/* Copyright (c) 2008-2009, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "assembler.h" #include "vector.h" #define CAST1(x) reinterpret_cast(x) #define CAST2(x) reinterpret_cast(x) const bool DebugSSE = false; const bool EnableSSE = true; const bool EnableSSE2 = true; using namespace vm; namespace { namespace local { enum { rax = 0, rcx = 1, rdx = 2, rbx = 3, rsp = 4, rbp = 5, rsi = 6, rdi = 7, r8 = 8, r9 = 9, r10 = 10, r11 = 11, r12 = 12, r13 = 13, r14 = 14, r15 = 15, }; enum { xmm0 = r15 + 1, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, }; const unsigned GeneralRegisterMask = BytesPerWord == 4 ? 0x000000ff : 0x0000ffff; const unsigned FloatRegisterMask = BytesPerWord == 4 ? 0x00ff0000 : 0xffff0000; const unsigned FrameHeaderSize = 2; const unsigned StackAlignmentInBytes = 16; const unsigned StackAlignmentInWords = StackAlignmentInBytes / BytesPerWord; inline bool isInt8(intptr_t v) { return v == static_cast(v); } inline bool isInt32(intptr_t v) { return v == static_cast(v); } class Task; class AlignmentPadding; unsigned padding(AlignmentPadding* p, unsigned index, unsigned offset, AlignmentPadding* limit); class MyBlock: public Assembler::Block { public: MyBlock(unsigned offset): next(0), firstPadding(0), lastPadding(0), offset(offset), start(~0), size(0) { } virtual unsigned resolve(unsigned start, Assembler::Block* next) { this->start = start; this->next = static_cast(next); return start + size + padding(firstPadding, start, offset, lastPadding); } MyBlock* next; AlignmentPadding* firstPadding; AlignmentPadding* lastPadding; unsigned offset; unsigned start; unsigned size; }; class Context { public: Context(System* s, Allocator* a, Zone* zone): s(s), zone(zone), client(0), code(s, a, 1024), tasks(0), result(0), firstBlock(new (zone->allocate(sizeof(MyBlock))) MyBlock(0)), lastBlock(firstBlock) { } System* s; Zone* zone; Assembler::Client* client; Vector code; Task* tasks; uint8_t* result; MyBlock* firstBlock; MyBlock* lastBlock; }; typedef void (*OperationType)(Context*); typedef void (*UnaryOperationType)(Context*, unsigned, Assembler::Operand*); typedef void (*BinaryOperationType) (Context*, unsigned, Assembler::Operand*, unsigned, Assembler::Operand*); class ArchitectureContext { public: ArchitectureContext(System* s): s(s) { } System* s; OperationType operations[OperationCount]; UnaryOperationType unaryOperations[UnaryOperationCount * OperandTypeCount]; BinaryOperationType binaryOperations [(BinaryOperationCount + TernaryOperationCount) * OperandTypeCount * OperandTypeCount]; }; inline void NO_RETURN abort(Context* c) { abort(c->s); } inline void NO_RETURN abort(ArchitectureContext* c) { abort(c->s); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->s, v); } inline void assert(ArchitectureContext* c, bool v) { assert(c->s, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->s, v); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } class CodePromise: public Promise { public: CodePromise(Context* c, unsigned offset): c(c), offset(offset) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->result + offset); } abort(c); } virtual bool resolved() { return c->result != 0; } Context* c; unsigned offset; }; CodePromise* codePromise(Context* c, unsigned offset) { return new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, offset); } class Offset: public Promise { public: Offset(Context* c, MyBlock* block, unsigned offset, AlignmentPadding* limit): c(c), block(block), offset(offset), limit(limit) { } virtual bool resolved() { return block->start != static_cast(~0); } virtual int64_t value() { assert(c, resolved()); return block->start + (offset - block->offset) + padding(block->firstPadding, block->start, block->offset, limit); } Context* c; MyBlock* block; unsigned offset; AlignmentPadding* limit; }; Promise* offset(Context* c) { return new (c->zone->allocate(sizeof(Offset))) Offset(c, c->lastBlock, c->code.length(), c->lastBlock->lastPadding); } class Task { public: Task(Task* next): next(next) { } virtual void run(Context* c) = 0; Task* next; }; void* resolveOffset(System* s, uint8_t* instruction, unsigned instructionSize, int64_t value) { intptr_t v = reinterpret_cast(value) - instruction - instructionSize; expect(s, isInt32(v)); int32_t v4 = v; memcpy(instruction + instructionSize - 4, &v4, 4); return instruction + instructionSize; } class OffsetListener: public Promise::Listener { public: OffsetListener(System* s, uint8_t* instruction, unsigned instructionSize): s(s), instruction(instruction), instructionSize(instructionSize) { } virtual bool resolve(int64_t value, void** location) { void* p = resolveOffset(s, instruction, instructionSize, value); if (location) *location = p; return false; } System* s; uint8_t* instruction; unsigned instructionSize; }; class OffsetTask: public Task { public: OffsetTask(Task* next, Promise* promise, Promise* instructionOffset, unsigned instructionSize): Task(next), promise(promise), instructionOffset(instructionOffset), instructionSize(instructionSize) { } virtual void run(Context* c) { if (promise->resolved()) { resolveOffset (c->s, c->result + instructionOffset->value(), instructionSize, promise->value()); } else { new (promise->listen(sizeof(OffsetListener))) OffsetListener(c->s, c->result + instructionOffset->value(), instructionSize); } } Promise* promise; Promise* instructionOffset; unsigned instructionSize; }; void appendOffsetTask(Context* c, Promise* promise, Promise* instructionOffset, unsigned instructionSize) { c->tasks = new (c->zone->allocate(sizeof(OffsetTask))) OffsetTask (c->tasks, promise, instructionOffset, instructionSize); } void copy(System* s, void* dst, int64_t src, unsigned size) { switch (size) { case 4: { int32_t v = src; memcpy(dst, &v, 4); } break; case 8: { int64_t v = src; memcpy(dst, &v, 8); } break; default: abort(s); } } class ImmediateListener: public Promise::Listener { public: ImmediateListener(System* s, void* dst, unsigned size, unsigned offset): s(s), dst(dst), size(size), offset(offset) { } virtual bool resolve(int64_t value, void** location) { copy(s, dst, value, size); if (location) *location = static_cast(dst) + offset; return offset == 0; } System* s; void* dst; unsigned size; unsigned offset; }; class ImmediateTask: public Task { public: ImmediateTask(Task* next, Promise* promise, Promise* offset, unsigned size, unsigned promiseOffset): Task(next), promise(promise), offset(offset), size(size), promiseOffset(promiseOffset) { } virtual void run(Context* c) { if (promise->resolved()) { copy(c->s, c->result + offset->value(), promise->value(), size); } else { new (promise->listen(sizeof(ImmediateListener))) ImmediateListener (c->s, c->result + offset->value(), size, promiseOffset); } } Promise* promise; Promise* offset; unsigned size; unsigned promiseOffset; }; void appendImmediateTask(Context* c, Promise* promise, Promise* offset, unsigned size, unsigned promiseOffset = 0) { c->tasks = new (c->zone->allocate(sizeof(ImmediateTask))) ImmediateTask (c->tasks, promise, offset, size, promiseOffset); } class AlignmentPadding { public: AlignmentPadding(Context* c): offset(c->code.length()), next(0) { if (c->lastBlock->firstPadding) { c->lastBlock->lastPadding->next = this; } else { c->lastBlock->firstPadding = this; } c->lastBlock->lastPadding = this; } unsigned offset; AlignmentPadding* next; }; unsigned padding(AlignmentPadding* p, unsigned start, unsigned offset, AlignmentPadding* limit) { unsigned padding = 0; if (limit) { unsigned index = 0; for (; p; p = p->next) { index = p->offset - offset; while ((start + index + padding + 1) % 4) { ++ padding; } if (p == limit) break; } } return padding; } extern "C" bool detectFeature(unsigned ecx, unsigned edx); inline bool supportsSSE() { static int supported = -1; if(supported == -1) { supported = EnableSSE && detectFeature(0, 0x2000000); if(DebugSSE) { fprintf(stderr, "sse %sdetected.\n", supported ? "" : "not "); } } return supported; } inline bool supportsSSE2() { static int supported = -1; if(supported == -1) { supported = EnableSSE2 && detectFeature(0, 0x4000000); if(DebugSSE) { fprintf(stderr, "sse2 %sdetected.\n", supported ? "" : "not "); } } return supported; } #define REX_W 0x48 #define REX_R 0x44 #define REX_X 0x42 #define REX_B 0x41 #define REX_NONE 0x40 void maybeRex(Context* c, unsigned size, int a, int index, int base, bool always) { if(BytesPerWord == 8) { uint8_t byte; if(size == 8) { byte = REX_W; } else { byte = REX_NONE; } if(a != NoRegister && (a & 8)) byte |= REX_R; if(index != NoRegister && (index & 8)) byte |= REX_X; if(base != NoRegister && (base & 8)) byte |= REX_B; if(always or byte != REX_NONE) c->code.append(byte); } } inline void maybeRex(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { maybeRex(c, size, a->low, NoRegister, b->low, false); } inline void alwaysRex(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { maybeRex(c, size, a->low, NoRegister, b->low, true); } inline void maybeRex(Context* c, unsigned size, Assembler::Register* a) { maybeRex(c, size, NoRegister, NoRegister, a->low, false); } inline void maybeRex(Context* c, unsigned size, Assembler::Register* a, Assembler::Memory* b) { maybeRex(c, size, a->low, b->index, b->base, false); } inline void maybeRex(Context* c, unsigned size, Assembler::Memory* a) { maybeRex(c, size, NoRegister, a->index, a->base, false); } inline int regCode(int a) { return a & 7; } inline int regCode(Assembler::Register* a) { return regCode(a->low); } inline void modrm(Context* c, uint8_t mod, int a, int b) { c->code.append(mod | (regCode(b) << 3) | regCode(a)); } inline void modrm(Context* c, uint8_t mod, Assembler::Register* a, Assembler::Register* b) { modrm(c, mod, a->low, b->low); } inline void sib(Context* c, unsigned scale, int index, int base) { c->code.append((log(scale) << 6) | (regCode(index) << 3) | regCode(base)); } inline void modrmSib(Context* c, int width, int a, int scale, int index, int base) { if(index == NoRegister) { modrm(c, width, base, a); if(regCode(base) == rsp) { sib(c, 0x00, rsp, rsp); } } else { modrm(c, width, rsp, a); sib(c, scale, index, base); } } inline void modrmSibImm(Context* c, int a, int scale, int index, int base, int offset) { if(offset == 0 && regCode(base) != rbp) { modrmSib(c, 0x00, a, scale, index, base); } else if(isInt8(offset)) { modrmSib(c, 0x40, a, scale, index, base); c->code.append(offset); } else { modrmSib(c, 0x80, a, scale, index, base); c->code.append4(offset); } } inline void modrmSibImm(Context* c, Assembler::Register* a, Assembler::Memory* b) { modrmSibImm(c, a->low, b->scale, b->index, b->base, b->offset); } inline void opcode(Context* c, uint8_t op) { c->code.append(op); } inline void opcode(Context* c, uint8_t op1, uint8_t op2) { c->code.append(op1); c->code.append(op2); } inline void opcode(Context* c, uint8_t op1, uint8_t op2, uint8_t op3) { c->code.append(op1); c->code.append(op2); c->code.append(op3); } void return_(Context* c) { opcode(c, 0xc3); } void ignore(Context*) { } void unconditional(Context* c, unsigned jump, Assembler::Constant* a) { appendOffsetTask(c, a->value, offset(c), 5); opcode(c, jump); c->code.append4(0); } void conditional(Context* c, unsigned condition, Assembler::Constant* a) { appendOffsetTask(c, a->value, offset(c), 6); opcode(c, 0x0f, condition); c->code.append4(0); } inline unsigned index(UnaryOperation operation, OperandType operand) { return operation + (UnaryOperationCount * operand); } inline unsigned index(BinaryOperation operation, OperandType operand1, OperandType operand2) { return operation + ((BinaryOperationCount + TernaryOperationCount) * operand1) + ((BinaryOperationCount + TernaryOperationCount) * OperandTypeCount * operand2); } inline unsigned index(TernaryOperation operation, OperandType operand1, OperandType operand2) { return BinaryOperationCount + operation + ((BinaryOperationCount + TernaryOperationCount) * operand1) + ((BinaryOperationCount + TernaryOperationCount) * OperandTypeCount * operand2); } void moveCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b); void moveCR2(Context*, unsigned, Assembler::Constant*, unsigned, Assembler::Register*, unsigned); void callR(Context*, unsigned, Assembler::Register*); void callC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); unconditional(c, 0xe8, a); } void longCallC(Context* c, unsigned size, Assembler::Constant* a) { assert(c, size == BytesPerWord); if (BytesPerWord == 8) { Assembler::Register r(r10); moveCR2(c, size, a, size, &r, 11); callR(c, size, &r); } else { callC(c, size, a); } } void jumpR(Context* c, unsigned size UNUSED, Assembler::Register* a) { assert(c, size == BytesPerWord); maybeRex(c, 4, a); opcode(c, 0xff, 0xe0 + regCode(a)); } void jumpC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); unconditional(c, 0xe9, a); } void jumpM(Context* c, unsigned size UNUSED, Assembler::Memory* a) { assert(c, size == BytesPerWord); maybeRex(c, 4, a); opcode(c, 0xff); modrmSibImm(c, rsp, a->scale, a->index, a->base, a->offset); } void jumpIfEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x84, a); } void jumpIfNotEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x85, a); } void jumpIfGreaterC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x8f, a); } void jumpIfGreaterOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x8d, a); } void jumpIfLessC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x8c, a); } void jumpIfLessOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x8e, a); } void jumpIfFloatUnorderedC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x8a, a); } void jumpIfFloatGreaterC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x87, a); } void jumpIfFloatGreaterOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x83, a); } void jumpIfFloatLessC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x82, a); } void jumpIfFloatLessOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); conditional(c, 0x86, a); } void longJumpC(Context* c, unsigned size, Assembler::Constant* a) { assert(c, size == BytesPerWord); if (BytesPerWord == 8) { Assembler::Register r(r10); moveCR2(c, size, a, size, &r, 11); jumpR(c, size, &r); } else { jumpC(c, size, a); } } void callR(Context* c, unsigned size UNUSED, Assembler::Register* a) { assert(c, size == BytesPerWord); //maybeRex.W has no meaning here so we disable it maybeRex(c, 4, a); opcode(c, 0xff, 0xd0 + regCode(a)); } void callM(Context* c, unsigned size UNUSED, Assembler::Memory* a) { assert(c, size == BytesPerWord); maybeRex(c, 4, a); opcode(c, 0xff); modrmSibImm(c, rdx, a->scale, a->index, a->base, a->offset); } void alignedCallC(Context* c, unsigned size, Assembler::Constant* a) { new (c->zone->allocate(sizeof(AlignmentPadding))) AlignmentPadding(c); callC(c, size, a); } void alignedJumpC(Context* c, unsigned size, Assembler::Constant* a) { new (c->zone->allocate(sizeof(AlignmentPadding))) AlignmentPadding(c); jumpC(c, size, a); } void pushR(Context* c, unsigned size, Assembler::Register* a) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->high); pushR(c, 4, &ah); pushR(c, 4, a); } else { maybeRex(c, 4, a); opcode(c, 0x50 + regCode(a)); } } void moveRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b); void popR(Context* c, unsigned size, Assembler::Register* a) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->high); popR(c, 4, a); popR(c, 4, &ah); } else { maybeRex(c, 4, a); opcode(c, 0x58 + regCode(a)); if (BytesPerWord == 8 and size == 4) { moveRR(c, 4, a, 8, a); } } } void popM(Context* c, unsigned size, Assembler::Memory* a) { if (BytesPerWord == 4 and size == 8) { Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale); popM(c, 4, a); popM(c, 4, &ah); } else { assert(c, BytesPerWord == 4 or size == 8); opcode(c, 0x8f); modrmSibImm(c, 0, a->scale, a->index, a->base, a->offset); } } void addCarryCR(Context* c, unsigned size, Assembler::Constant* a, Assembler::Register* b); void negateR(Context* c, unsigned size, Assembler::Register* a) { if (BytesPerWord == 4 and size == 8) { assert(c, a->low == rax and a->high == rdx); ResolvedPromise zeroPromise(0); Assembler::Constant zero(&zeroPromise); Assembler::Register ah(a->high); negateR(c, 4, a); addCarryCR(c, 4, &zero, &ah); negateR(c, 4, &ah); } else { maybeRex(c, size, a); opcode(c, 0xf7, 0xd8 + regCode(a)); } } void negateRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b UNUSED) { assert(c, aSize == bSize); negateR(c, aSize, a); } void moveCR2(Context* c, UNUSED unsigned aSize, Assembler::Constant* a, UNUSED unsigned bSize, Assembler::Register* b, unsigned promiseOffset) { if (BytesPerWord == 4 and bSize == 8) { int64_t v = a->value->value(); ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); moveCR(c, 4, &al, 4, b); moveCR(c, 4, &ah, 4, &bh); } else { maybeRex(c, BytesPerWord, b); opcode(c, 0xb8 + regCode(b)); if (a->value->resolved()) { c->code.appendAddress(a->value->value()); } else { appendImmediateTask (c, a->value, offset(c), BytesPerWord, promiseOffset); c->code.appendAddress(static_cast(0)); } } } inline bool floatReg(Assembler::Register* a) { return a->low >= xmm0; } void sseMoveRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { if(floatReg(a) && floatReg(b)) { if(aSize == 4) { opcode(c, 0xf3); maybeRex(c, 4, a, b); opcode(c, 0x0f, 0x10); modrm(c, 0xc0, b, a); } else { opcode(c, 0xf2); maybeRex(c, 4, a, b); opcode(c, 0x0f, 0x10); modrm(c, 0xc0, b, a); } } else if(floatReg(a)) { opcode(c, 0x66); maybeRex(c, aSize, a, b); opcode(c, 0x0f, 0x7e); modrm(c, 0xc0, b, a); } else { opcode(c, 0x66); maybeRex(c, aSize, b, a); opcode(c, 0x0f, 0x6e); modrm(c, 0xc0, a, b); } } void sseMoveCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize <= BytesPerWord); Assembler::Register tmp(c->client->acquireTemporary(GeneralRegisterMask)); moveCR2(c, aSize, a, aSize, &tmp, 0); sseMoveRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } void moveCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { if (floatReg(b)) { sseMoveCR(c, aSize, a, bSize, b); } else { moveCR2(c, aSize, a, bSize, b, 0); } } void swapRR(Context* c, unsigned aSize UNUSED, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); assert(c, aSize == BytesPerWord); alwaysRex(c, aSize, a, b); opcode(c, 0x87); modrm(c, 0xc0, b, a); } void moveRR(Context* c, unsigned aSize, Assembler::Register* a, UNUSED unsigned bSize, Assembler::Register* b) { if(floatReg(a) or floatReg(b)) { sseMoveRR(c, aSize, a, bSize, b); return; } if (BytesPerWord == 4 and aSize == 8 and bSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); if (a->high == b->low) { if (a->low == b->high) { swapRR(c, 4, a, 4, b); } else { moveRR(c, 4, &ah, 4, &bh); moveRR(c, 4, a, 4, b); } } else { moveRR(c, 4, a, 4, b); moveRR(c, 4, &ah, 4, &bh); } } else { switch (aSize) { case 1: if (BytesPerWord == 4 and a->low > rbx) { assert(c, b->low <= rbx); moveRR(c, BytesPerWord, a, BytesPerWord, b); moveRR(c, 1, b, BytesPerWord, b); } else { alwaysRex(c, aSize, b, a); opcode(c, 0x0f, 0xbe); modrm(c, 0xc0, a, b); } break; case 2: alwaysRex(c, aSize, b, a); opcode(c, 0x0f, 0xbf); modrm(c, 0xc0, a, b); break; case 4: if (bSize == 8) { if (BytesPerWord == 8) { alwaysRex(c, bSize, b, a); opcode(c, 0x63); modrm(c, 0xc0, a, b); } else { if (a->low == rax and b->low == rax and b->high == rdx) { opcode(c, 0x99); //cdq } else { assert(c, b->low == rax and b->high == rdx); moveRR(c, 4, a, 4, b); moveRR(c, 4, b, 8, b); } } } else { if (a->low != b->low) { alwaysRex(c, aSize, a, b); opcode(c, 0x89); modrm(c, 0xc0, b, a); } } break; case 8: if (a->low != b->low){ maybeRex(c, aSize, a, b); opcode(c, 0x89); modrm(c, 0xc0, b, a); } break; } } } void sseMoveMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { opcode(c, 0xf3); opcode(c, 0x0f, 0x7e); modrmSibImm(c, b, a); } else { opcode(c, 0x66); maybeRex(c, aSize, b, a); opcode(c, 0x0f, 0x6e); modrmSibImm(c, b, a); } } void moveMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize, Assembler::Register* b) { if(floatReg(b)) { sseMoveMR(c, aSize, a, bSize, b); return; } switch (aSize) { case 1: maybeRex(c, bSize, b, a); opcode(c, 0x0f, 0xbe); modrmSibImm(c, b, a); break; case 2: maybeRex(c, bSize, b, a); opcode(c, 0x0f, 0xbf); modrmSibImm(c, b, a); break; case 4: if (BytesPerWord == 8) { maybeRex(c, bSize, b, a); opcode(c, 0x63); modrmSibImm(c, b, a); } else { if (bSize == 8) { assert(c, b->low == rax and b->high == rdx); moveMR(c, 4, a, 4, b); moveRR(c, 4, b, 8, b); } else { maybeRex(c, bSize, b, a); opcode(c, 0x8b); modrmSibImm(c, b, a); } } break; case 8: if (BytesPerWord == 4 and bSize == 8) { Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale); Assembler::Register bh(b->high); moveMR(c, 4, a, 4, b); moveMR(c, 4, &ah, 4, &bh); } else { maybeRex(c, bSize, b, a); opcode(c, 0x8b); modrmSibImm(c, b, a); } break; default: abort(c); } } void sseMoveRM(Context* c, unsigned aSize, Assembler::Register* a, UNUSED unsigned bSize, Assembler::Memory* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { opcode(c, 0x66); opcode(c, 0x0f, 0xd6); modrmSibImm(c, a, b); } else { opcode(c, 0x66); maybeRex(c, aSize, a, b); opcode(c, 0x0f, 0x7e); modrmSibImm(c, a, b); } } void moveRM(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Memory* b) { assert(c, aSize == bSize); if(floatReg(a)) { sseMoveRM(c, aSize, a, bSize, b); return; } switch (aSize) { case 1: maybeRex(c, bSize, a, b); opcode(c, 0x88); modrmSibImm(c, a, b); break; case 2: opcode(c, 0x66); maybeRex(c, bSize, a, b); opcode(c, 0x89); modrmSibImm(c, a, b); break; case 4: if (BytesPerWord == 8) { maybeRex(c, bSize, a, b); opcode(c, 0x89); modrmSibImm(c, a, b); break; } else { opcode(c, 0x89); modrmSibImm(c, a, b); } break; case 8: if(BytesPerWord == 8) { maybeRex(c, bSize, a, b); opcode(c, 0x89); modrmSibImm(c, a, b); } else { Assembler::Register ah(a->high); Assembler::Memory bh(b->base, b->offset + 4, b->index, b->scale); moveRM(c, 4, a, 4, b); moveRM(c, 4, &ah, 4, &bh); } break; default: abort(c); } } void moveAR(Context* c, unsigned aSize, Assembler::Address* a, unsigned bSize, Assembler::Register* b) { assert(c, BytesPerWord == 8 or (aSize == 4 and bSize == 4)); Assembler::Constant constant(a->address); Assembler::Memory memory(b->low, 0, -1, 0); moveCR(c, aSize, &constant, bSize, b); moveMR(c, bSize, &memory, bSize, b); } ShiftMaskPromise* shiftMaskPromise(Context* c, Promise* base, unsigned shift, int64_t mask) { return new (c->zone->allocate(sizeof(ShiftMaskPromise))) ShiftMaskPromise(base, shift, mask); } void moveCM(Context* c, unsigned aSize UNUSED, Assembler::Constant* a, unsigned bSize, Assembler::Memory* b) { switch (bSize) { case 1: maybeRex(c, bSize, b); opcode(c, 0xc6); modrmSibImm(c, 0, b->scale, b->index, b->base, b->offset); c->code.append(a->value->value()); break; case 2: opcode(c, 0x66); maybeRex(c, bSize, b); opcode(c, 0xc7); modrmSibImm(c, 0, b->scale, b->index, b->base, b->offset); c->code.append2(a->value->value()); break; case 4: maybeRex(c, bSize, b); opcode(c, 0xc7); modrmSibImm(c, 0, b->scale, b->index, b->base, b->offset); if (a->value->resolved()) { c->code.append4(a->value->value()); } else { appendImmediateTask(c, a->value, offset(c), 4); c->code.append4(0); } break; case 8: { if (BytesPerWord == 8) { if(a->value->resolved() and isInt32(a->value->value())) { maybeRex(c, bSize, b); opcode(c, 0xc7); modrmSibImm(c, 0, b->scale, b->index, b->base, b->offset); c->code.append4(a->value->value()); } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, 8, a, 8, &tmp); moveRM(c, 8, &tmp, 8, b); c->client->releaseTemporary(tmp.low); } } else { Assembler::Constant ah(shiftMaskPromise(c, a->value, 32, 0xFFFFFFFF)); Assembler::Constant al(shiftMaskPromise(c, a->value, 0, 0xFFFFFFFF)); Assembler::Memory bh(b->base, b->offset + 4, b->index, b->scale); moveCM(c, 4, &al, 4, b); moveCM(c, 4, &ah, 4, &bh); } } break; default: abort(c); } } void moveZRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { switch (aSize) { case 2: alwaysRex(c, aSize, b, a); opcode(c, 0x0f, 0xb7); modrm(c, 0xc0, a, b); break; default: abort(c); } } void moveZMR(Context* c, unsigned aSize UNUSED, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, bSize == BytesPerWord); assert(c, aSize == 2); maybeRex(c, bSize, b, a); opcode(c, 0x0f, 0xb7); modrmSibImm(c, b->low, a->scale, a->index, a->base, a->offset); } void addCarryRR(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { assert(c, BytesPerWord == 8 or size == 4); maybeRex(c, size, a, b); opcode(c, 0x11); modrm(c, 0xc0, b, a); } void addRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); addRR(c, 4, a, 4, b); addCarryRR(c, 4, &ah, &bh); } else { maybeRex(c, aSize, a, b); opcode(c, 0x01); modrm(c, 0xc0, b, a); } } void addCarryCR(Context* c, unsigned size UNUSED, Assembler::Constant* a, Assembler::Register* b) { int64_t v = a->value->value(); if (isInt8(v)) { maybeRex(c, size, b); opcode(c, 0x83, 0xd0 + regCode(b)); c->code.append(v); } else { abort(c); } } void addCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); int64_t v = a->value->value(); if (v) { if (BytesPerWord == 4 and bSize == 8) { ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); addCR(c, 4, &al, 4, b); addCarryCR(c, 4, &ah, &bh); } else { if (isInt32(v)) { maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xc0 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xc0 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); addRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } } void subtractBorrowCR(Context* c, unsigned size UNUSED, Assembler::Constant* a, Assembler::Register* b) { assert(c, BytesPerWord == 8 or size == 4); int64_t v = a->value->value(); if (isInt8(v)) { opcode(c, 0x83, 0xd8 + regCode(b)); c->code.append(v); } else { abort(c); } } void subtractRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b); void subtractCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); int64_t v = a->value->value(); if (v) { if (BytesPerWord == 4 and bSize == 8) { ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); subtractCR(c, 4, &al, 4, b); subtractBorrowCR(c, 4, &ah, &bh); } else { if (isInt32(v)) { maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xe8 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xe8 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); subtractRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } } void subtractBorrowRR(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { assert(c, BytesPerWord == 8 or size == 4); maybeRex(c, size, a, b); opcode(c, 0x19); modrm(c, 0xc0, b, a); } void subtractRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); subtractRR(c, 4, a, 4, b); subtractBorrowRR(c, 4, &ah, &bh); } else { maybeRex(c, aSize, a, b); opcode(c, 0x29); modrm(c, 0xc0, b, a); } } void andRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); andRR(c, 4, a, 4, b); andRR(c, 4, &ah, 4, &bh); } else { maybeRex(c, aSize, a, b); opcode(c, 0x21); modrm(c, 0xc0, b, a); } } void andCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); int64_t v = a->value->value(); if (BytesPerWord == 4 and bSize == 8) { ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); andCR(c, 4, &al, 4, b); andCR(c, 4, &ah, 4, &bh); } else { if (isInt32(v)) { maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xe0 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xe0 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); andRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } void orRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); orRR(c, 4, a, 4, b); orRR(c, 4, &ah, 4, &bh); } else { maybeRex(c, aSize, a, b); opcode(c, 0x09); modrm(c, 0xc0, b, a); } } void orCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); int64_t v = a->value->value(); if (v) { if (BytesPerWord == 4 and bSize == 8) { ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); orCR(c, 4, &al, 4, b); orCR(c, 4, &ah, 4, &bh); } else { if (isInt32(v)) { maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xc8 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xc8 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); orRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } } void xorRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { if (BytesPerWord == 4 and aSize == 8) { Assembler::Register ah(a->high); Assembler::Register bh(b->high); xorRR(c, 4, a, 4, b); xorRR(c, 4, &ah, 4, &bh); } else { maybeRex(c, aSize, a, b); opcode(c, 0x31); modrm(c, 0xc0, b, a); } } void xorCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); int64_t v = a->value->value(); if (v) { if (BytesPerWord == 4 and bSize == 8) { ResolvedPromise high((v >> 32) & 0xFFFFFFFF); Assembler::Constant ah(&high); ResolvedPromise low(v & 0xFFFFFFFF); Assembler::Constant al(&low); Assembler::Register bh(b->high); xorCR(c, 4, &al, 4, b); xorCR(c, 4, &ah, 4, &bh); } else { if (isInt32(v)) { maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xf0 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xf0 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); xorRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } } void multiplyRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { assert(c, b->high == rdx); assert(c, b->low != rax); assert(c, a->low != rax); assert(c, a->high != rax); c->client->save(rax); Assembler::Register axdx(rax, rdx); Assembler::Register ah(a->high); Assembler::Register bh(b->high); moveRR(c, 4, b, 4, &axdx); multiplyRR(c, 4, &ah, 4, b); multiplyRR(c, 4, a, 4, &bh); addRR(c, 4, &bh, 4, b); // mul a->low,%eax%edx opcode(c, 0xf7, 0xe0 + a->low); addRR(c, 4, b, 4, &bh); moveRR(c, 4, &axdx, 4, b); } else { maybeRex(c, aSize, b, a); opcode(c, 0x0f, 0xaf); modrm(c, 0xc0, a, b); } } void compareRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); maybeRex(c, aSize, a, b); opcode(c, 0x39); modrm(c, 0xc0, b, a); } void compareCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); assert(c, BytesPerWord == 8 or aSize == 4); if (a->value->resolved() and isInt32(a->value->value())) { int64_t v = a->value->value(); maybeRex(c, aSize, b); if (isInt8(v)) { opcode(c, 0x83, 0xf8 + regCode(b)); c->code.append(v); } else { opcode(c, 0x81, 0xf8 + regCode(b)); c->code.append4(v); } } else { Assembler::Register tmp(c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); compareRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } void multiplyCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { assert(c, aSize == bSize); if (BytesPerWord == 4 and aSize == 8) { const uint32_t mask = GeneralRegisterMask & ~((1 << rax) | (1 << rdx)); Assembler::Register tmp(c->client->acquireTemporary(mask), c->client->acquireTemporary(mask)); moveCR(c, aSize, a, aSize, &tmp); multiplyRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); c->client->releaseTemporary(tmp.high); } else { int64_t v = a->value->value(); if (v != 1) { if (isInt32(v)) { maybeRex(c, bSize, b, b); if (isInt8(v)) { opcode(c, 0x6b); modrm(c, 0xc0, b, b); c->code.append(v); } else { opcode(c, 0x69); modrm(c, 0xc0, b, b); c->code.append4(v); } } else { Assembler::Register tmp (c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, aSize, &tmp); multiplyRR(c, aSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } } } void compareRM(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Memory* b) { assert(c, aSize == bSize); assert(c, BytesPerWord == 8 or aSize == 4); if (BytesPerWord == 8 and aSize == 4) { moveRR(c, 4, a, 8, a); } maybeRex(c, bSize, a, b); opcode(c, 0x39); modrmSibImm(c, a, b); } void compareCM(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Memory* b) { assert(c, aSize == bSize); assert(c, BytesPerWord == 8 or aSize == 4); if (a->value->resolved()) { int64_t v = a->value->value(); maybeRex(c, aSize, b); opcode(c, isInt8(v) ? 0x83 : 0x81); modrmSibImm(c, rdi, b->scale, b->index, b->base, b->offset); if (isInt8(v)) { c->code.append(v); } else if (isInt32(v)) { c->code.append4(v); } else { abort(c); } } else { Assembler::Register tmp(c->client->acquireTemporary(GeneralRegisterMask)); moveCR(c, aSize, a, bSize, &tmp); compareRM(c, bSize, &tmp, bSize, b); c->client->releaseTemporary(tmp.low); } } void longCompare(Context* c, Assembler::Operand* al, UNUSED Assembler::Operand* ah, Assembler::Register* bl, UNUSED Assembler::Operand* bh, BinaryOperationType compare) { ResolvedPromise negativePromise(-1); Assembler::Constant negative(&negativePromise); ResolvedPromise zeroPromise(0); Assembler::Constant zero(&zeroPromise); ResolvedPromise positivePromise(1); Assembler::Constant positive(&positivePromise); if (BytesPerWord == 8) { compare(c, 8, al, 8, bl); opcode(c, 0x0f, 0x8c); // jl unsigned less = c->code.length(); c->code.append4(0); opcode(c, 0x0f, 0x8f); // jg unsigned greater = c->code.length(); c->code.append4(0); moveCR(c, 4, &zero, 4, bl); opcode(c, 0xe9); // jmp unsigned nextFirst = c->code.length(); c->code.append4(0); int32_t lessOffset = c->code.length() - less - 4; c->code.set(less, &lessOffset, 4); moveCR(c, 4, &negative, 4, bl); opcode(c, 0xe9); // jmp unsigned nextSecond = c->code.length(); c->code.append4(0); int32_t greaterOffset = c->code.length() - greater - 4; c->code.set(greater, &greaterOffset, 4); moveCR(c, 4, &positive, 4, bl); int32_t nextFirstOffset = c->code.length() - nextFirst - 4; c->code.set(nextFirst, &nextFirstOffset, 4); int32_t nextSecondOffset = c->code.length() - nextSecond - 4; c->code.set(nextSecond, &nextSecondOffset, 4); } else { compare(c, 4, ah, 4, bh); opcode(c, 0x0f, 0x8c); //jl unsigned less = c->code.length(); c->code.append4(0); opcode(c, 0x0f, 0x8f); //jg unsigned greater = c->code.length(); c->code.append4(0); compare(c, 4, al, 4, bl); opcode(c, 0x0f, 0x82); //ja unsigned above = c->code.length(); c->code.append4(0); opcode(c, 0x0f, 0x87); //jb unsigned below = c->code.length(); c->code.append4(0); moveCR(c, 4, &zero, 4, bl); c->code.append(0xe9); // jmp unsigned nextFirst = c->code.length(); c->code.append4(0); int32_t lessOffset = c->code.length() - less - 4; c->code.set(less, &lessOffset, 4); int32_t aboveOffset = c->code.length() - above - 4; c->code.set(above, &aboveOffset, 4); moveCR(c, 4, &negative, 4, bl); opcode(c, 0xe9); // jmp unsigned nextSecond = c->code.length(); c->code.append4(0); int32_t greaterOffset = c->code.length() - greater - 4; c->code.set(greater, &greaterOffset, 4); int32_t belowOffset = c->code.length() - below - 4; c->code.set(below, &belowOffset, 4); moveCR(c, 4, &positive, 4, bl); int32_t nextFirstOffset = c->code.length() - nextFirst - 4; c->code.set(nextFirst, &nextFirstOffset, 4); int32_t nextSecondOffset = c->code.length() - nextSecond - 4; c->code.set(nextSecond, &nextSecondOffset, 4); } } void divideRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b UNUSED) { assert(c, aSize == bSize); assert(c, b->low == rax); assert(c, a->low != rdx); c->client->save(rdx); maybeRex(c, aSize, a, b); opcode(c, 0x99); // cdq maybeRex(c, aSize, b, a); opcode(c, 0xf7, 0xf8 + regCode(a)); } void remainderRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == bSize); assert(c, b->low == rax); assert(c, a->low != rdx); c->client->save(rdx); maybeRex(c, aSize, a, b); opcode(c, 0x99); // cdq maybeRex(c, aSize, b, a); opcode(c, 0xf7, 0xf8 + regCode(a)); Assembler::Register dx(rdx); moveRR(c, BytesPerWord, &dx, BytesPerWord, b); } void longCompareCR(Context* c, unsigned aSize UNUSED, Assembler::Constant* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == 8); assert(c, bSize == 8); int64_t v = a->value->value(); ResolvedPromise low(v & ~static_cast(0)); Assembler::Constant al(&low); ResolvedPromise high((v >> 32) & ~static_cast(0)); Assembler::Constant ah(&high); Assembler::Register bh(b->high); longCompare(c, &al, &ah, b, &bh, CAST2(compareCR)); } void longCompareRR(Context* c, unsigned aSize UNUSED, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, aSize == 8); assert(c, bSize == 8); Assembler::Register ah(a->high); Assembler::Register bh(b->high); longCompare(c, a, &ah, b, &bh, CAST2(compareRR)); } void doShift(Context* c, UNUSED void (*shift) (Context*, unsigned, Assembler::Register*, unsigned, Assembler::Register*), int type, UNUSED unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { int64_t v = a->value->value(); if (BytesPerWord == 4 and bSize == 8) { c->client->save(rcx); Assembler::Register cx(rcx); moveCR(c, 4, a, 4, &cx); shift(c, aSize, &cx, bSize, b); } else { maybeRex(c, bSize, b); if (v == 1) { opcode(c, 0xd1, type + regCode(b)); } else if (isInt8(v)) { opcode(c, 0xc1, type + regCode(b)); c->code.append(v); } else { abort(c); } } } void shiftLeftRR(Context* c, UNUSED unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b) { assert(c, a->low == rcx); if (BytesPerWord == 4 and bSize == 8) { // shld opcode(c, 0x0f, 0xa5); modrm(c, 0xc0, b->high, b->low); // shl opcode(c, 0xd3, 0xe0 + b->low); ResolvedPromise promise(32); Assembler::Constant constant(&promise); compareCR(c, aSize, &constant, aSize, a); opcode(c, 0x0f, 0x8c); //jl c->code.append4(2 + 2); Assembler::Register bh(b->high); moveRR(c, 4, b, 4, &bh); // 2 bytes xorRR(c, 4, b, 4, b); // 2 bytes } else { maybeRex(c, bSize, a, b); opcode(c, 0xd3, 0xe0 + regCode(b)); } } void shiftLeftCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { doShift(c, shiftLeftRR, 0xe0, aSize, a, bSize, b); } void shiftRightRR(Context* c, UNUSED unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b) { assert(c, a->low == rcx); if (BytesPerWord == 4 and bSize == 8) { // shrd opcode(c, 0x0f, 0xad); modrm(c, 0xc0, b->low, b->high); // sar opcode(c, 0xd3, 0xf8 + b->high); ResolvedPromise promise(32); Assembler::Constant constant(&promise); compareCR(c, aSize, &constant, aSize, a); opcode(c, 0x0f, 0x8c); //jl c->code.append4(2 + 3); Assembler::Register bh(b->high); moveRR(c, 4, &bh, 4, b); // 2 bytes // sar 31,high opcode(c, 0xc1, 0xf8 + b->high); c->code.append(31); } else { maybeRex(c, bSize, a, b); opcode(c, 0xd3, 0xf8 + regCode(b)); } } void shiftRightCR(Context* c, unsigned aSize, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { doShift(c, shiftRightRR, 0xf8, aSize, a, bSize, b); } void unsignedShiftRightRR(Context* c, UNUSED unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b) { assert(c, a->low == rcx); if (BytesPerWord == 4 and bSize == 8) { // shrd opcode(c, 0x0f, 0xad); modrm(c, 0xc0, b->low, b->high); // shr opcode(c, 0xd3, 0xe8 + b->high); ResolvedPromise promise(32); Assembler::Constant constant(&promise); compareCR(c, aSize, &constant, aSize, a); opcode(c, 0x0f, 0x8c); //jl c->code.append4(2 + 2); Assembler::Register bh(b->high); moveRR(c, 4, &bh, 4, b); // 2 bytes xorRR(c, 4, &bh, 4, &bh); // 2 bytes } else { maybeRex(c, bSize, a, b); opcode(c, 0xd3, 0xe8 + regCode(b)); } } void unsignedShiftRightCR(Context* c, unsigned aSize UNUSED, Assembler::Constant* a, unsigned bSize, Assembler::Register* b) { doShift(c, unsignedShiftRightRR, 0xe8, aSize, a, bSize, b); } inline void floatRegOp(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b, uint8_t op, uint8_t mod = 0xc0) { if(aSize == 4) { opcode(c, 0xf3); } else { opcode(c, 0xf2); } maybeRex(c, bSize, a, b); opcode(c, 0x0f, op); modrm(c, mod, a, b); } inline void floatMemOp(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b, uint8_t op) { if(aSize == 4) { opcode(c, 0xf3); } else { opcode(c, 0xf2); } maybeRex(c, bSize, b, a); opcode(c, 0x0f, op); modrmSibImm(c, b, a); } void floatSqrtRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { floatRegOp(c, aSize, a, 4, b, 0x51); } void floatSqrtMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { floatMemOp(c, aSize, a, 4, b, 0x51); } void floatAddRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { floatRegOp(c, aSize, a, 4, b, 0x58); } void floatAddMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { floatMemOp(c, aSize, a, 4, b, 0x58); } void floatSubtractRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { floatRegOp(c, aSize, a, 4, b, 0x5c); } void floatSubtractMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { floatMemOp(c, aSize, a, 4, b, 0x5c); } void floatMultiplyRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { floatRegOp(c, aSize, a, 4, b, 0x59); } void floatMultiplyMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { floatMemOp(c, aSize, a, 4, b, 0x59); } void floatDivideRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { floatRegOp(c, aSize, a, 4, b, 0x5e); } void floatDivideMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { floatMemOp(c, aSize, a, 4, b, 0x5e); } void float2FloatRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, supportsSSE2()); floatRegOp(c, aSize, a, 4, b, 0x5a); } void float2FloatMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, supportsSSE2()); floatMemOp(c, aSize, a, 4, b, 0x5a); } void float2IntRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b) { assert(c, !floatReg(b)); floatRegOp(c, aSize, a, bSize, b, 0x2d); } void float2IntMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize, Assembler::Register* b) { floatMemOp(c, aSize, a, bSize, b, 0x2d); } void int2FloatRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize, Assembler::Register* b) { floatRegOp(c, bSize, a, aSize, b, 0x2a); } void int2FloatMR(Context* c, unsigned aSize, Assembler::Memory* a, unsigned bSize, Assembler::Register* b) { floatMemOp(c, bSize, a, aSize, b, 0x2a); } void floatCompareRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { if (aSize == 8) { opcode(c, 0x66); } maybeRex(c, 4, a, b); opcode(c, 0x0f, 0x2e); modrm(c, 0xc0, a, b); } void floatNegateRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, floatReg(a) and floatReg(b)); // unlike most of the other floating point code, this does NOT // support doubles: assert(c, aSize == 4); ResolvedPromise pcon(0x80000000); Assembler::Constant con(&pcon); if(a->low == b->low) { Assembler::Register tmp(c->client->acquireTemporary(FloatRegisterMask)); moveCR(c, 4, &con, 4, &tmp); maybeRex(c, 4, a, &tmp); opcode(c, 0x0f, 0x57); modrm(c, 0xc0, &tmp, a); c->client->releaseTemporary(tmp.low); } else { moveCR(c, 4, &con, 4, b); if(aSize == 8) opcode(c, 0x66); maybeRex(c, 4, a, b); opcode(c, 0x0f, 0x57); modrm(c, 0xc0, a, b); } } void floatAbsRR(Context* c, unsigned aSize UNUSED, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b) { assert(c, floatReg(a) and floatReg(b)); // unlike most of the other floating point code, this does NOT // support doubles: assert(c, aSize == 4); ResolvedPromise pcon(0x7fffffff); Assembler::Constant con(&pcon); if(a->low == b->low) { Assembler::Register tmp(c->client->acquireTemporary(FloatRegisterMask)); moveCR(c, 4, &con, 4, &tmp); maybeRex(c, 4, a, &tmp); opcode(c, 0x0f, 0x54); modrm(c, 0xc0, &tmp, a); c->client->releaseTemporary(tmp.low); } else { moveCR(c, 4, &con, 4, b); maybeRex(c, 4, a, b); opcode(c, 0x0f, 0x54); modrm(c, 0xc0, a, b); } } void absRR(Context* c, unsigned aSize, Assembler::Register* a, unsigned bSize UNUSED, Assembler::Register* b UNUSED) { assert(c, aSize == bSize and a->low == rax and b->low == rax); Assembler::Register d(c->client->acquireTemporary(static_cast(1) << rdx)); maybeRex(c, aSize, a, b); opcode(c, 0x99); xorRR(c, aSize, &d, aSize, a); subtractRR(c, aSize, &d, aSize, a); c->client->releaseTemporary(rdx); } void populateTables(ArchitectureContext* c) { const OperandType C = ConstantOperand; const OperandType A = AddressOperand; const OperandType R = RegisterOperand; const OperandType M = MemoryOperand; OperationType* zo = c->operations; UnaryOperationType* uo = c->unaryOperations; BinaryOperationType* bo = c->binaryOperations; zo[Return] = return_; zo[LoadBarrier] = ignore; zo[StoreStoreBarrier] = ignore; zo[StoreLoadBarrier] = ignore; uo[index(Call, C)] = CAST1(callC); uo[index(Call, R)] = CAST1(callR); uo[index(Call, M)] = CAST1(callM); uo[index(AlignedCall, C)] = CAST1(alignedCallC); uo[index(LongCall, C)] = CAST1(longCallC); uo[index(Jump, R)] = CAST1(jumpR); uo[index(Jump, C)] = CAST1(jumpC); uo[index(Jump, M)] = CAST1(jumpM); uo[index(AlignedJump, C)] = CAST1(alignedJumpC); uo[index(JumpIfEqual, C)] = CAST1(jumpIfEqualC); uo[index(JumpIfNotEqual, C)] = CAST1(jumpIfNotEqualC); uo[index(JumpIfGreater, C)] = CAST1(jumpIfGreaterC); uo[index(JumpIfGreaterOrEqual, C)] = CAST1(jumpIfGreaterOrEqualC); uo[index(JumpIfLess, C)] = CAST1(jumpIfLessC); uo[index(JumpIfLessOrEqual, C)] = CAST1(jumpIfLessOrEqualC); uo[index(JumpIfFloatUnordered, C)] = CAST1(jumpIfFloatUnorderedC); uo[index(JumpIfFloatEqual, C)] = CAST1(jumpIfEqualC); uo[index(JumpIfFloatNotEqual, C)] = CAST1(jumpIfNotEqualC); uo[index(JumpIfFloatGreater, C)] = CAST1(jumpIfFloatGreaterC); uo[index(JumpIfFloatGreaterOrEqual, C)] = CAST1(jumpIfFloatGreaterOrEqualC); uo[index(JumpIfFloatLess, C)] = CAST1(jumpIfFloatLessC); uo[index(JumpIfFloatLessOrEqual, C)] = CAST1(jumpIfFloatLessOrEqualC); uo[index(LongJump, C)] = CAST1(longJumpC); bo[index(Negate, R, R)] = CAST2(negateRR); bo[index(FloatNegate, R, R)] = CAST2(floatNegateRR); bo[index(Move, R, R)] = CAST2(moveRR); bo[index(Move, C, R)] = CAST2(moveCR); bo[index(Move, M, R)] = CAST2(moveMR); bo[index(Move, R, M)] = CAST2(moveRM); bo[index(Move, C, M)] = CAST2(moveCM); bo[index(Move, A, R)] = CAST2(moveAR); bo[index(FloatSqrt, R, R)] = CAST2(floatSqrtRR); bo[index(FloatSqrt, M, R)] = CAST2(floatSqrtMR); bo[index(MoveZ, R, R)] = CAST2(moveZRR); bo[index(MoveZ, M, R)] = CAST2(moveZMR); bo[index(Compare, R, R)] = CAST2(compareRR); bo[index(Compare, C, R)] = CAST2(compareCR); bo[index(Compare, C, M)] = CAST2(compareCM); bo[index(Compare, R, M)] = CAST2(compareRM); bo[index(FloatCompare, R, R)] = CAST2(floatCompareRR); bo[index(Add, R, R)] = CAST2(addRR); bo[index(Add, C, R)] = CAST2(addCR); bo[index(Subtract, C, R)] = CAST2(subtractCR); bo[index(Subtract, R, R)] = CAST2(subtractRR); bo[index(FloatAdd, R, R)] = CAST2(floatAddRR); bo[index(FloatAdd, M, R)] = CAST2(floatAddMR); bo[index(FloatSubtract, R, R)] = CAST2(floatSubtractRR); bo[index(FloatSubtract, M, R)] = CAST2(floatSubtractMR); bo[index(And, R, R)] = CAST2(andRR); bo[index(And, C, R)] = CAST2(andCR); bo[index(Or, R, R)] = CAST2(orRR); bo[index(Or, C, R)] = CAST2(orCR); bo[index(Xor, R, R)] = CAST2(xorRR); bo[index(Xor, C, R)] = CAST2(xorCR); bo[index(Multiply, R, R)] = CAST2(multiplyRR); bo[index(Multiply, C, R)] = CAST2(multiplyCR); bo[index(Divide, R, R)] = CAST2(divideRR); bo[index(FloatMultiply, R, R)] = CAST2(floatMultiplyRR); bo[index(FloatMultiply, M, R)] = CAST2(floatMultiplyMR); bo[index(FloatDivide, R, R)] = CAST2(floatDivideRR); bo[index(FloatDivide, M, R)] = CAST2(floatDivideMR); bo[index(Remainder, R, R)] = CAST2(remainderRR); bo[index(LongCompare, C, R)] = CAST2(longCompareCR); bo[index(LongCompare, R, R)] = CAST2(longCompareRR); bo[index(ShiftLeft, R, R)] = CAST2(shiftLeftRR); bo[index(ShiftLeft, C, R)] = CAST2(shiftLeftCR); bo[index(ShiftRight, R, R)] = CAST2(shiftRightRR); bo[index(ShiftRight, C, R)] = CAST2(shiftRightCR); bo[index(UnsignedShiftRight, R, R)] = CAST2(unsignedShiftRightRR); bo[index(UnsignedShiftRight, C, R)] = CAST2(unsignedShiftRightCR); bo[index(Float2Float, R, R)] = CAST2(float2FloatRR); bo[index(Float2Float, M, R)] = CAST2(float2FloatMR); bo[index(Float2Int, R, R)] = CAST2(float2IntRR); bo[index(Float2Int, M, R)] = CAST2(float2IntMR); bo[index(Int2Float, R, R)] = CAST2(int2FloatRR); bo[index(Int2Float, M, R)] = CAST2(int2FloatMR); bo[index(Abs, R, R)] = CAST2(absRR); bo[index(FloatAbs, R, R)] = CAST2(floatAbsRR); } class MyArchitecture: public Assembler::Architecture { public: MyArchitecture(System* system): c(system), referenceCount(0) { populateTables(&c); } virtual unsigned floatRegisterSize() { if (supportsSSE()) { return 8; } else { return 0; } } virtual uint32_t generalRegisterMask() { return GeneralRegisterMask; } virtual uint32_t floatRegisterMask() { return supportsSSE() ? FloatRegisterMask : 0; } virtual int stack() { return rsp; } virtual int thread() { return rbx; } virtual int returnLow() { return rax; } virtual int returnHigh() { return (BytesPerWord == 4 ? rdx : NoRegister); } virtual int virtualCallTarget() { return rax; } virtual int virtualCallIndex() { return rdx; } virtual bool bigEndian() { return false; } virtual unsigned registerSize(ValueType type) { switch (type) { case ValueGeneral: return BytesPerWord; case ValueFloat: return 8; default: abort(&c); } } virtual bool reserved(int register_) { switch (register_) { case rbp: case rsp: case rbx: return true; default: return false; } } virtual unsigned frameFootprint(unsigned footprint) { #ifdef PLATFORM_WINDOWS return max(footprint, StackAlignmentInWords); #else return max(footprint > argumentRegisterCount() ? footprint - argumentRegisterCount() : 0, StackAlignmentInWords); #endif } virtual unsigned argumentFootprint(unsigned footprint) { return max(pad(footprint, StackAlignmentInWords), StackAlignmentInWords); } virtual unsigned argumentRegisterCount() { #ifdef PLATFORM_WINDOWS if (BytesPerWord == 8) return 4; else #else if (BytesPerWord == 8) return 6; else #endif return 0; } virtual int argumentRegister(unsigned index) { assert(&c, BytesPerWord == 8); switch (index) { #ifdef PLATFORM_WINDOWS case 0: return rcx; case 1: return rdx; case 2: return r8; case 3: return r9; #else case 0: return rdi; case 1: return rsi; case 2: return rdx; case 3: return rcx; case 4: return r8; case 5: return r9; #endif default: abort(&c); } } virtual unsigned stackAlignmentInWords() { return StackAlignmentInWords; } virtual bool matchCall(void* returnAddress, void* target) { uint8_t* instruction = static_cast(returnAddress) - 5; int32_t actualOffset; memcpy(&actualOffset, instruction + 1, 4); void* actualTarget = static_cast(returnAddress) + actualOffset; return *instruction == 0xE8 and actualTarget == target; } virtual void updateCall(UnaryOperation op, bool assertAlignment UNUSED, void* returnAddress, void* newTarget) { if (BytesPerWord == 4 or op == Call or op == Jump) { uint8_t* instruction = static_cast(returnAddress) - 5; assert(&c, ((op == Call or op == LongCall) and *instruction == 0xE8) or ((op == Jump or op == LongJump) and *instruction == 0xE9)); assert(&c, (not assertAlignment) or reinterpret_cast(instruction + 1) % 4 == 0); int32_t v = static_cast(newTarget) - static_cast(returnAddress); memcpy(instruction + 1, &v, 4); } else { uint8_t* instruction = static_cast(returnAddress) - 13; assert(&c, instruction[0] == 0x49 and instruction[1] == 0xBA); assert(&c, instruction[10] == 0x41 and instruction[11] == 0xFF); assert(&c, (op == LongCall and instruction[12] == 0xD2) or (op == LongJump and instruction[12] == 0xE2)); assert(&c, (not assertAlignment) or reinterpret_cast(instruction + 2) % 8 == 0); memcpy(instruction + 2, &newTarget, 8); } } virtual uintptr_t getConstant(const void* src) { uintptr_t v; memcpy(&v, src, BytesPerWord); return v; } virtual void setConstant(void* dst, uintptr_t constant) { memcpy(dst, &constant, BytesPerWord); } virtual unsigned alignFrameSize(unsigned sizeInWords) { return pad(sizeInWords + FrameHeaderSize, StackAlignmentInWords) - FrameHeaderSize; } virtual void* frameIp(void* stack) { return stack ? *static_cast(stack) : 0; } virtual unsigned frameHeaderSize() { return FrameHeaderSize; } virtual unsigned frameReturnAddressSize() { return 1; } virtual unsigned frameFooterSize() { return 0; } virtual bool supportsFloatCompare(unsigned) { return supportsSSE(); } virtual bool alwaysCondensed(BinaryOperation op) { switch(op) { case FloatCompare: case Compare: case Float2Float: case Float2Int: case Int2Float: case FloatAbs: case FloatNegate: case FloatSqrt: return false; case Negate: case Abs: default: return true; } } virtual bool alwaysCondensed(TernaryOperation) { return true; } virtual int returnAddressOffset() { return 0; } virtual int framePointerOffset() { return -1; } virtual void nextFrame(void** stack, void** base) { assert(&c, *static_cast(*base) != *base); *stack = static_cast(*base) + 1; *base = *static_cast(*base); } virtual void plan (UnaryOperation, unsigned, uint8_t* aTypeMask, uint64_t* aRegisterMask, bool* thunk) { *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand) | (1 << ConstantOperand); *aRegisterMask = ~static_cast(0); *thunk = false; } virtual BinaryOperation binaryIntrinsic(const char* className, const char* methodName, const char* parameterSpec) { if (strcmp(className, "java/lang/Math") == 0) { if (supportsSSE() and strcmp(methodName, "sqrt") == 0 and strcmp(parameterSpec, "(D)D") == 0) { return FloatSqrt; } else if (strcmp(methodName, "abs")) { if (strcmp(parameterSpec, "(I)I") == 0 or strcmp(parameterSpec, "(J)J") == 0) { return Abs; } else if (supportsSSE() and supportsSSE2() and strcmp(parameterSpec, "(F)F") == 0) { return FloatAbs; } } } return NoBinaryOperation; } virtual TernaryOperation ternaryIntrinsic(const char* className UNUSED, const char* methodName UNUSED, const char* parameterSpec UNUSED) { return NoTernaryOperation; } virtual void planSource (BinaryOperation op, unsigned aSize, uint8_t* aTypeMask, uint64_t* aRegisterMask, unsigned bSize, bool* thunk) { *aTypeMask = ~0; *aRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); *thunk = false; switch (op) { case Compare: *aTypeMask = (1 << RegisterOperand) | (1 << ConstantOperand); *aRegisterMask = GeneralRegisterMask; break; case FloatCompare: assert(&c, supportsSSE()); *aTypeMask = (1 << RegisterOperand); *aRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; break; case Negate: *aTypeMask = (1 << RegisterOperand); *aRegisterMask = (static_cast(1) << (rdx + 32)) | (static_cast(1) << rax); break; case Abs: *aTypeMask = (1 << RegisterOperand); *aRegisterMask = (static_cast(1) << rax); break; case FloatAbs: *aTypeMask = (1 << RegisterOperand); *aRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; break; case FloatNegate: // floatNegateRR does not support doubles if (supportsSSE() and aSize == 4 and bSize == 4) { *aTypeMask = (1 << RegisterOperand); *aRegisterMask = FloatRegisterMask; } else { *thunk = true; } break; case FloatSqrt: *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); *aRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; break; case Float2Float: if (supportsSSE() and supportsSSE2()) { *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); *aRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; } else { *thunk = true; } break; case Float2Int: if (supportsSSE() and (bSize <= BytesPerWord)) { *aTypeMask = (1 << RegisterOperand); *aRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; } else { *thunk = true; } break; case Int2Float: if (supportsSSE()) { *aTypeMask = (1 << RegisterOperand); *aRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); } else { *thunk = true; } break; case Move: *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); *aRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); if (BytesPerWord == 4) { if (aSize == 4 and bSize == 8) { *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); const uint32_t mask = GeneralRegisterMask & ~((1 << rax) | (1 << rdx)); *aRegisterMask = (static_cast(mask) << 32) | mask; } else if (aSize == 1 or bSize == 1) { *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); const uint32_t mask = (1 << rax) | (1 << rcx) | (1 << rdx) | (1 << rbx); *aRegisterMask = (static_cast(mask) << 32) | mask; } } break; default: break; } } virtual void planDestination (BinaryOperation op, unsigned aSize, uint8_t aTypeMask, uint64_t aRegisterMask, unsigned bSize, uint8_t* bTypeMask, uint64_t* bRegisterMask) { *bTypeMask = ~0; *bRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); switch (op) { case Compare: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = GeneralRegisterMask; break; case FloatCompare: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; break; case Abs: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = (static_cast(1) << rax); break; case FloatAbs: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = aRegisterMask; break; case Negate: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = aRegisterMask; break; case FloatNegate: case FloatSqrt: case Float2Float: case Int2Float: *bTypeMask = (1 << RegisterOperand); *bRegisterMask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; break; case Float2Int: *bTypeMask = (1 << RegisterOperand); break; case Move: if (aTypeMask & ((1 << MemoryOperand) | 1 << AddressOperand)) { *bTypeMask = (1 << RegisterOperand); *bRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32) | FloatRegisterMask; } else if (aTypeMask & (1 << RegisterOperand)) { *bTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); if (aRegisterMask & FloatRegisterMask) { *bRegisterMask = FloatRegisterMask; } else { *bRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); } } else { *bTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); } if (BytesPerWord == 4) { if (aSize == 4 and bSize == 8) { *bRegisterMask = (static_cast(1) << (rdx + 32)) | (static_cast(1) << rax); } else if (aSize == 1 or bSize == 1) { const uint32_t mask = (1 << rax) | (1 << rcx) | (1 << rdx) | (1 << rbx); *bRegisterMask = (static_cast(mask) << 32) | mask; } } break; default: break; } } virtual void planMove (uint8_t srcTypeMask, uint64_t srcRegisterMask, uint8_t dstTypeMask, uint64_t dstRegisterMask, uint8_t* tmpTypeMask, uint64_t* tmpRegisterMask) { *tmpTypeMask = srcTypeMask; *tmpRegisterMask = srcRegisterMask; if ((dstTypeMask & (1 << MemoryOperand)) and (srcTypeMask & ((1 << MemoryOperand) | 1 << AddressOperand))) { // can't move directly from memory to memory *tmpTypeMask = (1 << RegisterOperand); *tmpRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); } else if (dstTypeMask & (1 << RegisterOperand)) { if (srcTypeMask & (1 << RegisterOperand)) { if (((dstRegisterMask & FloatRegisterMask) == 0) xor ((srcRegisterMask & FloatRegisterMask) == 0)) { // can't move directly from FPR to GPR or vice-versa *tmpTypeMask = (1 << MemoryOperand); *tmpRegisterMask = 0; } } else if ((dstRegisterMask & FloatRegisterMask) and (srcTypeMask & (1 << ConstantOperand))) { // can't move directly from constant to FPR *tmpTypeMask = (1 << MemoryOperand); *tmpRegisterMask = 0; } } } virtual void planSource (TernaryOperation op, unsigned aSize, uint8_t *aTypeMask, uint64_t *aRegisterMask, unsigned, uint8_t* bTypeMask, uint64_t* bRegisterMask, unsigned, bool* thunk) { *aTypeMask = (1 << RegisterOperand) | (1 << ConstantOperand); *aRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); *bTypeMask = (1 << RegisterOperand); *bRegisterMask = GeneralRegisterMask | (static_cast(GeneralRegisterMask) << 32); *thunk = false; switch (op) { case FloatAdd: case FloatSubtract: case FloatMultiply: case FloatDivide: if (supportsSSE()) { *aTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand); *bTypeMask = (1 << RegisterOperand); const uint64_t mask = (static_cast(FloatRegisterMask) << 32) | FloatRegisterMask; *aRegisterMask = mask; *bRegisterMask = mask; } else { *thunk = true; } break; case Multiply: if (BytesPerWord == 4 and aSize == 8) { const uint32_t mask = GeneralRegisterMask & ~((1 << rax) | (1 << rdx)); *aRegisterMask = (static_cast(mask) << 32) | mask; *bRegisterMask = (static_cast(1) << (rdx + 32)) | mask; } else { *aRegisterMask = GeneralRegisterMask; *bRegisterMask = GeneralRegisterMask; } break; case Divide: if (BytesPerWord == 4 and aSize == 8) { *thunk = true; } else { *aTypeMask = (1 << RegisterOperand); *aRegisterMask = GeneralRegisterMask & ~((1 << rax) | (1 << rdx)); *bRegisterMask = 1 << rax; } break; case Remainder: if (BytesPerWord == 4 and aSize == 8) { *bTypeMask = ~0; *thunk = true; } else { *aTypeMask = (1 << RegisterOperand); *aRegisterMask = GeneralRegisterMask & ~((1 << rax) | (1 << rdx)); *bRegisterMask = 1 << rax; } break; case ShiftLeft: case ShiftRight: case UnsignedShiftRight: { *aRegisterMask = (static_cast(GeneralRegisterMask) << 32) | (static_cast(1) << rcx); const uint32_t mask = GeneralRegisterMask & ~(1 << rcx); *bRegisterMask = (static_cast(mask) << 32) | mask; } break; default: break; } } virtual void planDestination (TernaryOperation, unsigned, uint8_t, uint64_t, unsigned, uint8_t, uint64_t bRegisterMask, unsigned, uint8_t* cTypeMask, uint64_t* cRegisterMask) { *cTypeMask = (1 << RegisterOperand); *cRegisterMask = bRegisterMask; } virtual void acquire() { ++ referenceCount; } virtual void release() { if (-- referenceCount == 0) { c.s->free(this); } } ArchitectureContext c; unsigned referenceCount; }; class MyAssembler: public Assembler { public: MyAssembler(System* s, Allocator* a, Zone* zone, MyArchitecture* arch): c(s, a, zone), arch_(arch) { } virtual void setClient(Client* client) { assert(&c, c.client == 0); c.client = client; } virtual Architecture* arch() { return arch_; } virtual void saveFrame(unsigned stackOffset, unsigned baseOffset) { Register stack(rsp); Memory stackDst(rbx, stackOffset); apply(Move, BytesPerWord, RegisterOperand, &stack, BytesPerWord, MemoryOperand, &stackDst); Register base(rbp); Memory baseDst(rbx, baseOffset); apply(Move, BytesPerWord, RegisterOperand, &base, BytesPerWord, MemoryOperand, &baseDst); } virtual void pushFrame(unsigned argumentCount, ...) { struct Argument { unsigned size; OperandType type; Operand* operand; }; RUNTIME_ARRAY(Argument, arguments, argumentCount); va_list a; va_start(a, argumentCount); unsigned footprint = 0; for (unsigned i = 0; i < argumentCount; ++i) { RUNTIME_ARRAY_BODY(arguments)[i].size = va_arg(a, unsigned); RUNTIME_ARRAY_BODY(arguments)[i].type = static_cast(va_arg(a, int)); RUNTIME_ARRAY_BODY(arguments)[i].operand = va_arg(a, Operand*); footprint += ceiling (RUNTIME_ARRAY_BODY(arguments)[i].size, BytesPerWord); } va_end(a); allocateFrame(arch_->alignFrameSize(footprint)); unsigned offset = 0; for (unsigned i = 0; i < argumentCount; ++i) { if (i < arch_->argumentRegisterCount()) { Register dst(arch_->argumentRegister(i)); apply(Move, RUNTIME_ARRAY_BODY(arguments)[i].size, RUNTIME_ARRAY_BODY(arguments)[i].type, RUNTIME_ARRAY_BODY(arguments)[i].operand, pad(RUNTIME_ARRAY_BODY(arguments)[i].size), RegisterOperand, &dst); } else { Memory dst(rsp, offset * BytesPerWord); apply(Move, RUNTIME_ARRAY_BODY(arguments)[i].size, RUNTIME_ARRAY_BODY(arguments)[i].type, RUNTIME_ARRAY_BODY(arguments)[i].operand, pad(RUNTIME_ARRAY_BODY(arguments)[i].size), MemoryOperand, &dst); offset += ceiling(RUNTIME_ARRAY_BODY(arguments)[i].size, BytesPerWord); } } } virtual void allocateFrame(unsigned footprint) { Register base(rbp); pushR(&c, BytesPerWord, &base); Register stack(rsp); apply(Move, BytesPerWord, RegisterOperand, &stack, BytesPerWord, RegisterOperand, &base); Constant footprintConstant(resolved(&c, footprint * BytesPerWord)); apply(Subtract, BytesPerWord, ConstantOperand, &footprintConstant, BytesPerWord, RegisterOperand, &stack, BytesPerWord, RegisterOperand, &stack); } virtual void adjustFrame(unsigned footprint) { Register stack(rsp); Constant footprintConstant(resolved(&c, footprint * BytesPerWord)); apply(Subtract, BytesPerWord, ConstantOperand, &footprintConstant, BytesPerWord, RegisterOperand, &stack, BytesPerWord, RegisterOperand, &stack); } virtual void popFrame() { Register base(rbp); Register stack(rsp); apply(Move, BytesPerWord, RegisterOperand, &base, BytesPerWord, RegisterOperand, &stack); popR(&c, BytesPerWord, &base); } virtual void popFrameForTailCall(unsigned footprint, int offset, int returnAddressSurrogate, int framePointerSurrogate) { if (TailCalls) { if (offset) { Register tmp(c.client->acquireTemporary()); Memory returnAddressSrc(rsp, (footprint + 1) * BytesPerWord); moveMR(&c, BytesPerWord, &returnAddressSrc, BytesPerWord, &tmp); Memory returnAddressDst(rsp, (footprint - offset + 1) * BytesPerWord); moveRM(&c, BytesPerWord, &tmp, BytesPerWord, &returnAddressDst); c.client->releaseTemporary(tmp.low); Memory baseSrc(rsp, footprint * BytesPerWord); Register base(rbp); moveMR(&c, BytesPerWord, &baseSrc, BytesPerWord, &base); Register stack(rsp); Constant footprintConstant (resolved(&c, (footprint - offset + 1) * BytesPerWord)); addCR(&c, BytesPerWord, &footprintConstant, BytesPerWord, &stack); if (returnAddressSurrogate != NoRegister) { assert(&c, offset > 0); Register ras(returnAddressSurrogate); Memory dst(rsp, offset * BytesPerWord); moveRM(&c, BytesPerWord, &ras, BytesPerWord, &dst); } if (framePointerSurrogate != NoRegister) { assert(&c, offset > 0); Register fps(framePointerSurrogate); Memory dst(rsp, (offset - 1) * BytesPerWord); moveRM(&c, BytesPerWord, &fps, BytesPerWord, &dst); } } else { popFrame(); } } else { abort(&c); } } virtual void popFrameAndPopArgumentsAndReturn(unsigned argumentFootprint) { popFrame(); assert(&c, argumentFootprint >= StackAlignmentInWords); assert(&c, (argumentFootprint % StackAlignmentInWords) == 0); if (TailCalls and argumentFootprint > StackAlignmentInWords) { Register returnAddress(rcx); popR(&c, BytesPerWord, &returnAddress); Register stack(rsp); Constant adjustment (resolved(&c, (argumentFootprint - StackAlignmentInWords) * BytesPerWord)); addCR(&c, BytesPerWord, &adjustment, BytesPerWord, &stack); jumpR(&c, BytesPerWord, &returnAddress); } else { return_(&c); } } virtual void popFrameAndUpdateStackAndReturn(unsigned stackOffsetFromThread) { popFrame(); Register returnAddress(rcx); popR(&c, BytesPerWord, &returnAddress); Register stack(rsp); Memory stackSrc(rbx, stackOffsetFromThread); moveMR(&c, BytesPerWord, &stackSrc, BytesPerWord, &stack); jumpR(&c, BytesPerWord, &returnAddress); } virtual void apply(Operation op) { arch_->c.operations[op](&c); } virtual void apply(UnaryOperation op, unsigned aSize, OperandType aType, Operand* aOperand) { arch_->c.unaryOperations[index(op, aType)](&c, aSize, aOperand); } virtual void apply(BinaryOperation op, unsigned aSize, OperandType aType, Operand* aOperand, unsigned bSize, OperandType bType, Operand* bOperand) { arch_->c.binaryOperations[index(op, aType, bType)] (&c, aSize, aOperand, bSize, bOperand); } virtual void apply(TernaryOperation op, unsigned aSize, OperandType aType, Operand* aOperand, unsigned bSize, OperandType bType, Operand* bOperand, unsigned cSize UNUSED, OperandType cType UNUSED, Operand*) { assert(&c, bSize == cSize); assert(&c, bType == cType); arch_->c.binaryOperations[index(op, aType, bType)] (&c, aSize, aOperand, bSize, bOperand); } virtual void writeTo(uint8_t* dst) { c.result = dst; for (MyBlock* b = c.firstBlock; b; b = b->next) { unsigned index = 0; unsigned padding = 0; for (AlignmentPadding* p = b->firstPadding; p; p = p->next) { unsigned size = p->offset - b->offset - index; memcpy(dst + b->start + index + padding, c.code.data + b->offset + index, size); index += size; while ((b->start + index + padding + 1) % 4) { *(dst + b->start + index + padding) = 0x90; ++ padding; } } memcpy(dst + b->start + index + padding, c.code.data + b->offset + index, b->size - index); } for (Task* t = c.tasks; t; t = t->next) { t->run(&c); } } virtual Promise* offset() { return local::offset(&c); } virtual Block* endBlock(bool startNew) { MyBlock* b = c.lastBlock; b->size = c.code.length() - b->offset; if (startNew) { c.lastBlock = new (c.zone->allocate(sizeof(MyBlock))) MyBlock(c.code.length()); } else { c.lastBlock = 0; } return b; } virtual unsigned length() { return c.code.length(); } virtual void dispose() { c.code.dispose(); } Context c; MyArchitecture* arch_; }; } // namespace local } // namespace namespace vm { Assembler::Architecture* makeArchitecture(System* system) { return new (allocate(system, sizeof(local::MyArchitecture))) local::MyArchitecture(system); } Assembler* makeAssembler(System* system, Allocator* allocator, Zone* zone, Assembler::Architecture* architecture) { return new (zone->allocate(sizeof(local::MyAssembler))) local::MyAssembler(system, allocator, zone, static_cast(architecture)); } } // namespace vm