/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "bootimage.h" #include "heapwalk.h" #include "common.h" #include "machine.h" #include "util.h" #include "assembler.h" // since we aren't linking against libstdc++, we must implement this // ourselves: extern "C" void __cxa_pure_virtual(void) { abort(); } using namespace vm; namespace { bool endsWith(const char* suffix, const char* s, unsigned length) { unsigned suffixLength = strlen(suffix); return length >= suffixLength and memcmp(suffix, s + (length - suffixLength), suffixLength) == 0; } object makeCodeImage(Thread* t, Zone* zone, BootImage* image, uint8_t* code, unsigned capacity, uintptr_t* codeMap) { unsigned size = 0; t->m->processor->compileThunks(t, image, code, &size, capacity); object constants = 0; PROTECT(t, constants); object calls = 0; PROTECT(t, calls); DelayedPromise* addresses = 0; for (Finder::Iterator it(t->m->finder); it.hasMore();) { unsigned nameSize = 0; const char* name = it.next(&nameSize); if (endsWith(".class", name, nameSize)) { //fprintf(stderr, "%.*s\n", nameSize - 6, name); object c = resolveClass (t, makeByteArray(t, "%.*s", nameSize - 6, name)); PROTECT(t, c); if (classMethodTable(t, c)) { for (unsigned i = 0; i < arrayLength(t, classMethodTable(t, c)); ++i) { object method = arrayBody(t, classMethodTable(t, c), i); if (methodCode(t, method) or (methodFlags(t, method) & ACC_NATIVE)) { t->m->processor->compileMethod (t, zone, code, &size, capacity, &constants, &calls, &addresses, method); } } } } } for (; calls; calls = tripleThird(t, calls)) { object method = tripleFirst(t, calls); uintptr_t address; if (methodFlags(t, method) & ACC_NATIVE) { address = reinterpret_cast(code + image->nativeThunk); } else { address = methodCompiled(t, method); } static_cast(pointerValue(t, tripleSecond(t, calls))) ->listener->resolve(address); } for (; addresses; addresses = addresses->next) { uint8_t* value = reinterpret_cast(addresses->basis->value()); assert(t, value >= code); void* dst = addresses->listener->resolve ((value - code) | (1 << BootShift)); assert(t, reinterpret_cast(dst) >= reinterpret_cast(code)); markBit(codeMap, reinterpret_cast(dst) - reinterpret_cast(code)); } image->codeSize = size; return constants; } unsigned objectSize(Thread* t, object o) { assert(t, not objectExtended(t, o)); return baseSize(t, o, objectClass(t, o)); } void visitRoots(Thread* t, BootImage* image, HeapWalker* w, object constants) { Machine* m = t->m; for (HashMapIterator it(t, m->classMap); it.hasMore();) { w->visitRoot(tripleSecond(t, it.next())); } image->loader = w->visitRoot(m->loader); image->types = w->visitRoot(m->types); m->processor->visitRoots(image, w); for (; constants; constants = tripleThird(t, constants)) { w->visitRoot(tripleFirst(t, constants)); } } HeapWalker* makeHeapImage(Thread* t, BootImage* image, uintptr_t* heap, uintptr_t* map, unsigned capacity, object constants) { class Visitor: public HeapVisitor { public: Visitor(Thread* t, uintptr_t* heap, uintptr_t* map, unsigned capacity): t(t), currentObject(0), currentNumber(0), currentOffset(0), heap(heap), map(map), position(0), capacity(capacity) { } void visit(unsigned number) { if (currentObject) { unsigned offset = currentNumber - 1 + currentOffset; unsigned mark = heap[offset] & (~PointerMask); unsigned value = number | (mark << BootShift); if (value) markBit(map, offset); heap[offset] = value; } } virtual void root() { currentObject = 0; } virtual unsigned visitNew(object p) { if (p) { unsigned size = objectSize(t, p); unsigned number; if (currentObject and (currentOffset * BytesPerWord) == ClassStaticTable) { FixedAllocator allocator (t, reinterpret_cast(heap + position), (capacity - position) * BytesPerWord); unsigned totalInBytes; uintptr_t* dst = static_cast (t->m->heap->allocateImmortalFixed (&allocator, size, true, &totalInBytes)); memcpy(dst, p, size * BytesPerWord); dst[0] |= FixedMark; number = (dst - heap) + 1; position += ceiling(totalInBytes, BytesPerWord); } else { assert(t, position + size < capacity); memcpy(heap + position, p, size * BytesPerWord); number = position + 1; position += size; } visit(number); return number; } else { return 0; } } virtual void visitOld(object, unsigned number) { visit(number); } virtual void push(object object, unsigned number, unsigned offset) { currentObject = object; currentNumber = number; currentOffset = offset; } virtual void pop() { currentObject = 0; } Thread* t; object currentObject; unsigned currentNumber; unsigned currentOffset; uintptr_t* heap; uintptr_t* map; unsigned position; unsigned capacity; } visitor(t, heap, map, capacity / BytesPerWord); HeapWalker* w = makeHeapWalker(t, &visitor); visitRoots(t, image, w, constants); image->heapSize = visitor.position * BytesPerWord; return w; } void updateConstants(Thread* t, object constants, uint8_t* code, uintptr_t* codeMap, HeapMap* heapTable) { for (; constants; constants = tripleThird(t, constants)) { unsigned target = heapTable->find(tripleFirst(t, constants)); assert(t, target > 0); for (Promise::Listener* pl = static_cast (pointerValue(t, tripleSecond(t, constants)))->listener; pl; pl = pl->next) { void* dst = pl->resolve(target); assert(t, reinterpret_cast(dst) >= reinterpret_cast(code)); markBit(codeMap, reinterpret_cast(dst) - reinterpret_cast(code)); } } } unsigned offset(object a, uintptr_t* b) { return reinterpret_cast(b) - reinterpret_cast(a); } void writeBootImage(Thread* t, FILE* out) { Zone zone(t->m->system, t->m->heap, 64 * 1024); BootImage image; const unsigned CodeCapacity = 32 * 1024 * 1024; uint8_t* code = static_cast(t->m->heap->allocate(CodeCapacity)); uintptr_t* codeMap = static_cast (t->m->heap->allocate(codeMapSize(CodeCapacity))); memset(codeMap, 0, codeMapSize(CodeCapacity)); object constants = makeCodeImage (t, &zone, &image, code, CodeCapacity, codeMap); PROTECT(t, constants); const unsigned HeapCapacity = 32 * 1024 * 1024; uintptr_t* heap = static_cast (t->m->heap->allocate(HeapCapacity)); uintptr_t* heapMap = static_cast (t->m->heap->allocate(heapMapSize(HeapCapacity))); memset(heapMap, 0, heapMapSize(HeapCapacity)); collect(t, Heap::MajorCollection); HeapWalker* heapWalker = makeHeapImage (t, &image, heap, heapMap, HeapCapacity, constants); updateConstants(t, constants, code, codeMap, heapWalker->map()); image.classCount = hashMapSize(t, t->m->classMap); unsigned* classTable = static_cast (t->m->heap->allocate(image.classCount * sizeof(unsigned))); { unsigned i = 0; for (HashMapIterator it(t, t->m->classMap); it.hasMore();) { classTable[i++] = heapWalker->map()->find(tripleSecond(t, it.next())); } } image.stringCount = hashMapSize(t, t->m->stringMap); unsigned* stringTable = static_cast (t->m->heap->allocate(image.stringCount * sizeof(unsigned))); { unsigned i = 0; for (HashMapIterator it(t, t->m->stringMap); it.hasMore();) { stringTable[i++] = heapWalker->map()->find (jreferenceTarget(t, tripleFirst(t, it.next()))); } } unsigned* callTable = t->m->processor->makeCallTable (t, &image, heapWalker, code); heapWalker->dispose(); image.magic = BootImage::Magic; image.codeBase = reinterpret_cast(code); fprintf(stderr, "class count %d string count %d call count %d\n" "heap size %d code size %d\n", image.classCount, image.stringCount, image.callCount, image.heapSize, image.codeSize); if (true) { fwrite(&image, sizeof(BootImage), 1, out); fwrite(classTable, image.classCount * sizeof(unsigned), 1, out); fwrite(stringTable, image.stringCount * sizeof(unsigned), 1, out); fwrite(callTable, image.callCount * sizeof(unsigned) * 2, 1, out); unsigned offset = (image.classCount * sizeof(unsigned)) + (image.stringCount * sizeof(unsigned)) + (image.callCount * sizeof(unsigned) * 2); while (offset % BytesPerWord) { uint8_t c = 0; fwrite(&c, 1, 1, out); ++ offset; } fwrite(heapMap, pad(heapMapSize(image.heapSize)), 1, out); fwrite(heap, pad(image.heapSize), 1, out); fwrite(codeMap, pad(codeMapSize(image.codeSize)), 1, out); fwrite(code, pad(image.codeSize), 1, out); } } } // namespace int main(int ac, const char** av) { if (ac != 2) { fprintf(stderr, "usage: %s \n", av[0]); return -1; } System* s = makeSystem(0); Heap* h = makeHeap(s, 128 * 1024 * 1024); Finder* f = makeFinder(s, av[1], 0); Processor* p = makeProcessor(s, h); Machine* m = new (h->allocate(sizeof(Machine))) Machine(s, h, f, p, 0, 0); Thread* t = p->makeThread(m, 0, 0); enter(t, Thread::ActiveState); enter(t, Thread::IdleState); writeBootImage(t, stdout); return 0; }