, a); va_end(a); return s; } object makeString(Thread* t, const char* format, ...) { va_list a; va_start(a, format); object s = ::makeByteArray(t, format, a); va_end(a); return makeString(t, s, 0, byteArrayLength(t, s) - 1, 0); } void stringChars(Thread* t, object string, char* chars) { object data = stringData(t, string); if (objectClass(t, data) == arrayBody(t, t->vm->types, Machine::ByteArrayType)) { memcpy(chars, &byteArrayBody(t, data, stringOffset(t, string)), stringLength(t, string)); } else { for (int i = 0; i < stringLength(t, string); ++i) { chars[i] = charArrayBody(t, data, stringOffset(t, string) + i); } } chars[stringLength(t, string)] = 0; } unsigned parameterFootprint(const char* s) { unsigned footprint = 0; ++ s; // skip '(' while (*s and *s != ')') { switch (*s) { case 'L': while (*s and *s != ';') ++ s; ++ s; break; case '[': while (*s == '[') ++ s; switch (*s) { case 'L': while (*s and *s != ';') ++ s; ++ s; break; default: ++ s; break; } break; case 'J': case 'D': ++ s; ++ footprint; break; default: ++ s; break; } ++ footprint; } return footprint; } unsigned parameterCount(const char* s) { unsigned count = 0; ++ s; // skip '(' while (*s and *s != ')') { switch (*s) { case 'L': while (*s and *s != ';') ++ s; ++ s; break; case '[': while (*s == '[') ++ s; switch (*s) { case 'L': while (*s and *s != ';') ++ s; ++ s; break; default: ++ s; break; } break; default: ++ s; break; } ++ count; } return count; } object hashMapFindNode(Thread* t, object map, object key, uint32_t (*hash)(Thread*, object), bool (*equal)(Thread*, object, object)) { bool weak = hashMapType(t, map) == WeakMap; object array = hashMapArray(t, map); if (array) { unsigned index = hash(t, key) & (arrayLength(t, array) - 1); for (object n = arrayBody(t, array, index); n; n = tripleThird(t, n)) { object k = tripleFirst(t, n); if (weak) { k = jreferenceTarget(t, k); } if (equal(t, key, k)) { return n; } } } return 0; } void hashMapResize(Thread* t, object map, uint32_t (*hash)(Thread*, object), unsigned size) { PROTECT(t, map); object newArray = 0; if (size) { object oldArray = hashMapArray(t, map); PROTECT(t, oldArray); unsigned newLength = nextPowerOfTwo(size); newArray = makeArray(t, newLength, true); if (oldArray) { bool weak = hashMapType(t, map) == WeakMap; for (unsigned i = 0; i < arrayLength(t, oldArray); ++i) { object next; for (object p = arrayBody(t, oldArray, i); p; p = next) { next = tripleThird(t, p); object k = tripleFirst(t, p); if (weak) { k = jreferenceTarget(t, k); } unsigned index = hash(t, k) & (newLength - 1); set(t, tripleThird(t, p), arrayBody(t, newArray, index)); set(t, arrayBody(t, newArray, index), p); } } } } set(t, hashMapArray(t, map), newArray); } void hashMapInsert(Thread* t, object map, object key, object value, uint32_t (*hash)(Thread*, object)) { bool weak = hashMapType(t, map) == WeakMap; object array = hashMapArray(t, map); PROTECT(t, array); ++ hashMapSize(t, map); if (array == 0 or hashMapSize(t, map) >= arrayLength(t, array) * 2) { PROTECT(t, map); PROTECT(t, key); PROTECT(t, value); hashMapResize(t, map, hash, array ? arrayLength(t, array) * 2 : 16); array = hashMapArray(t, map); } unsigned index = hash(t, key) & (arrayLength(t, array) - 1); object n = arrayBody(t, array, index); if (weak) { PROTECT(t, value); key = makeWeakReference(t, key, t->vm->weakReferences); t->vm->weakReferences = key; } n = makeTriple(t, key, value, n); set(t, arrayBody(t, array, index), n); } object hashMapRemove(Thread* t, object map, object key, uint32_t (*hash)(Thread*, object), bool (*equal)(Thread*, object, object)) { bool weak = hashMapType(t, map) == WeakMap; object array = hashMapArray(t, map); object o = 0; if (array) { unsigned index = hash(t, key) & (arrayLength(t, array) - 1); for (object* n = &arrayBody(t, array, index); *n;) { object k = tripleFirst(t, *n); if (weak) { k = jreferenceTarget(t, k); } if (equal(t, key, k)) { o = tripleSecond(t, *n); set(t, *n, tripleThird(t, *n)); -- hashMapSize(t, map); } else { n = &tripleThird(t, *n); } } if (hashMapSize(t, map) <= arrayLength(t, array) / 3) { hashMapResize(t, map, hash, arrayLength(t, array) / 2); } } return o; } object makeTrace(Thread* t, int frame) { unsigned count = 0; for (int f = frame; f >= 0; f = frameNext(t, f)) { ++ count; } object trace = makeArray(t, count, true); PROTECT(t, trace); unsigned index = 0; for (int f = frame; f >= 0; f = frameNext(t, f)) { object e = makeTraceElement(t, frameMethod(t, f), frameIp(t, f)); set(t, arrayBody(t, trace, index++), e); } return trace; } object hashMapIterator(Thread* t, object map) { object array = hashMapArray(t, map); if (array) { for (unsigned i = 0; i < arrayLength(t, array); ++i) { if (arrayBody(t, array, i)) { return makeHashMapIterator(t, map, arrayBody(t, array, i), i + 1); } } } return 0; } object hashMapIteratorNext(Thread* t, object it) { object map = hashMapIteratorMap(t, it); object node = hashMapIteratorNode(t, it); unsigned index = hashMapIteratorIndex(t, it); if (tripleThird(t, node)) { return makeHashMapIterator(t, map, tripleThird(t, node), index + 1); } else { object array = hashMapArray(t, map); for (unsigned i = index; i < arrayLength(t, array); ++i) { if (arrayBody(t, array, i)) { return makeHashMapIterator(t, map, arrayBody(t, array, i), i + 1); } } return 0; } } void listAppend(Thread* t, object list, object value) { PROTECT(t, list); ++ listSize(t, list); object p = makePair(t, value, 0); if (listFront(t, list)) { set(t, pairSecond(t, listRear(t, list)), p); } else { set(t, listFront(t, list), p); } set(t, listRear(t, list), p); } unsigned fieldCode(Thread* t, unsigned javaCode) { switch (javaCode) { case 'B': return ByteField; case 'C': return CharField; case 'D': return DoubleField; case 'F': return FloatField; case 'I': return IntField; case 'J': return LongField; case 'S': return ShortField; case 'V': return VoidField; case 'Z': return BooleanField; case 'L': case '[': return ObjectField; default: abort(t); } } unsigned fieldType(Thread* t, unsigned code) { switch (code) { case VoidField: return VOID_TYPE; case ByteField: case BooleanField: return INT8_TYPE; case CharField: case ShortField: return INT16_TYPE; case DoubleField: return DOUBLE_TYPE; case FloatField: return FLOAT_TYPE; case IntField: return INT32_TYPE; case LongField: return INT64_TYPE; case ObjectField: return POINTER_TYPE; default: abort(t); } } unsigned primitiveSize(Thread* t, unsigned code) { switch (code) { case VoidField: return 0; case ByteField: case BooleanField: return 1; case CharField: case ShortField: return 2; case FloatField: case IntField: return 4; case DoubleField: case LongField: return 8; default: abort(t); } } object resolveClass(Thread* t, object spec) { PROTECT(t, spec); ACQUIRE(t, t->vm->classLock); object class_ = hashMapFind (t, t->vm->classMap, spec, byteArrayHash, byteArrayEqual); if (class_ == 0) { if (byteArrayBody(t, spec, 0) == '[') { class_ = hashMapFind (t, t->vm->bootstrapClassMap, spec, byteArrayHash, byteArrayEqual); if (class_ == 0) { class_ = makeArrayClass(t, spec); } } else { ClassFinder::Data* data = t->vm->classFinder->find (reinterpret_cast(&byteArrayBody(t, spec, 0))); if (data) { if (Verbose) { fprintf(stderr, "parsing %s\n", &byteArrayBody (t, spec, 0)); } // parse class file class_ = parseClass(t, data->start(), data->length()); data->dispose(); if (Verbose) { fprintf(stderr, "done parsing %s\n", &byteArrayBody (t, className(t, class_), 0)); } object bootstrapClass = hashMapFind (t, t->vm->bootstrapClassMap, spec, byteArrayHash, byteArrayEqual); if (bootstrapClass) { PROTECT(t, bootstrapClass); updateBootstrapClass(t, bootstrapClass, class_); class_ = bootstrapClass; } } } if (class_) { PROTECT(t, class_); hashMapInsert(t, t->vm->classMap, spec, class_, byteArrayHash); } else if (t->exception == 0) { object message = makeString(t, "%s", &byteArrayBody(t, spec, 0)); t->exception = makeClassNotFoundException(t, message); } } return class_; } object resolveObjectArrayClass(Thread* t, object elementSpec) { PROTECT(t, elementSpec); object spec; if (byteArrayBody(t, elementSpec, 0) == '[') { spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 1, false); byteArrayBody(t, elementSpec, 0) = '['; memcpy(&byteArrayBody(t, spec, 1), &byteArrayBody(t, elementSpec, 0), byteArrayLength(t, elementSpec)); } else { spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 3, false); byteArrayBody(t, spec, 0) = '['; byteArrayBody(t, spec, 1) = 'L'; memcpy(&byteArrayBody(t, spec, 2), &byteArrayBody(t, elementSpec, 0), byteArrayLength(t, elementSpec) - 1); byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 1) = ';'; byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 2) = 0; } return resolveClass(t, spec); } object makeObjectArray(Thread* t, object elementClass, unsigned count, bool clear) { object arrayClass = resolveObjectArrayClass(t, className(t, elementClass)); PROTECT(t, arrayClass); object array = makeArray(t, count, clear); setObjectClass(t, array, arrayClass); return array; } int lineNumber(Thread* t, object method, unsigned ip) { if (methodFlags(t, method) & ACC_NATIVE) { return NativeLine; } object table = codeLineNumberTable(t, methodCode(t, method)); if (table) { // todo: do a binary search: int last = UnknownLine; for (unsigned i = 0; i < lineNumberTableLength(t, table); ++i) { if (ip <= lineNumberIp(lineNumberTableBody(t, table, i))) { return last; } else { last = lineNumberLine(lineNumberTableBody(t, table, i)); } } return last; } else { return UnknownLine; } } void addFinalizer(Thread* t, object target, void (*finalize)(Thread*, object)) { PROTECT(t, target); ACQUIRE(t, t->vm->finalizerLock); t->vm->finalizers = makeFinalizer (t, target, reinterpret_cast(finalize), t->vm->finalizers); } System::Monitor* objectMonitor(Thread* t, object o) { object p = hashMapFind(t, t->vm->monitorMap, o, objectHash, objectEqual); if (p) { if (DebugMonitors) { fprintf(stderr, "found monitor %p for object %x\n", static_cast(pointerValue(t, p)), objectHash(t, o)); } return static_cast(pointerValue(t, p)); } else { PROTECT(t, o); ENTER(t, Thread::ExclusiveState); System::Monitor* m; System::Status s = t->vm->system->make(&m); expect(t, t->vm->system->success(s)); if (DebugMonitors) { fprintf(stderr, "made monitor %p for object %x\n", m, objectHash(t, o)); } p = makePointer(t, m); hashMapInsert(t, t->vm->monitorMap, o, p, objectHash); addFinalizer(t, o, removeMonitor); return m; } } void collect(Thread* t, Heap::CollectionType type) { Machine* m = t->vm; class Client: public Heap::Client { public: Client(Machine* m): m(m) { } virtual void visitRoots(Heap::Visitor* v) { v->visit(&(m->classMap)); v->visit(&(m->bootstrapClassMap)); v->visit(&(m->builtinMap)); v->visit(&(m->monitorMap)); v->visit(&(m->types)); for (Thread* t = m->rootThread; t; t = t->peer) { ::visitRoots(t, v); } postVisit(m->rootThread, v); } virtual unsigned sizeInWords(object o) { Thread* t = m->rootThread; o = m->heap->follow(mask(o)); return extendedSize (t, o, baseSize(t, o, m->heap->follow(objectClass(t, o)))); } virtual unsigned copiedSizeInWords(object o) { Thread* t = m->rootThread; o = m->heap->follow(mask(o)); unsigned n = baseSize(t, o, m->heap->follow(objectClass(t, o))); if (objectExtended(t, o) or hashTaken(t, o)) { ++ n; } return n; } virtual void copy(object o, object dst) { Thread* t = m->rootThread; o = m->heap->follow(mask(o)); object class_ = m->heap->follow(objectClass(t, o)); unsigned base = baseSize(t, o, class_); unsigned n = extendedSize(t, o, base); memcpy(dst, o, n * BytesPerWord); if (hashTaken(t, o)) { cast(dst, 0) &= PointerMask; cast(dst, 0) |= ExtendedMark; extendedWord(t, dst, base) = takeHash(t, o); } } virtual void walk(void* p, Heap::Walker* w) { Thread* t = m->rootThread; p = m->heap->follow(mask(p)); object class_ = m->heap->follow(objectClass(t, p)); object objectMask = m->heap->follow(classObjectMask(t, class_)); if (objectMask) { // fprintf(stderr, "p: %p; class: %p; mask: %p; mask length: %d\n", // p, class_, objectMask, intArrayLength(t, objectMask)); unsigned fixedSize = classFixedSize(t, class_); unsigned arrayElementSize = classArrayElementSize(t, class_); unsigned arrayLength = (arrayElementSize ? cast(p, fixedSize - BytesPerWord) : 0); int mask[intArrayLength(t, objectMask)]; memcpy(mask, &intArrayBody(t, objectMask, 0), intArrayLength(t, objectMask) * 4); // fprintf // (stderr, // "fixed size: %d; array length: %d; element size: %d; mask: %x\n", // fixedSize, arrayLength, arrayElementSize, mask[0]); unsigned fixedSizeInWords = divide(fixedSize, BytesPerWord); unsigned arrayElementSizeInWords = divide(arrayElementSize, BytesPerWord); for (unsigned i = 0; i < fixedSizeInWords; ++i) { if (mask[wordOf(i)] & (static_cast(1) << bitOf(i))) { if (not w->visit(i)) { return; } } } bool arrayObjectElements = false; for (unsigned j = 0; j < arrayElementSizeInWords; ++j) { unsigned k = fixedSizeInWords + j; if (mask[wordOf(k)] & (static_cast(1) << bitOf(k))) { arrayObjectElements = true; break; } } if (arrayObjectElements) { for (unsigned i = 0; i < arrayLength; ++i) { for (unsigned j = 0; j < arrayElementSizeInWords; ++j) { unsigned k = fixedSizeInWords + j; if (mask[wordOf(k)] & (static_cast(1) << bitOf(k))) { if (not w->visit (fixedSizeInWords + (i * arrayElementSizeInWords) + j)) { return; } } } } } } else { w->visit(0); } } private: Machine* m; } it(m); m->unsafe = true; m->heap->collect(type, &it); m->unsafe = false; postCollect(m->rootThread); for (object f = m->finalizeQueue; f; f = finalizerNext(t, f)) { reinterpret_cast(finalizerFinalize(t, f)) (t, finalizerTarget(t, f)); } m->finalizeQueue = 0; killZombies(t, m->rootThread); } void noop() { } #include "type-constructors.cpp" } // namespace vm