/* Copyright (c) 2008-2009, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "jnienv.h" #include "machine.h" #include "util.h" #include "stream.h" #include "constants.h" #include "processor.h" #include "arch.h" using namespace vm; namespace { const unsigned NoByte = 0xFFFF; #ifdef USE_ATOMIC_OPERATIONS void atomicIncrement(uint32_t* p, int v) { for (uint32_t old = *p; not atomicCompareAndSwap32(p, old, old + v); old = *p) { } } #endif bool find(Thread* t, Thread* o) { return (t == o) or (t->peer and find(t->peer, o)) or (t->child and find(t->child, o)); } void join(Thread* t, Thread* o) { if (t != o) { if (acquireSystem(t, o)) { o->systemThread->join(); releaseSystem(t, o); } o->state = Thread::JoinedState; } } unsigned count(Thread* t, Thread* o) { unsigned c = 0; if (t != o) ++ c; if (t->peer) c += count(t->peer, o); if (t->child) c += count(t->child, o); return c; } Thread** fill(Thread* t, Thread* o, Thread** array) { if (t != o) *(array++) = t; if (t->peer) array = fill(t->peer, o, array); if (t->child) array = fill(t->child, o, array); return array; } void dispose(Thread* t, Thread* o, bool remove) { if (remove) { #ifndef NDEBUG expect(t, find(t->m->rootThread, o)); unsigned c = count(t->m->rootThread, o); RUNTIME_ARRAY(Thread*, threads, c); fill(t->m->rootThread, o, RUNTIME_ARRAY_BODY(threads)); #endif if (o->parent) { Thread* previous = 0; for (Thread* p = o->parent->child; p;) { if (p == o) { if (p == o->parent->child) { o->parent->child = p->peer; } else { previous->peer = p->peer; } break; } else { previous = p; p = p->peer; } } for (Thread* p = o->child; p;) { Thread* next = p->peer; p->peer = o->parent->child; o->parent->child = p; p->parent = o->parent; p = next; } } else if (o->child) { t->m->rootThread = o->child; for (Thread* p = o->peer; p;) { Thread* next = p->peer; p->peer = t->m->rootThread; t->m->rootThread = p; p = next; } } else if (o->peer) { t->m->rootThread = o->peer; } else { abort(t); } #ifndef NDEBUG expect(t, not find(t->m->rootThread, o)); for (unsigned i = 0; i < c; ++i) { expect(t, find(t->m->rootThread, RUNTIME_ARRAY_BODY(threads)[i])); } #endif } o->dispose(); } void joinAll(Thread* m, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; joinAll(m, child); } join(m, o); } void disposeAll(Thread* m, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; disposeAll(m, child); } dispose(m, o, false); } void turnOffTheLights(Thread* t) { expect(t, t->m->liveCount == 1); joinAll(t, t->m->rootThread); enter(t, Thread::ExitState); { object p = 0; PROTECT(t, p); for (p = t->m->finalizers; p;) { object f = p; p = finalizerNext(t, p); void (*function)(Thread*, object); memcpy(&function, &finalizerFinalize(t, f), BytesPerWord); if (function) { function(t, finalizerTarget(t, f)); } } for (p = t->m->tenuredFinalizers; p;) { object f = p; p = finalizerNext(t, p); void (*function)(Thread*, object); memcpy(&function, &finalizerFinalize(t, f), BytesPerWord); if (function) { function(t, finalizerTarget(t, f)); } } } if (root(t, Machine::VirtualFiles)) { for (unsigned i = 0; i < arrayLength(t, root(t, Machine::VirtualFiles)); ++i) { object region = arrayBody(t, root(t, Machine::VirtualFiles), i); if (region) { static_cast(regionRegion(t, region))->dispose(); } } } for (object p = root(t, Machine::VirtualFileFinders); p; p = finderNext(t, p)) { static_cast(finderFinder(t, p))->dispose(); } Machine* m = t->m; disposeAll(t, t->m->rootThread); System* s = m->system; Heap* h = m->heap; Processor* p = m->processor; Classpath* c = m->classpath; Finder* bf = m->bootFinder; Finder* af = m->appFinder; c->dispose(); m->dispose(); h->disposeFixies(); p->dispose(); bf->dispose(); af->dispose(); h->dispose(); s->dispose(); } void killZombies(Thread* t, Thread* o) { for (Thread* p = o->child; p;) { Thread* child = p; p = p->peer; killZombies(t, child); } switch (o->state) { case Thread::ZombieState: join(t, o); // fall through case Thread::JoinedState: dispose(t, o, true); default: break; } } unsigned footprint(Thread* t) { unsigned n = t->heapOffset + t->heapIndex + t->backupHeapIndex; for (Thread* c = t->child; c; c = c->peer) { n += footprint(c); } return n; } void visitRoots(Thread* t, Heap::Visitor* v) { if (t->state != Thread::ZombieState) { v->visit(&(t->javaThread)); v->visit(&(t->exception)); t->m->processor->visitObjects(t, v); for (Thread::Protector* p = t->protector; p; p = p->next) { p->visit(v); } } for (Thread* c = t->child; c; c = c->peer) { visitRoots(c, v); } } bool walk(Thread*, Heap::Walker* w, uint32_t* mask, unsigned fixedSize, unsigned arrayElementSize, unsigned arrayLength, unsigned start) { unsigned fixedSizeInWords = ceiling(fixedSize, BytesPerWord); unsigned arrayElementSizeInWords = ceiling(arrayElementSize, BytesPerWord); for (unsigned i = start; i < fixedSizeInWords; ++i) { if (mask[i / 32] & (static_cast(1) << (i % 32))) { if (not w->visit(i)) { return false; } } } bool arrayObjectElements = false; for (unsigned j = 0; j < arrayElementSizeInWords; ++j) { unsigned k = fixedSizeInWords + j; if (mask[k / 32] & (static_cast(1) << (k % 32))) { arrayObjectElements = true; break; } } if (arrayObjectElements) { unsigned arrayStart; unsigned elementStart; if (start > fixedSizeInWords) { unsigned s = start - fixedSizeInWords; arrayStart = s / arrayElementSizeInWords; elementStart = s % arrayElementSizeInWords; } else { arrayStart = 0; elementStart = 0; } for (unsigned i = arrayStart; i < arrayLength; ++i) { for (unsigned j = elementStart; j < arrayElementSizeInWords; ++j) { unsigned k = fixedSizeInWords + j; if (mask[k / 32] & (static_cast(1) << (k % 32))) { if (not w->visit (fixedSizeInWords + (i * arrayElementSizeInWords) + j)) { return false; } } } } } return true; } object findInInterfaces(Thread* t, object class_, object name, object spec, object (*find)(Thread*, object, object, object)) { object result = 0; if (classInterfaceTable(t, class_)) { for (unsigned i = 0; i < arrayLength(t, classInterfaceTable(t, class_)) and result == 0; i += 2) { result = find (t, arrayBody(t, classInterfaceTable(t, class_), i), name, spec); } } return result; } void finalizerTargetUnreachable(Thread* t, Heap::Visitor* v, object* p) { v->visit(&finalizerTarget(t, *p)); object finalizer = *p; *p = finalizerNext(t, finalizer); finalizerNext(t, finalizer) = t->m->finalizeQueue; t->m->finalizeQueue = finalizer; } void referenceTargetUnreachable(Thread* t, Heap::Visitor* v, object* p) { if (DebugReferences) { fprintf(stderr, "target %p unreachable for reference %p\n", jreferenceTarget(t, *p), *p); } v->visit(p); jreferenceTarget(t, *p) = 0; if (jreferenceQueue(t, *p) and t->m->heap->status(jreferenceQueue(t, *p)) != Heap::Unreachable) { // queue is reachable - add the reference v->visit(&jreferenceQueue(t, *p)); object q = jreferenceQueue(t, *p); if (referenceQueueFront(t, q)) { set(t, *p, JreferenceJNext, referenceQueueFront(t, q)); } else { set(t, *p, JreferenceJNext, *p); } set(t, q, ReferenceQueueFront, *p); jreferenceQueue(t, *p) = 0; } *p = jreferenceVmNext(t, *p); } void referenceUnreachable(Thread* t, Heap::Visitor* v, object* p) { object r = static_cast(t->m->heap->follow(*p)); if (DebugReferences) { fprintf(stderr, "reference %p unreachable (target %p)\n", *p, jreferenceTarget(t, r)); } if (jreferenceQueue(t, r) and t->m->heap->status(jreferenceQueue(t, r)) != Heap::Unreachable) { // queue is reachable - add the reference referenceTargetUnreachable(t, v, p); } else { *p = jreferenceVmNext(t, *p); } } void referenceTargetReachable(Thread* t, Heap::Visitor* v, object* p) { if (DebugReferences) { fprintf(stderr, "target %p reachable for reference %p\n", jreferenceTarget(t, *p), *p); } v->visit(p); v->visit(&jreferenceTarget(t, *p)); if (t->m->heap->status(jreferenceQueue(t, *p)) == Heap::Unreachable) { jreferenceQueue(t, *p) = 0; } else { v->visit(&jreferenceQueue(t, *p)); } } void postVisit(Thread* t, Heap::Visitor* v) { Machine* m = t->m; bool major = m->heap->collectionType() == Heap::MajorCollection; assert(t, m->finalizeQueue == 0); object firstNewTenuredFinalizer = 0; object lastNewTenuredFinalizer = 0; for (object* p = &(m->finalizers); *p;) { v->visit(p); if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - queue it up for finalization finalizerTargetUnreachable(t, v, p); } else { // target is reachable v->visit(&finalizerTarget(t, *p)); if (m->heap->status(*p) == Heap::Tenured) { // the finalizer is tenured, so we remove it from // m->finalizers and later add it to m->tenuredFinalizers if (lastNewTenuredFinalizer == 0) { lastNewTenuredFinalizer = *p; } object finalizer = *p; *p = finalizerNext(t, finalizer); finalizerNext(t, finalizer) = firstNewTenuredFinalizer; firstNewTenuredFinalizer = finalizer; } else { p = &finalizerNext(t, *p); } } } object firstNewTenuredWeakReference = 0; object lastNewTenuredWeakReference = 0; for (object* p = &(m->weakReferences); *p;) { if (m->heap->status(*p) == Heap::Unreachable) { // reference is unreachable referenceUnreachable(t, v, p); } else if (m->heap->status (jreferenceTarget (t, static_cast(m->heap->follow(*p)))) == Heap::Unreachable) { // target is unreachable referenceTargetUnreachable(t, v, p); } else { // both reference and target are reachable referenceTargetReachable(t, v, p); if (m->heap->status(*p) == Heap::Tenured) { // the reference is tenured, so we remove it from // m->weakReferences and later add it to // m->tenuredWeakReferences if (lastNewTenuredWeakReference == 0) { lastNewTenuredWeakReference = *p; } object reference = *p; *p = jreferenceVmNext(t, reference); jreferenceVmNext(t, reference) = firstNewTenuredWeakReference; firstNewTenuredWeakReference = reference; } else { p = &jreferenceVmNext(t, *p); } } } if (major) { for (object* p = &(m->tenuredFinalizers); *p;) { v->visit(p); if (m->heap->status(finalizerTarget(t, *p)) == Heap::Unreachable) { // target is unreachable - queue it up for finalization finalizerTargetUnreachable(t, v, p); } else { // target is reachable v->visit(&finalizerTarget(t, *p)); p = &finalizerNext(t, *p); } } for (object* p = &(m->tenuredWeakReferences); *p;) { if (m->heap->status(*p) == Heap::Unreachable) { // reference is unreachable referenceUnreachable(t, v, p); } else if (m->heap->status (jreferenceTarget (t, static_cast(m->heap->follow(*p)))) == Heap::Unreachable) { // target is unreachable referenceTargetUnreachable(t, v, p); } else { // both reference and target are reachable referenceTargetReachable(t, v, p); p = &jreferenceVmNext(t, *p); } } } if (lastNewTenuredFinalizer) { finalizerNext(t, lastNewTenuredFinalizer) = m->tenuredFinalizers; m->tenuredFinalizers = firstNewTenuredFinalizer; } if (lastNewTenuredWeakReference) { jreferenceVmNext(t, lastNewTenuredWeakReference) = m->tenuredWeakReferences; m->tenuredWeakReferences = firstNewTenuredWeakReference; } } void postCollect(Thread* t) { #ifdef VM_STRESS t->m->heap->free(t->defaultHeap, ThreadHeapSizeInBytes); t->defaultHeap = static_cast (t->m->heap->allocate(ThreadHeapSizeInBytes)); memset(t->defaultHeap, 0, ThreadHeapSizeInBytes); #endif if (t->heap == t->defaultHeap) { memset(t->defaultHeap, 0, t->heapIndex * BytesPerWord); } else { memset(t->defaultHeap, 0, ThreadHeapSizeInBytes); t->heap = t->defaultHeap; } t->heapOffset = 0; t->heapIndex = 0; if (t->flags & Thread::UseBackupHeapFlag) { memset(t->backupHeap, 0, ThreadBackupHeapSizeInBytes); t->flags &= ~Thread::UseBackupHeapFlag; t->backupHeapIndex = 0; } for (Thread* c = t->child; c; c = c->peer) { postCollect(c); } } void finalizeObject(Thread* t, object o) { for (object c = objectClass(t, o); c; c = classSuper(t, c)) { for (unsigned i = 0; i < arrayLength(t, classMethodTable(t, c)); ++i) { object m = arrayBody(t, classMethodTable(t, c), i); if (vm::strcmp(reinterpret_cast("finalize"), &byteArrayBody(t, methodName(t, m), 0)) == 0 and vm::strcmp(reinterpret_cast("()V"), &byteArrayBody(t, methodSpec(t, m), 0)) == 0) { t->m->processor->invoke(t, m, o); t->exception = 0; return; } } } abort(t); } object makeByteArray(Thread* t, const char* format, va_list a) { const int Size = 256; char buffer[Size]; int r = vm::vsnprintf(buffer, Size - 1, format, a); expect(t, r >= 0 and r < Size - 1); object s = makeByteArray(t, strlen(buffer) + 1); memcpy(&byteArrayBody(t, s, 0), buffer, byteArrayLength(t, s)); return s; } unsigned readByte(Stream& s, unsigned* value) { if (*value == NoByte) { return s.read1(); } else { unsigned r = *value; *value = NoByte; return r; } } object parseUtf8NonAscii(Thread* t, Stream& s, object bytesSoFar, unsigned byteCount, unsigned sourceIndex, unsigned byteA, unsigned byteB) { PROTECT(t, bytesSoFar); unsigned length = byteArrayLength(t, bytesSoFar) - 1; object value = makeCharArray(t, length + 1); unsigned vi = 0; for (; vi < byteCount; ++vi) { charArrayBody(t, value, vi) = byteArrayBody(t, bytesSoFar, vi); } for (unsigned si = sourceIndex; si < length; ++si) { unsigned a = readByte(s, &byteA); if (a & 0x80) { if (a & 0x20) { // 3 bytes si += 2; assert(t, si < length); unsigned b = readByte(s, &byteB); unsigned c = s.read1(); charArrayBody(t, value, vi++) = ((a & 0xf) << 12) | ((b & 0x3f) << 6) | (c & 0x3f); } else { // 2 bytes ++ si; assert(t, si < length); unsigned b = readByte(s, &byteB); if (a == 0xC0 and b == 0x80) { charArrayBody(t, value, vi++) = 0; } else { charArrayBody(t, value, vi++) = ((a & 0x1f) << 6) | (b & 0x3f); } } } else { charArrayBody(t, value, vi++) = a; } } if (vi < length) { PROTECT(t, value); object v = makeCharArray(t, vi + 1); memcpy(&charArrayBody(t, v, 0), &charArrayBody(t, value, 0), vi * 2); value = v; } charArrayBody(t, value, vi) = 0; return value; } object parseUtf8(Thread* t, Stream& s, unsigned length) { object value = makeByteArray(t, length + 1); unsigned vi = 0; for (unsigned si = 0; si < length; ++si) { unsigned a = s.read1(); if (a & 0x80) { if (a & 0x20) { // 3 bytes return parseUtf8NonAscii(t, s, value, vi, si, a, NoByte); } else { // 2 bytes unsigned b = s.read1(); if (a == 0xC0 and b == 0x80) { ++ si; assert(t, si < length); byteArrayBody(t, value, vi++) = 0; } else { return parseUtf8NonAscii(t, s, value, vi, si, a, b); } } } else { byteArrayBody(t, value, vi++) = a; } } if (vi < length) { PROTECT(t, value); object v = makeByteArray(t, vi + 1); memcpy(&byteArrayBody(t, v, 0), &byteArrayBody(t, value, 0), vi); value = v; } byteArrayBody(t, value, vi) = 0; return value; } void removeByteArray(Thread* t, object o) { hashMapRemove (t, root(t, Machine::ByteArrayMap), o, byteArrayHash, objectEqual); } object internByteArray(Thread* t, object array) { PROTECT(t, array); ACQUIRE(t, t->m->referenceLock); object n = hashMapFindNode (t, root(t, Machine::ByteArrayMap), array, byteArrayHash, byteArrayEqual); if (n) { return jreferenceTarget(t, tripleFirst(t, n)); } else { hashMapInsert(t, root(t, Machine::ByteArrayMap), array, 0, byteArrayHash); addFinalizer(t, array, removeByteArray); return array; } } unsigned parsePoolEntry(Thread* t, Stream& s, uint32_t* index, object pool, unsigned i) { PROTECT(t, pool); s.setPosition(index[i]); switch (s.read1()) { case CONSTANT_Integer: case CONSTANT_Float: { singletonValue(t, pool, i) = s.read4(); } return 1; case CONSTANT_Long: case CONSTANT_Double: { uint64_t v = s.read8(); memcpy(&singletonValue(t, pool, i), &v, 8); } return 2; case CONSTANT_Utf8: { if (singletonObject(t, pool, i) == 0) { object value = parseUtf8(t, s, s.read2()); if (objectClass(t, value) == type(t, Machine::ByteArrayType)) { value = internByteArray(t, value); } set(t, pool, SingletonBody + (i * BytesPerWord), value); } } return 1; case CONSTANT_Class: { if (singletonObject(t, pool, i) == 0) { unsigned si = s.read2() - 1; parsePoolEntry(t, s, index, pool, si); object value = makeReference(t, 0, singletonObject(t, pool, si), 0); set(t, pool, SingletonBody + (i * BytesPerWord), value); } } return 1; case CONSTANT_String: { if (singletonObject(t, pool, i) == 0) { unsigned si = s.read2() - 1; parsePoolEntry(t, s, index, pool, si); object value = singletonObject(t, pool, si); value = t->m->classpath->makeString (t, value, 0, cast(value, BytesPerWord) - 1); value = intern(t, value); set(t, pool, SingletonBody + (i * BytesPerWord), value); } } return 1; case CONSTANT_NameAndType: { if (singletonObject(t, pool, i) == 0) { unsigned ni = s.read2() - 1; unsigned ti = s.read2() - 1; parsePoolEntry(t, s, index, pool, ni); parsePoolEntry(t, s, index, pool, ti); object name = singletonObject(t, pool, ni); object type = singletonObject(t, pool, ti); object value = makePair(t, name, type); set(t, pool, SingletonBody + (i * BytesPerWord), value); } } return 1; case CONSTANT_Fieldref: case CONSTANT_Methodref: case CONSTANT_InterfaceMethodref: { if (singletonObject(t, pool, i) == 0) { unsigned ci = s.read2() - 1; unsigned nti = s.read2() - 1; parsePoolEntry(t, s, index, pool, ci); parsePoolEntry(t, s, index, pool, nti); object class_ = referenceName(t, singletonObject(t, pool, ci)); object nameAndType = singletonObject(t, pool, nti); object value = makeReference (t, class_, pairFirst(t, nameAndType), pairSecond(t, nameAndType)); set(t, pool, SingletonBody + (i * BytesPerWord), value); } } return 1; default: abort(t); } } object parsePool(Thread* t, Stream& s) { unsigned count = s.read2() - 1; object pool = makeSingletonOfSize(t, count + poolMaskSize(count)); PROTECT(t, pool); if (count) { uint32_t* index = static_cast(t->m->heap->allocate(count * 4)); for (unsigned i = 0; i < count; ++i) { index[i] = s.position(); switch (s.read1()) { case CONSTANT_Class: case CONSTANT_String: singletonMarkObject(t, pool, i); s.skip(2); break; case CONSTANT_Integer: s.skip(4); break; case CONSTANT_Float: singletonSetBit(t, pool, count, i); s.skip(4); break; case CONSTANT_NameAndType: case CONSTANT_Fieldref: case CONSTANT_Methodref: case CONSTANT_InterfaceMethodref: singletonMarkObject(t, pool, i); s.skip(4); break; case CONSTANT_Long: s.skip(8); ++ i; break; case CONSTANT_Double: singletonSetBit(t, pool, count, i); singletonSetBit(t, pool, count, i + 1); s.skip(8); ++ i; break; case CONSTANT_Utf8: singletonMarkObject(t, pool, i); s.skip(s.read2()); break; default: abort(t); } } unsigned end = s.position(); for (unsigned i = 0; i < count;) { i += parsePoolEntry(t, s, index, pool, i); } t->m->heap->free(index, count * 4); s.setPosition(end); } return pool; } void addInterfaces(Thread* t, object class_, object map) { object table = classInterfaceTable(t, class_); if (table) { unsigned increment = 2; if (classFlags(t, class_) & ACC_INTERFACE) { increment = 1; } PROTECT(t, map); PROTECT(t, table); for (unsigned i = 0; i < arrayLength(t, table); i += increment) { object interface = arrayBody(t, table, i); object name = className(t, interface); hashMapInsertMaybe(t, map, name, interface, byteArrayHash, byteArrayEqual); } } } void parseInterfaceTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); object map = makeHashMap(t, 0, 0); PROTECT(t, map); if (classSuper(t, class_)) { addInterfaces(t, classSuper(t, class_), map); } unsigned count = s.read2(); for (unsigned i = 0; i < count; ++i) { object name = referenceName(t, singletonObject(t, pool, s.read2() - 1)); PROTECT(t, name); object interface = resolveClass(t, classLoader(t, class_), name); if (UNLIKELY(t->exception)) return; PROTECT(t, interface); hashMapInsertMaybe(t, map, name, interface, byteArrayHash, byteArrayEqual); addInterfaces(t, interface, map); } object interfaceTable = 0; if (hashMapSize(t, map)) { unsigned length = hashMapSize(t, map); if ((classFlags(t, class_) & ACC_INTERFACE) == 0) { length *= 2; } interfaceTable = makeArray(t, length); PROTECT(t, interfaceTable); unsigned i = 0; for (HashMapIterator it(t, map); it.hasMore();) { object interface = tripleSecond(t, it.next()); if (UNLIKELY(t->exception)) return; set(t, interfaceTable, ArrayBody + (i * BytesPerWord), interface); ++ i; if ((classFlags(t, class_) & ACC_INTERFACE) == 0) { if (classVirtualTable(t, interface)) { // we'll fill in this table in parseMethodTable(): object vtable = makeArray (t, arrayLength(t, classVirtualTable(t, interface))); set(t, interfaceTable, ArrayBody + (i * BytesPerWord), vtable); } ++i; } } } set(t, class_, ClassInterfaceTable, interfaceTable); } void parseFieldTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); unsigned memberOffset = BytesPerWord; if (classSuper(t, class_)) { memberOffset = classFixedSize(t, classSuper(t, class_)); } unsigned count = s.read2(); if (count) { unsigned staticOffset = BytesPerWord * 2; unsigned staticCount = 0; object fieldTable = makeArray(t, count); PROTECT(t, fieldTable); object staticValueTable = makeIntArray(t, count); PROTECT(t, staticValueTable); object addendum = 0; PROTECT(t, addendum); RUNTIME_ARRAY(uint8_t, staticTypes, count); for (unsigned i = 0; i < count; ++i) { unsigned flags = s.read2(); unsigned name = s.read2(); unsigned spec = s.read2(); unsigned value = 0; unsigned code = fieldCode (t, byteArrayBody(t, singletonObject(t, pool, spec - 1), 0)); unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = singletonObject(t, pool, s.read2() - 1); unsigned length = s.read4(); if (vm::strcmp(reinterpret_cast("ConstantValue"), &byteArrayBody(t, name, 0)) == 0) { value = s.read2(); } else if (vm::strcmp(reinterpret_cast ("RuntimeVisibleAnnotations"), &byteArrayBody(t, name, 0)) == 0) { object body = makeByteArray(t, length); s.read(reinterpret_cast(&byteArrayBody(t, body, 0)), length); addendum = makeFieldAddendum(t, pool, body); } else { s.skip(length); } } object field = makeField (t, 0, // vm flags code, flags, 0, // offset singletonObject(t, pool, name - 1), singletonObject(t, pool, spec - 1), addendum, class_); if (flags & ACC_STATIC) { unsigned size = fieldSize(t, code); unsigned excess = (staticOffset % size) % BytesPerWord; if (excess) { staticOffset += BytesPerWord - excess; } fieldOffset(t, field) = staticOffset; staticOffset += size; intArrayBody(t, staticValueTable, staticCount) = value; RUNTIME_ARRAY_BODY(staticTypes)[staticCount++] = code; } else { if (flags & ACC_FINAL) { classVmFlags(t, class_) |= HasFinalMemberFlag; } while (memberOffset % fieldSize(t, code)) { ++ memberOffset; } fieldOffset(t, field) = memberOffset; memberOffset += fieldSize(t, code); } set(t, fieldTable, ArrayBody + (i * BytesPerWord), field); } set(t, class_, ClassFieldTable, fieldTable); if (staticCount) { unsigned footprint = ceiling(staticOffset - (BytesPerWord * 2), BytesPerWord); object staticTable = makeSingletonOfSize(t, footprint); uint8_t* body = reinterpret_cast (&singletonBody(t, staticTable, 0)); for (unsigned i = 0, offset = 0; i < staticCount; ++i) { unsigned size = fieldSize(t, RUNTIME_ARRAY_BODY(staticTypes)[i]); unsigned excess = offset % size; if (excess) { offset += BytesPerWord - excess; } unsigned value = intArrayBody(t, staticValueTable, i); if (value) { switch (RUNTIME_ARRAY_BODY(staticTypes)[i]) { case ByteField: case BooleanField: body[offset] = singletonValue(t, pool, value - 1); break; case CharField: case ShortField: *reinterpret_cast(body + offset) = singletonValue(t, pool, value - 1); break; case IntField: case FloatField: *reinterpret_cast(body + offset) = singletonValue(t, pool, value - 1); break; case LongField: case DoubleField: memcpy(body + offset, &singletonValue(t, pool, value - 1), 8); break; case ObjectField: memcpy(body + offset, &singletonObject(t, pool, value - 1), BytesPerWord); break; default: abort(t); } } if (RUNTIME_ARRAY_BODY(staticTypes)[i] == ObjectField) { singletonMarkObject(t, staticTable, offset / BytesPerWord); } offset += size; } set(t, class_, ClassStaticTable, staticTable); } } classFixedSize(t, class_) = pad(memberOffset); if (classSuper(t, class_) and memberOffset == classFixedSize(t, classSuper(t, class_))) { set(t, class_, ClassObjectMask, classObjectMask(t, classSuper(t, class_))); } else { object mask = makeIntArray (t, ceiling(classFixedSize(t, class_), 32 * BytesPerWord)); intArrayBody(t, mask, 0) = 1; object superMask = 0; if (classSuper(t, class_)) { superMask = classObjectMask(t, classSuper(t, class_)); if (superMask) { memcpy(&intArrayBody(t, mask, 0), &intArrayBody(t, superMask, 0), ceiling(classFixedSize(t, classSuper(t, class_)), 32 * BytesPerWord) * 4); } } bool sawReferenceField = false; object fieldTable = classFieldTable(t, class_); if (fieldTable) { for (int i = arrayLength(t, fieldTable) - 1; i >= 0; --i) { object field = arrayBody(t, fieldTable, i); if ((fieldFlags(t, field) & ACC_STATIC) == 0 and fieldCode(t, field) == ObjectField) { unsigned index = fieldOffset(t, field) / BytesPerWord; intArrayBody(t, mask, (index / 32)) |= 1 << (index % 32); sawReferenceField = true; } } } if (superMask or sawReferenceField) { set(t, class_, ClassObjectMask, mask); } } } object parseCode(Thread* t, Stream& s, object pool) { PROTECT(t, pool); unsigned maxStack = s.read2(); unsigned maxLocals = s.read2(); unsigned length = s.read4(); object code = makeCode(t, pool, 0, 0, 0, maxStack, maxLocals, length); s.read(&codeBody(t, code, 0), length); PROTECT(t, code); unsigned ehtLength = s.read2(); if (ehtLength) { object eht = makeExceptionHandlerTable(t, ehtLength); for (unsigned i = 0; i < ehtLength; ++i) { ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i); exceptionHandlerStart(eh) = s.read2(); exceptionHandlerEnd(eh) = s.read2(); exceptionHandlerIp(eh) = s.read2(); exceptionHandlerCatchType(eh) = s.read2(); } set(t, code, CodeExceptionHandlerTable, eht); } unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = singletonObject(t, pool, s.read2() - 1); unsigned length = s.read4(); if (vm::strcmp(reinterpret_cast("LineNumberTable"), &byteArrayBody(t, name, 0)) == 0) { unsigned lntLength = s.read2(); object lnt = makeLineNumberTable(t, lntLength); for (unsigned i = 0; i < lntLength; ++i) { LineNumber* ln = lineNumberTableBody(t, lnt, i); lineNumberIp(ln) = s.read2(); lineNumberLine(ln) = s.read2(); } set(t, code, CodeLineNumberTable, lnt); } else { s.skip(length); } } return code; } void scanMethodSpec(Thread* t, const char* s, unsigned* parameterCount, unsigned* returnCode) { unsigned count = 0; MethodSpecIterator it(t, s); for (; it.hasNext(); it.next()) { ++ count; } *parameterCount = count; *returnCode = fieldCode(t, *it.returnSpec()); } object addInterfaceMethods(Thread* t, object class_, object virtualMap, unsigned* virtualCount, bool makeList) { object itable = classInterfaceTable(t, class_); if (itable) { PROTECT(t, class_); PROTECT(t, virtualMap); PROTECT(t, itable); object list = 0; PROTECT(t, list); object method = 0; PROTECT(t, method); object vtable = 0; PROTECT(t, vtable); unsigned stride = (classFlags(t, class_) & ACC_INTERFACE) ? 1 : 2; for (unsigned i = 0; i < arrayLength(t, itable); i += stride) { vtable = classVirtualTable(t, arrayBody(t, itable, i)); if (vtable) { for (unsigned j = 0; j < arrayLength(t, vtable); ++j) { method = arrayBody(t, vtable, j); object n = hashMapFindNode (t, virtualMap, method, methodHash, methodEqual); if (n == 0) { method = makeMethod (t, methodVmFlags(t, method), methodReturnCode(t, method), methodParameterCount(t, method), methodParameterFootprint(t, method), methodFlags(t, method), (*virtualCount)++, 0, 0, methodName(t, method), methodSpec(t, method), 0, class_, 0); hashMapInsert(t, virtualMap, method, method, methodHash); if (makeList) { if (list == 0) { list = vm::makeList(t, 0, 0, 0); } listAppend(t, list, method); } } } } } return list; } return 0; } void parseMethodTable(Thread* t, Stream& s, object class_, object pool) { PROTECT(t, class_); PROTECT(t, pool); object virtualMap = makeHashMap(t, 0, 0); PROTECT(t, virtualMap); unsigned virtualCount = 0; unsigned declaredVirtualCount = 0; object superVirtualTable = 0; PROTECT(t, superVirtualTable); if (classFlags(t, class_) & ACC_INTERFACE) { addInterfaceMethods(t, class_, virtualMap, &virtualCount, false); } else { if (classSuper(t, class_)) { superVirtualTable = classVirtualTable(t, classSuper(t, class_)); } if (superVirtualTable) { virtualCount = arrayLength(t, superVirtualTable); for (unsigned i = 0; i < virtualCount; ++i) { object method = arrayBody(t, superVirtualTable, i); hashMapInsert(t, virtualMap, method, method, methodHash); } } } object newVirtuals = makeList(t, 0, 0, 0); PROTECT(t, newVirtuals); unsigned count = s.read2(); if (count) { object methodTable = makeArray(t, count); PROTECT(t, methodTable); object addendum = 0; PROTECT(t, addendum); object code = 0; PROTECT(t, code); for (unsigned i = 0; i < count; ++i) { unsigned flags = s.read2(); unsigned name = s.read2(); unsigned spec = s.read2(); code = 0; unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = singletonObject(t, pool, s.read2() - 1); unsigned length = s.read4(); if (vm::strcmp(reinterpret_cast("Code"), &byteArrayBody(t, name, 0)) == 0) { code = parseCode(t, s, pool); } else if (vm::strcmp(reinterpret_cast("Exceptions"), &byteArrayBody(t, name, 0)) == 0) { if (addendum == 0) { addendum = makeMethodAddendum(t, pool, 0, 0); } unsigned exceptionCount = s.read2(); object body = makeShortArray(t, exceptionCount); for (unsigned i = 0; i < exceptionCount; ++i) { shortArrayBody(t, body, i) = s.read2(); } set(t, addendum, MethodAddendumExceptionTable, body); } else if (vm::strcmp(reinterpret_cast ("RuntimeVisibleAnnotations"), &byteArrayBody(t, name, 0)) == 0) { if (addendum == 0) { addendum = makeMethodAddendum(t, pool, 0, 0); } object body = makeByteArray(t, length); s.read(reinterpret_cast(&byteArrayBody(t, body, 0)), length); set(t, addendum, AddendumAnnotationTable, body); } else { s.skip(length); } } const char* specString = reinterpret_cast (&byteArrayBody(t, singletonObject(t, pool, spec - 1), 0)); unsigned parameterCount; unsigned returnCode; scanMethodSpec(t, specString, ¶meterCount, &returnCode); object method = t->m->processor->makeMethod (t, 0, // vm flags returnCode, parameterCount, parameterFootprint(t, specString, flags & ACC_STATIC), flags, 0, // offset singletonObject(t, pool, name - 1), singletonObject(t, pool, spec - 1), addendum, class_, code); PROTECT(t, method); if (methodVirtual(t, method)) { ++ declaredVirtualCount; object p = hashMapFindNode (t, virtualMap, method, methodHash, methodEqual); if (p) { methodOffset(t, method) = methodOffset(t, tripleFirst(t, p)); set(t, p, TripleSecond, method); } else { methodOffset(t, method) = virtualCount++; listAppend(t, newVirtuals, method); hashMapInsert(t, virtualMap, method, method, methodHash); } if (UNLIKELY((classFlags(t, class_) & ACC_INTERFACE) == 0 and vm::strcmp (reinterpret_cast("finalize"), &byteArrayBody(t, methodName(t, method), 0)) == 0 and vm::strcmp (reinterpret_cast("()V"), &byteArrayBody(t, methodSpec(t, method), 0)) == 0 and (not emptyMethod(t, method)))) { classVmFlags(t, class_) |= HasFinalizerFlag; } } else { methodOffset(t, method) = i; if (vm::strcmp(reinterpret_cast(""), &byteArrayBody(t, methodName(t, method), 0)) == 0) { methodVmFlags(t, method) |= ClassInitFlag; classVmFlags(t, class_) |= NeedInitFlag; } else if (vm::strcmp (reinterpret_cast(""), &byteArrayBody(t, methodName(t, method), 0)) == 0) { methodVmFlags(t, method) |= ConstructorFlag; } } set(t, methodTable, ArrayBody + (i * BytesPerWord), method); } set(t, class_, ClassMethodTable, methodTable); } object abstractVirtuals; if (classFlags(t, class_) & ACC_INTERFACE) { abstractVirtuals = 0; } else { abstractVirtuals = addInterfaceMethods (t, class_, virtualMap, &virtualCount, true); } PROTECT(t, abstractVirtuals); bool populateInterfaceVtables = false; if (declaredVirtualCount == 0 and abstractVirtuals == 0 and (classFlags(t, class_) & ACC_INTERFACE) == 0) { if (classSuper(t, class_)) { // inherit virtual table from superclass set(t, class_, ClassVirtualTable, superVirtualTable); if (classInterfaceTable(t, classSuper(t, class_)) and arrayLength(t, classInterfaceTable(t, class_)) == arrayLength (t, classInterfaceTable(t, classSuper(t, class_)))) { // inherit interface table from superclass set(t, class_, ClassInterfaceTable, classInterfaceTable(t, classSuper(t, class_))); } else { populateInterfaceVtables = true; } } else { // apparently, Object does not have any virtual methods. We // give it a vtable anyway so code doesn't break elsewhere. object vtable = makeArray(t, 0); set(t, class_, ClassVirtualTable, vtable); } } else if (virtualCount) { // generate class vtable object vtable = makeArray(t, virtualCount); unsigned i = 0; if (classFlags(t, class_) & ACC_INTERFACE) { PROTECT(t, vtable); for (HashMapIterator it(t, virtualMap); it.hasMore();) { object method = tripleFirst(t, it.next()); assert(t, arrayBody(t, vtable, methodOffset(t, method)) == 0); set(t, vtable, ArrayBody + (methodOffset(t, method) * BytesPerWord), method); ++ i; } } else { populateInterfaceVtables = true; if (superVirtualTable) { for (; i < arrayLength(t, superVirtualTable); ++i) { object method = arrayBody(t, superVirtualTable, i); method = hashMapFind(t, virtualMap, method, methodHash, methodEqual); set(t, vtable, ArrayBody + (i * BytesPerWord), method); } } for (object p = listFront(t, newVirtuals); p; p = pairSecond(t, p)) { set(t, vtable, ArrayBody + (i * BytesPerWord), pairFirst(t, p)); ++ i; } if (abstractVirtuals) { PROTECT(t, vtable); unsigned oldLength = arrayLength(t, classMethodTable(t, class_)); object newMethodTable = makeArray (t, oldLength + listSize(t, abstractVirtuals)); memcpy(&arrayBody(t, newMethodTable, 0), &arrayBody(t, classMethodTable(t, class_), 0), oldLength * sizeof(object)); mark(t, newMethodTable, ArrayBody, oldLength); unsigned mti = oldLength; for (object p = listFront(t, abstractVirtuals); p; p = pairSecond(t, p)) { set(t, newMethodTable, ArrayBody + ((mti++) * BytesPerWord), pairFirst(t, p)); set(t, vtable, ArrayBody + ((i++) * BytesPerWord), pairFirst(t, p)); } assert(t, arrayLength(t, newMethodTable) == mti); set(t, class_, ClassMethodTable, newMethodTable); } } assert(t, arrayLength(t, vtable) == i); set(t, class_, ClassVirtualTable, vtable); } if (populateInterfaceVtables) { // generate interface vtables object itable = classInterfaceTable(t, class_); if (itable) { PROTECT(t, itable); for (unsigned i = 0; i < arrayLength(t, itable); i += 2) { object ivtable = classVirtualTable(t, arrayBody(t, itable, i)); if (ivtable) { object vtable = arrayBody(t, itable, i + 1); for (unsigned j = 0; j < arrayLength(t, ivtable); ++j) { object method = arrayBody(t, ivtable, j); method = hashMapFind (t, virtualMap, method, methodHash, methodEqual); assert(t, method); set(t, vtable, ArrayBody + (j * BytesPerWord), method); } } } } } } void parseAttributeTable(Thread* t, Stream& s, object class_, object pool) { unsigned attributeCount = s.read2(); for (unsigned j = 0; j < attributeCount; ++j) { object name = singletonObject(t, pool, s.read2() - 1); unsigned length = s.read4(); if (vm::strcmp(reinterpret_cast("SourceFile"), &byteArrayBody(t, name, 0)) == 0) { set(t, class_, ClassSourceFile, singletonObject(t, pool, s.read2() - 1)); } else if (vm::strcmp(reinterpret_cast ("RuntimeVisibleAnnotations"), &byteArrayBody(t, name, 0)) == 0) { object body = makeByteArray(t, length); s.read(reinterpret_cast(&byteArrayBody(t, body, 0)), length); object addendum = makeClassAddendum(t, pool, body); set(t, class_, ClassAddendum, addendum); } else { s.skip(length); } } } void updateClassTables(Thread* t, object newClass, object oldClass) { object fieldTable = classFieldTable(t, newClass); if (fieldTable) { for (unsigned i = 0; i < arrayLength(t, fieldTable); ++i) { set(t, arrayBody(t, fieldTable, i), FieldClass, newClass); } } if (classFlags(t, newClass) & ACC_INTERFACE) { object virtualTable = classVirtualTable(t, newClass); if (virtualTable) { for (unsigned i = 0; i < arrayLength(t, virtualTable); ++i) { if (methodClass(t, arrayBody(t, virtualTable, i)) == oldClass) { set(t, arrayBody(t, virtualTable, i), MethodClass, newClass); } } } } else { object methodTable = classMethodTable(t, newClass); if (methodTable) { for (unsigned i = 0; i < arrayLength(t, methodTable); ++i) { set(t, arrayBody(t, methodTable, i), MethodClass, newClass); } } } } void updateBootstrapClass(Thread* t, object bootstrapClass, object class_) { expect(t, bootstrapClass != class_); // verify that the classes have the same layout expect(t, classSuper(t, bootstrapClass) == classSuper(t, class_)); expect(t, classFixedSize(t, bootstrapClass) >= classFixedSize(t, class_)); expect(t, (classVmFlags(t, class_) & HasFinalizerFlag) == 0); PROTECT(t, bootstrapClass); PROTECT(t, class_); ENTER(t, Thread::ExclusiveState); classVmFlags(t, bootstrapClass) &= ~BootstrapFlag; classVmFlags(t, bootstrapClass) |= classVmFlags(t, class_); classFlags(t, bootstrapClass) |= classFlags(t, class_); set(t, bootstrapClass, ClassSuper, classSuper(t, class_)); set(t, bootstrapClass, ClassInterfaceTable, classInterfaceTable(t, class_)); set(t, bootstrapClass, ClassVirtualTable, classVirtualTable(t, class_)); set(t, bootstrapClass, ClassFieldTable, classFieldTable(t, class_)); set(t, bootstrapClass, ClassMethodTable, classMethodTable(t, class_)); set(t, bootstrapClass, ClassStaticTable, classStaticTable(t, class_)); updateClassTables(t, bootstrapClass, class_); } object makeArrayClass(Thread* t, object loader, unsigned dimensions, object spec, object elementClass) { // todo: arrays should implement Cloneable and Serializable if (classVmFlags(t, type(t, Machine::JobjectType)) & BootstrapFlag) { PROTECT(t, loader); PROTECT(t, spec); PROTECT(t, elementClass); resolveSystemClass (t, root(t, Machine::BootLoader), className(t, type(t, Machine::JobjectType))); if (UNLIKELY(t->exception)) return 0; } object vtable = classVirtualTable(t, type(t, Machine::JobjectType)); object c = t->m->processor->makeClass (t, 0, 0, 2 * BytesPerWord, BytesPerWord, dimensions, classObjectMask(t, type(t, Machine::ArrayType)), spec, 0, type(t, Machine::JobjectType), 0, vtable, 0, 0, 0, elementClass, loader, arrayLength(t, vtable)); t->m->processor->initVtable(t, c); return c; } object makeArrayClass(Thread* t, object loader, object spec, bool throw_) { PROTECT(t, loader); PROTECT(t, spec); const char* s = reinterpret_cast(&byteArrayBody(t, spec, 0)); const char* start = s; unsigned dimensions = 0; for (; *s == '['; ++s) ++ dimensions; object elementSpec; switch (*s) { case 'L': { ++ s; const char* elementSpecStart = s; while (*s and *s != ';') ++ s; elementSpec = makeByteArray(t, s - elementSpecStart + 1); memcpy(&byteArrayBody(t, elementSpec, 0), &byteArrayBody(t, spec, elementSpecStart - start), s - elementSpecStart); byteArrayBody(t, elementSpec, s - elementSpecStart) = 0; } break; default: if (dimensions > 1) { char c = *s; elementSpec = makeByteArray(t, 3); byteArrayBody(t, elementSpec, 0) = '['; byteArrayBody(t, elementSpec, 1) = c; byteArrayBody(t, elementSpec, 2) = 0; -- dimensions; } else { abort(t); } } object elementClass = hashMapFind (t, root(t, Machine::BootstrapClassMap), elementSpec, byteArrayHash, byteArrayEqual); if (elementClass == 0) { elementClass = resolveClass(t, loader, elementSpec, throw_); if (elementClass == 0) return 0; } PROTECT(t, elementClass); object class_ = findLoadedClass(t, classLoader(t, elementClass), spec); return class_ ? class_ : makeArrayClass (t, classLoader(t, elementClass), dimensions, spec, elementClass); } object resolveArrayClass(Thread* t, object loader, object spec, bool throw_) { object c = hashMapFind (t, root(t, Machine::BootstrapClassMap), spec, byteArrayHash, byteArrayEqual); if (c) { set(t, c, ClassVirtualTable, classVirtualTable(t, type(t, Machine::JobjectType))); return c; } else { return makeArrayClass(t, loader, spec, throw_); } } void removeMonitor(Thread* t, object o) { unsigned hash; if (DebugMonitors) { hash = objectHash(t, o); } object m = hashMapRemove (t, root(t, Machine::MonitorMap), o, objectHash, objectEqual); if (DebugMonitors) { fprintf(stderr, "dispose monitor %p for object %x\n", m, hash); } } void removeString(Thread* t, object o) { hashMapRemove(t, root(t, Machine::StringMap), o, stringHash, objectEqual); } void bootClass(Thread* t, Machine::Type type, int superType, uint32_t objectMask, unsigned fixedSize, unsigned arrayElementSize, unsigned vtableLength) { object super = (superType >= 0 ? vm::type(t, static_cast(superType)) : 0); object mask; if (objectMask) { if (super and classObjectMask(t, super) and intArrayBody(t, classObjectMask(t, super), 0) == static_cast(objectMask)) { mask = classObjectMask (t, vm::type(t, static_cast(superType))); } else { mask = makeIntArray(t, 1); intArrayBody(t, mask, 0) = objectMask; } } else { mask = 0; } super = (superType >= 0 ? vm::type(t, static_cast(superType)) : 0); object class_ = t->m->processor->makeClass (t, 0, BootstrapFlag, fixedSize, arrayElementSize, arrayElementSize ? 1 : 0, mask, 0, 0, super, 0, 0, 0, 0, 0, 0, root(t, Machine::BootLoader), vtableLength); setType(t, type, class_); } void bootJavaClass(Thread* t, Machine::Type type, int superType, const char* name, int vtableLength, object bootMethod) { PROTECT(t, bootMethod); object n = makeByteArray(t, name); object class_ = vm::type(t, type); set(t, class_, ClassName, n); object vtable; if (vtableLength >= 0) { PROTECT(t, class_); vtable = makeArray(t, vtableLength); for (int i = 0; i < vtableLength; ++ i) { arrayBody(t, vtable, i) = bootMethod; } } else { vtable = classVirtualTable (t, vm::type(t, static_cast(superType))); } set(t, class_, ClassVirtualTable, vtable); t->m->processor->initVtable(t, class_); hashMapInsert (t, root(t, Machine::BootstrapClassMap), n, class_, byteArrayHash); } void nameClass(Thread* t, Machine::Type type, const char* name) { object n = makeByteArray(t, name); set(t, arrayBody(t, t->m->types, type), ClassName, n); } void boot(Thread* t) { Machine* m = t->m; m->unsafe = true; m->roots = allocate(t, pad((Machine::RootCount + 2) * BytesPerWord), true); arrayLength(t, m->roots) = Machine::RootCount; setRoot(t, Machine::BootLoader, allocate(t, FixedSizeOfSystemClassLoader, true)); setRoot(t, Machine::AppLoader, allocate(t, FixedSizeOfSystemClassLoader, true)); m->types = allocate(t, pad((TypeCount + 2) * BytesPerWord), true); arrayLength(t, m->types) = TypeCount; #include "type-initializations.cpp" object arrayClass = type(t, Machine::ArrayType); set(t, m->types, 0, arrayClass); set(t, m->roots, 0, arrayClass); object loaderClass = type(t, Machine::SystemClassLoaderType); set(t, root(t, Machine::BootLoader), 0, loaderClass); set(t, root(t, Machine::AppLoader), 0, loaderClass); object objectClass = type(t, Machine::JobjectType); object classClass = type(t, Machine::ClassType); set(t, classClass, 0, classClass); set(t, classClass, ClassSuper, objectClass); object intArrayClass = type(t, Machine::IntArrayType); set(t, intArrayClass, 0, classClass); set(t, intArrayClass, ClassSuper, objectClass); m->unsafe = false; classVmFlags(t, type(t, Machine::SingletonType)) |= SingletonFlag; classVmFlags(t, type(t, Machine::ContinuationType)) |= ContinuationFlag; classVmFlags(t, type(t, Machine::JreferenceType)) |= ReferenceFlag; classVmFlags(t, type(t, Machine::WeakReferenceType)) |= ReferenceFlag | WeakReferenceFlag; classVmFlags(t, type(t, Machine::SoftReferenceType)) |= ReferenceFlag | WeakReferenceFlag; classVmFlags(t, type(t, Machine::PhantomReferenceType)) |= ReferenceFlag | WeakReferenceFlag; classVmFlags(t, type(t, Machine::JbooleanType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JbyteType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JcharType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JshortType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JintType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JlongType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JfloatType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JdoubleType)) |= PrimitiveFlag; classVmFlags(t, type(t, Machine::JvoidType)) |= PrimitiveFlag; set(t, type(t, Machine::BooleanArrayType), ClassStaticTable, type(t, Machine::JbooleanType)); set(t, type(t, Machine::ByteArrayType), ClassStaticTable, type(t, Machine::JbyteType)); set(t, type(t, Machine::CharArrayType), ClassStaticTable, type(t, Machine::JcharType)); set(t, type(t, Machine::ShortArrayType), ClassStaticTable, type(t, Machine::JshortType)); set(t, type(t, Machine::IntArrayType), ClassStaticTable, type(t, Machine::JintType)); set(t, type(t, Machine::LongArrayType), ClassStaticTable, type(t, Machine::JlongType)); set(t, type(t, Machine::FloatArrayType), ClassStaticTable, type(t, Machine::JfloatType)); set(t, type(t, Machine::DoubleArrayType), ClassStaticTable, type(t, Machine::JdoubleType)); { object map = makeHashMap(t, 0, 0); set(t, root(t, Machine::BootLoader), ClassLoaderMap, map); } systemClassLoaderFinder(t, root(t, Machine::BootLoader)) = m->bootFinder; { object map = makeHashMap(t, 0, 0); set(t, root(t, Machine::AppLoader), ClassLoaderMap, map); } systemClassLoaderFinder(t, root(t, Machine::AppLoader)) = m->appFinder; set(t, root(t, Machine::AppLoader), ClassLoaderParent, root(t, Machine::BootLoader)); setRoot(t, Machine::BootstrapClassMap, makeHashMap(t, 0, 0)); setRoot(t, Machine::StringMap, makeWeakHashMap(t, 0, 0)); m->processor->boot(t, 0); { object bootCode = makeCode(t, 0, 0, 0, 0, 0, 0, 1); codeBody(t, bootCode, 0) = impdep1; object bootMethod = makeMethod (t, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, bootCode); PROTECT(t, bootMethod); #include "type-java-initializations.cpp" #ifdef AVIAN_HEAPDUMP # include "type-name-initializations.cpp" #endif } } class HeapClient: public Heap::Client { public: HeapClient(Machine* m): m(m) { } virtual void visitRoots(Heap::Visitor* v) { ::visitRoots(m, v); postVisit(m->rootThread, v); } virtual void collect(void* context, Heap::CollectionType type) { collect(static_cast(context), type); } virtual bool isFixed(void* p) { return objectFixed(m->rootThread, static_cast(p)); } virtual unsigned sizeInWords(void* p) { Thread* t = m->rootThread; object o = static_cast(m->heap->follow(mask(p))); unsigned n = baseSize(t, o, static_cast (m->heap->follow(objectClass(t, o)))); if (objectExtended(t, o)) { ++ n; } return n; } virtual unsigned copiedSizeInWords(void* p) { Thread* t = m->rootThread; object o = static_cast(m->heap->follow(mask(p))); assert(t, not objectFixed(t, o)); unsigned n = baseSize(t, o, static_cast (m->heap->follow(objectClass(t, o)))); if (objectExtended(t, o) or hashTaken(t, o)) { ++ n; } return n; } virtual void copy(void* srcp, void* dstp) { Thread* t = m->rootThread; object src = static_cast(m->heap->follow(mask(srcp))); assert(t, not objectFixed(t, src)); object class_ = static_cast (m->heap->follow(objectClass(t, src))); unsigned base = baseSize(t, src, class_); unsigned n = extendedSize(t, src, base); object dst = static_cast(dstp); memcpy(dst, src, n * BytesPerWord); if (hashTaken(t, src)) { cast(dst, 0) &= PointerMask; cast(dst, 0) |= ExtendedMark; extendedWord(t, dst, base) = takeHash(t, src); } } virtual void walk(void* p, Heap::Walker* w) { object o = static_cast(m->heap->follow(mask(p))); ::walk(m->rootThread, w, o, 0); } void dispose() { m->heap->free(this, sizeof(*this)); } private: Machine* m; }; } // namespace namespace vm { Machine::Machine(System* system, Heap* heap, Finder* bootFinder, Finder* appFinder, Processor* processor, Classpath* classpath, const char** properties, unsigned propertyCount): vtable(&javaVMVTable), system(system), heapClient(new (heap->allocate(sizeof(HeapClient))) HeapClient(this)), heap(heap), bootFinder(bootFinder), appFinder(appFinder), processor(processor), classpath(classpath), rootThread(0), exclusive(0), finalizeThread(0), jniReferences(0), properties(properties), propertyCount(propertyCount), activeCount(0), liveCount(0), daemonCount(0), fixedFootprint(0), localThread(0), stateLock(0), heapLock(0), classLock(0), referenceLock(0), shutdownLock(0), libraries(0), types(0), roots(0), finalizers(0), tenuredFinalizers(0), finalizeQueue(0), weakReferences(0), tenuredWeakReferences(0), unsafe(false), triedBuiltinOnLoad(false), heapPoolIndex(0) { heap->setClient(heapClient); populateJNITables(&javaVMVTable, &jniEnvVTable); if (not system->success(system->make(&localThread)) or not system->success(system->make(&stateLock)) or not system->success(system->make(&heapLock)) or not system->success(system->make(&classLock)) or not system->success(system->make(&referenceLock)) or not system->success(system->make(&shutdownLock)) or not system->success (system->load(&libraries, findProperty(this, "avian.bootstrap")))) { system->abort(); } } void Machine::dispose() { localThread->dispose(); stateLock->dispose(); heapLock->dispose(); classLock->dispose(); referenceLock->dispose(); shutdownLock->dispose(); if (libraries) { libraries->disposeAll(); } for (Reference* r = jniReferences; r;) { Reference* tmp = r; r = r->next; heap->free(tmp, sizeof(*tmp)); } for (unsigned i = 0; i < heapPoolIndex; ++i) { heap->free(heapPool[i], ThreadHeapSizeInBytes); } heap->free(properties, sizeof(const char*) * propertyCount); static_cast(heapClient)->dispose(); heap->free(this, sizeof(*this)); } Thread::Thread(Machine* m, object javaThread, Thread* parent): vtable(&(m->jniEnvVTable)), m(m), parent(parent), peer((parent ? parent->child : 0)), child(0), waitNext(0), state(NoState), criticalLevel(0), systemThread(0), lock(0), javaThread(javaThread), exception(0), heapIndex(0), heapOffset(0), protector(0), classInitStack(0), runnable(this), defaultHeap(static_cast (m->heap->allocate(ThreadHeapSizeInBytes))), heap(defaultHeap), backupHeapIndex(0), flags(ActiveFlag) { } void Thread::init() { memset(defaultHeap, 0, ThreadHeapSizeInBytes); memset(backupHeap, 0, ThreadBackupHeapSizeInBytes); if (parent == 0) { assert(this, m->rootThread == 0); assert(this, javaThread == 0); m->rootThread = this; m->unsafe = true; if (not m->system->success(m->system->attach(&runnable))) { abort(this); } BootImage* image = 0; const char* imageFunctionName = findProperty(m, "avian.bootimage"); if (imageFunctionName) { void* p = m->libraries->resolve(imageFunctionName); if (p) { BootImage* (*function)(unsigned*); memcpy(&function, &p, BytesPerWord); unsigned size; image = function(&size); } } m->unsafe = false; enter(this, ActiveState); if (image) { m->processor->boot(this, image); } else { boot(this); } setRoot(this, Machine::ByteArrayMap, makeWeakHashMap(this, 0, 0)); setRoot(this, Machine::MonitorMap, makeWeakHashMap(this, 0, 0)); setRoot(this, Machine::ClassRuntimeDataTable, makeVector(this, 0, 0)); setRoot(this, Machine::MethodRuntimeDataTable, makeVector(this, 0, 0)); setRoot(this, Machine::JNIMethodTable, makeVector(this, 0, 0)); m->localThread->set(this); } else { peer = parent->child; parent->child = this; } expect(this, m->system->success(m->system->make(&lock))); if (javaThread == 0) { this->javaThread = m->classpath->makeThread(this, parent); } threadPeer(this, javaThread) = reinterpret_cast(this); } void Thread::exit() { if (state != Thread::ExitState and state != Thread::ZombieState) { enter(this, Thread::ExclusiveState); if (m->liveCount == 1) { turnOffTheLights(this); } else { threadPeer(this, javaThread) = 0; { ACQUIRE_RAW(this, m->stateLock); while (flags & SystemFlag) { m->stateLock->wait(systemThread, 0); } enter(this, Thread::ZombieState); } lock->dispose(); lock = 0; systemThread->dispose(); systemThread = 0; } } } void Thread::dispose() { if (lock) { lock->dispose(); } if (systemThread) { systemThread->dispose(); } m->heap->free(defaultHeap, ThreadHeapSizeInBytes); m->processor->dispose(this); } void shutDown(Thread* t) { ACQUIRE(t, t->m->shutdownLock); object hooks = root(t, Machine::ShutdownHooks); PROTECT(t, hooks); setRoot(t, Machine::ShutdownHooks, 0); object h = hooks; PROTECT(t, h); for (; h; h = pairSecond(t, h)) { startThread(t, pairFirst(t, h)); } // wait for hooks to exit h = hooks; for (; h; h = pairSecond(t, h)) { while (true) { Thread* ht = reinterpret_cast(threadPeer(t, pairFirst(t, h))); { ACQUIRE(t, t->m->stateLock); if (ht == 0 or ht->state == Thread::ZombieState or ht->state == Thread::JoinedState) { break; } else { ENTER(t, Thread::IdleState); t->m->stateLock->wait(t->systemThread, 0); } } } } // tell finalize thread to exit and wait for it to do so { ACQUIRE(t, t->m->stateLock); Thread* finalizeThread = t->m->finalizeThread; if (finalizeThread) { t->m->finalizeThread = 0; t->m->stateLock->notifyAll(t->systemThread); while (finalizeThread->state != Thread::ZombieState and finalizeThread->state != Thread::JoinedState) { ENTER(t, Thread::IdleState); t->m->stateLock->wait(t->systemThread, 0); } } } } void enter(Thread* t, Thread::State s) { stress(t); if (s == t->state) return; if (t->state == Thread::ExitState) { // once in exit state, we stay that way return; } #ifdef USE_ATOMIC_OPERATIONS # define INCREMENT atomicIncrement # define ACQUIRE_LOCK ACQUIRE_RAW(t, t->m->stateLock) # define STORE_LOAD_MEMORY_BARRIER storeLoadMemoryBarrier() #else # define INCREMENT(pointer, value) *(pointer) += value; # define ACQUIRE_LOCK # define STORE_LOAD_MEMORY_BARRIER ACQUIRE_RAW(t, t->m->stateLock); #endif // not USE_ATOMIC_OPERATIONS switch (s) { case Thread::ExclusiveState: { ACQUIRE_LOCK; while (t->m->exclusive) { // another thread got here first. ENTER(t, Thread::IdleState); t->m->stateLock->wait(t->systemThread, 0); } switch (t->state) { case Thread::ActiveState: break; case Thread::IdleState: { INCREMENT(&(t->m->activeCount), 1); } break; default: abort(t); } t->state = Thread::ExclusiveState; t->m->exclusive = t; STORE_LOAD_MEMORY_BARRIER; while (t->m->activeCount > 1) { t->m->stateLock->wait(t->systemThread, 0); } } break; case Thread::IdleState: // The java.lang.Thread implementation may or may not notify the // VM when the daemon field in the Java object changes, so we sync // up the native field whenever the thread transitions to idle: // todo: this won't always help if some other thread sets the // daemon field. The thread trying to shut down the VM really // just needs to count from scratch every time any thread makes a // transition (i.e. eliminate Machine::daemonCount). if (UNLIKELY(((t->flags & Thread::DaemonFlag) != 0) != threadDaemon(t, t->javaThread))) { ACQUIRE_LOCK; if (threadDaemon(t, t->javaThread)) { atomicOr(&(t->flags), Thread::DaemonFlag); } else { atomicAnd(&(t->flags), ~Thread::DaemonFlag); } if (t->flags & Thread::DaemonFlag) { ++ t->m->daemonCount; } else { expect(t, t->m->daemonCount); -- t->m->daemonCount; } t->m->stateLock->notifyAll(t->systemThread); } if (LIKELY(t->state == Thread::ActiveState)) { // fast path assert(t, t->m->activeCount > 0); INCREMENT(&(t->m->activeCount), -1); t->state = s; if (t->m->exclusive) { ACQUIRE_LOCK; t->m->stateLock->notifyAll(t->systemThread); } break; } else { // fall through to slow path } case Thread::ZombieState: { ACQUIRE_LOCK; switch (t->state) { case Thread::ExclusiveState: { assert(t, t->m->exclusive == t); t->m->exclusive = 0; } break; case Thread::ActiveState: break; default: abort(t); } assert(t, t->m->activeCount > 0); INCREMENT(&(t->m->activeCount), -1); if (s == Thread::ZombieState) { assert(t, t->m->liveCount > 0); -- t->m->liveCount; if (threadDaemon(t, t->javaThread)) { -- t->m->daemonCount; } } t->state = s; t->m->stateLock->notifyAll(t->systemThread); } break; case Thread::ActiveState: if (LIKELY(t->state == Thread::IdleState and t->m->exclusive == 0)) { // fast path INCREMENT(&(t->m->activeCount), 1); t->state = s; if (t->m->exclusive) { // another thread has entered the exclusive state, so we // return to idle and use the slow path to become active enter(t, Thread::IdleState); } else { break; } } { ACQUIRE_LOCK; switch (t->state) { case Thread::ExclusiveState: { assert(t, t->m->exclusive == t); t->state = s; t->m->exclusive = 0; t->m->stateLock->notifyAll(t->systemThread); } break; case Thread::NoState: case Thread::IdleState: { while (t->m->exclusive) { t->m->stateLock->wait(t->systemThread, 0); } INCREMENT(&(t->m->activeCount), 1); if (t->state == Thread::NoState) { ++ t->m->liveCount; } t->state = s; } break; default: abort(t); } } break; case Thread::ExitState: { ACQUIRE_LOCK; switch (t->state) { case Thread::ExclusiveState: { assert(t, t->m->exclusive == t); t->m->exclusive = 0; t->m->stateLock->notifyAll(t->systemThread); } break; case Thread::ActiveState: break; default: abort(t); } assert(t, t->m->activeCount > 0); INCREMENT(&(t->m->activeCount), -1); t->state = s; while (t->m->liveCount - t->m->daemonCount > 1) { t->m->stateLock->wait(t->systemThread, 0); } } break; default: abort(t); } } object allocate2(Thread* t, unsigned sizeInBytes, bool objectMask) { return allocate3 (t, t->m->heap, ceiling(sizeInBytes, BytesPerWord) > ThreadHeapSizeInWords ? Machine::FixedAllocation : Machine::MovableAllocation, sizeInBytes, objectMask); } object allocate3(Thread* t, Allocator* allocator, Machine::AllocationType type, unsigned sizeInBytes, bool objectMask) { if (UNLIKELY(t->flags & Thread::UseBackupHeapFlag)) { expect(t, t->backupHeapIndex + ceiling(sizeInBytes, BytesPerWord) <= ThreadBackupHeapSizeInWords); object o = reinterpret_cast(t->backupHeap + t->backupHeapIndex); t->backupHeapIndex += ceiling(sizeInBytes, BytesPerWord); cast(o, 0) = 0; return o; } else if (UNLIKELY(t->flags & Thread::TracingFlag)) { expect(t, t->heapIndex + ceiling(sizeInBytes, BytesPerWord) <= ThreadHeapSizeInWords); return allocateSmall(t, sizeInBytes); } ACQUIRE_RAW(t, t->m->stateLock); while (t->m->exclusive and t->m->exclusive != t) { // another thread wants to enter the exclusive state, either for a // collection or some other reason. We give it a chance here. ENTER(t, Thread::IdleState); while (t->m->exclusive) { t->m->stateLock->wait(t->systemThread, 0); } } do { switch (type) { case Machine::MovableAllocation: if (t->heapIndex + ceiling(sizeInBytes, BytesPerWord) > ThreadHeapSizeInWords) { t->heap = 0; if (t->m->heapPoolIndex < ThreadHeapPoolSize) { t->heap = static_cast (t->m->heap->tryAllocate(ThreadHeapSizeInBytes)); if (t->heap) { memset(t->heap, 0, ThreadHeapSizeInBytes); t->m->heapPool[t->m->heapPoolIndex++] = t->heap; t->heapOffset += t->heapIndex; t->heapIndex = 0; } } } break; case Machine::FixedAllocation: if (t->m->fixedFootprint + sizeInBytes > FixedFootprintThresholdInBytes) { t->heap = 0; } break; case Machine::ImmortalAllocation: break; } if (t->heap == 0) { // fprintf(stderr, "gc"); // vmPrintTrace(t); collect(t, Heap::MinorCollection); } } while (type == Machine::MovableAllocation and t->heapIndex + ceiling(sizeInBytes, BytesPerWord) > ThreadHeapSizeInWords); switch (type) { case Machine::MovableAllocation: { return allocateSmall(t, sizeInBytes); } case Machine::FixedAllocation: { unsigned total; object o = static_cast (t->m->heap->allocateFixed (allocator, ceiling(sizeInBytes, BytesPerWord), objectMask, &total)); memset(o, 0, sizeInBytes); cast(o, 0) = FixedMark; t->m->fixedFootprint += total; return o; } case Machine::ImmortalAllocation: { unsigned total; object o = static_cast (t->m->heap->allocateImmortalFixed (allocator, ceiling(sizeInBytes, BytesPerWord), objectMask, &total)); memset(o, 0, sizeInBytes); cast(o, 0) = FixedMark; return o; } default: abort(t); } } object makeNewGeneral(Thread* t, object class_) { assert(t, t->state == Thread::ActiveState); PROTECT(t, class_); object instance = makeNew(t, class_); PROTECT(t, instance); if (classVmFlags(t, class_) & WeakReferenceFlag) { ACQUIRE(t, t->m->referenceLock); jreferenceVmNext(t, instance) = t->m->weakReferences; t->m->weakReferences = instance; } if (classVmFlags(t, class_) & HasFinalizerFlag) { addFinalizer(t, instance, 0); } return instance; } object makeByteArray(Thread* t, const char* format, ...) { va_list a; va_start(a, format); object s = ::makeByteArray(t, format, a); va_end(a); return s; } object makeString(Thread* t, const char* format, ...) { va_list a; va_start(a, format); object s = ::makeByteArray(t, format, a); va_end(a); return t->m->classpath->makeString(t, s, 0, byteArrayLength(t, s) - 1); } int stringUTFLength(Thread* t, object string, unsigned start, unsigned length) { unsigned result = 0; if (length) { object data = stringData(t, string); if (objectClass(t, data) == type(t, Machine::ByteArrayType)) { result = length; } else { for (unsigned i = 0; i < length; ++i) { uint16_t c = charArrayBody (t, data, stringOffset(t, string) + start + i); if (c == 0) result += 1; // null char (was 2 bytes in Java) else if (c < 0x80) result += 1; // ASCII char else if (c < 0x800) result += 2; // two-byte char else result += 3; // three-byte char } } } return result; } void stringChars(Thread* t, object string, unsigned start, unsigned length, char* chars) { if (length) { object data = stringData(t, string); if (objectClass(t, data) == type(t, Machine::ByteArrayType)) { memcpy(chars, &byteArrayBody(t, data, stringOffset(t, string) + start), length); } else { for (unsigned i = 0; i < length; ++i) { chars[i] = charArrayBody(t, data, stringOffset(t, string) + start + i); } } } chars[length] = 0; } void stringChars(Thread* t, object string, unsigned start, unsigned length, uint16_t* chars) { if (length) { object data = stringData(t, string); if (objectClass(t, data) == type(t, Machine::ByteArrayType)) { for (unsigned i = 0; i < length; ++i) { chars[i] = byteArrayBody(t, data, stringOffset(t, string) + start + i); } } else { memcpy(chars, &charArrayBody(t, data, stringOffset(t, string) + start), length * sizeof(uint16_t)); } } chars[length] = 0; } void stringUTFChars(Thread* t, object string, unsigned start, unsigned length, char* chars, unsigned charsLength UNUSED) { assert(t, static_cast (stringUTFLength(t, string, start, length)) == charsLength); if (length) { object data = stringData(t, string); if (objectClass(t, data) == type(t, Machine::ByteArrayType)) { memcpy(chars, &byteArrayBody(t, data, stringOffset(t, string) + start), length); chars[length] = 0; } else { int j = 0; for (unsigned i = 0; i < length; ++i) { uint16_t c = charArrayBody (t, data, stringOffset(t, string) + start + i); if(!c) { // null char chars[j++] = 0; } else if (c < 0x80) { // ASCII char chars[j++] = static_cast(c); } else if (c < 0x800) { // two-byte char chars[j++] = static_cast(0x0c0 | (c >> 6)); chars[j++] = static_cast(0x080 | (c & 0x03f)); } else { // three-byte char chars[j++] = static_cast(0x0e0 | ((c >> 12) & 0x0f)); chars[j++] = static_cast(0x080 | ((c >> 6) & 0x03f)); chars[j++] = static_cast(0x080 | (c & 0x03f)); } } chars[j] = 0; } } } bool isAssignableFrom(Thread* t, object a, object b) { assert(t, a); assert(t, b); if (a == b) return true; if (classFlags(t, a) & ACC_INTERFACE) { if (classVmFlags(t, b) & BootstrapFlag) { resolveSystemClass(t, root(t, Machine::BootLoader), className(t, b)); if (UNLIKELY(t->exception)) { t->exception = 0; return false; } } for (; b; b = classSuper(t, b)) { object itable = classInterfaceTable(t, b); if (itable) { for (unsigned i = 0; i < arrayLength(t, itable); i += 2) { if (arrayBody(t, itable, i) == a) { return true; } } } } } else if (classArrayDimensions(t, a)) { if (classArrayDimensions(t, b)) { return isAssignableFrom (t, classStaticTable(t, a), classStaticTable(t, b)); } } else { for (; b; b = classSuper(t, b)) { if (b == a) { return true; } } } return false; } bool instanceOf(Thread* t, object class_, object o) { if (o == 0) { return false; } else { return isAssignableFrom(t, class_, objectClass(t, o)); } } object classInitializer(Thread* t, object class_) { for (unsigned i = 0; i < arrayLength(t, classMethodTable(t, class_)); ++i) { object o = arrayBody(t, classMethodTable(t, class_), i); if (vm::strcmp(reinterpret_cast(""), &byteArrayBody(t, methodName(t, o), 0)) == 0) { return o; } } abort(t); } unsigned fieldCode(Thread* t, unsigned javaCode) { switch (javaCode) { case 'B': return ByteField; case 'C': return CharField; case 'D': return DoubleField; case 'F': return FloatField; case 'I': return IntField; case 'J': return LongField; case 'S': return ShortField; case 'V': return VoidField; case 'Z': return BooleanField; case 'L': case '[': return ObjectField; default: abort(t); } } unsigned fieldType(Thread* t, unsigned code) { switch (code) { case VoidField: return VOID_TYPE; case ByteField: case BooleanField: return INT8_TYPE; case CharField: case ShortField: return INT16_TYPE; case DoubleField: return DOUBLE_TYPE; case FloatField: return FLOAT_TYPE; case IntField: return INT32_TYPE; case LongField: return INT64_TYPE; case ObjectField: return POINTER_TYPE; default: abort(t); } } unsigned primitiveSize(Thread* t, unsigned code) { switch (code) { case VoidField: return 0; case ByteField: case BooleanField: return 1; case CharField: case ShortField: return 2; case FloatField: case IntField: return 4; case DoubleField: case LongField: return 8; default: abort(t); } } object parseClass(Thread* t, object loader, const uint8_t* data, unsigned size) { PROTECT(t, loader); class Client: public Stream::Client { public: Client(Thread* t): t(t) { } virtual void NO_RETURN handleError() { vm::abort(t); } private: Thread* t; } client(t); Stream s(&client, data, size); uint32_t magic = s.read4(); expect(t, magic == 0xCAFEBABE); s.read2(); // minor version s.read2(); // major version object pool = parsePool(t, s); PROTECT(t, pool); unsigned flags = s.read2(); unsigned name = s.read2(); object class_ = makeClass(t, flags, 0, // VM flags 0, // fixed size 0, // array size 0, // array dimensions 0, // runtime data index 0, // object mask referenceName (t, singletonObject(t, pool, name - 1)), 0, // source file 0, // super 0, // interfaces 0, // vtable 0, // fields 0, // methods 0, // addendum 0, // static table loader, 0);// vtable length PROTECT(t, class_); unsigned super = s.read2(); if (super) { object sc = resolveClass (t, loader, referenceName(t, singletonObject(t, pool, super - 1))); if (UNLIKELY(t->exception)) return 0; set(t, class_, ClassSuper, sc); classVmFlags(t, class_) |= (classVmFlags(t, sc) & (ReferenceFlag | WeakReferenceFlag | HasFinalizerFlag)); } parseInterfaceTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; parseFieldTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; parseMethodTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; parseAttributeTable(t, s, class_, pool); if (UNLIKELY(t->exception)) return 0; object vtable = classVirtualTable(t, class_); unsigned vtableLength = (vtable ? arrayLength(t, vtable) : 0); object real = t->m->processor->makeClass (t, classFlags(t, class_), classVmFlags(t, class_), classFixedSize(t, class_), classArrayElementSize(t, class_), classArrayDimensions(t, class_), classObjectMask(t, class_), className(t, class_), classSourceFile(t, class_), classSuper(t, class_), classInterfaceTable(t, class_), classVirtualTable(t, class_), classFieldTable(t, class_), classMethodTable(t, class_), classAddendum(t, class_), classStaticTable(t, class_), classLoader(t, class_), vtableLength); PROTECT(t, real); t->m->processor->initVtable(t, real); updateClassTables(t, real, class_); return real; } object resolveSystemClass(Thread* t, object loader, object spec, bool throw_) { PROTECT(t, loader); PROTECT(t, spec); ACQUIRE(t, t->m->classLock); object class_ = hashMapFind (t, classLoaderMap(t, loader), spec, byteArrayHash, byteArrayEqual); if (class_ == 0) { if (classLoaderParent(t, loader)) { class_ = resolveSystemClass (t, classLoaderParent(t, loader), spec, false); if (class_) { return class_; } } if (byteArrayBody(t, spec, 0) == '[') { class_ = resolveArrayClass(t, loader, spec, throw_); } else { RUNTIME_ARRAY(char, file, byteArrayLength(t, spec) + 6); memcpy(RUNTIME_ARRAY_BODY(file), &byteArrayBody(t, spec, 0), byteArrayLength(t, spec) - 1); memcpy(RUNTIME_ARRAY_BODY(file) + byteArrayLength(t, spec) - 1, ".class", 7); System::Region* region = static_cast (systemClassLoaderFinder(t, loader))->find (RUNTIME_ARRAY_BODY(file)); if (region) { if (Verbose) { fprintf(stderr, "parsing %s\n", &byteArrayBody(t, spec, 0)); } // parse class file class_ = parseClass(t, loader, region->start(), region->length()); region->dispose(); if (LIKELY(t->exception == 0)) { if (Verbose) { fprintf(stderr, "done parsing %s: %p\n", &byteArrayBody(t, spec, 0), class_); } object bootstrapClass = hashMapFind (t, root(t, Machine::BootstrapClassMap), spec, byteArrayHash, byteArrayEqual); if (bootstrapClass) { PROTECT(t, bootstrapClass); updateBootstrapClass(t, bootstrapClass, class_); class_ = bootstrapClass; } } } } if (class_) { PROTECT(t, class_); hashMapInsert(t, classLoaderMap(t, loader), spec, class_, byteArrayHash); } else if (throw_ and t->exception == 0) { object message = makeString(t, "%s", &byteArrayBody(t, spec, 0)); t->exception = t->m->classpath->makeThrowable (t, Machine::ClassNotFoundExceptionType, message); } } return class_; } object findLoadedClass(Thread* t, object loader, object spec) { PROTECT(t, loader); PROTECT(t, spec); ACQUIRE(t, t->m->classLock); return classLoaderMap(t, loader) ? hashMapFind (t, classLoaderMap(t, loader), spec, byteArrayHash, byteArrayEqual) : 0; } object resolveClass(Thread* t, object loader, object spec, bool throw_) { if (objectClass(t, loader) == type(t, Machine::SystemClassLoaderType)) { return resolveSystemClass(t, loader, spec, throw_); } else { expect(t, throw_); PROTECT(t, loader); PROTECT(t, spec); { object c = findLoadedClass(t, loader, spec); if (c) { return c; } } if (byteArrayBody(t, spec, 0) == '[') { return resolveArrayClass(t, loader, spec, throw_); } else { if (root(t, Machine::LoadClassMethod) == 0) { object m = resolveMethod (t, root(t, Machine::BootLoader), "java/lang/ClassLoader", "loadClass", "(Ljava/lang/String;)Ljava/lang/Class;"); if (m) { setRoot(t, Machine::LoadClassMethod, m); object classLoaderClass = type(t, Machine::ClassLoaderType); if (classVmFlags(t, classLoaderClass) & BootstrapFlag) { resolveSystemClass (t, root(t, Machine::BootLoader), vm::className(t, classLoaderClass)); } } } if (LIKELY(t->exception == 0)) { object method = findVirtualMethod (t, root(t, Machine::LoadClassMethod), objectClass(t, loader)); if (LIKELY(t->exception == 0)) { PROTECT(t, method); RUNTIME_ARRAY(char, s, byteArrayLength(t, spec)); replace('/', '.', RUNTIME_ARRAY_BODY(s), reinterpret_cast (&byteArrayBody(t, spec, 0))); object specString = makeString(t, "%s", RUNTIME_ARRAY_BODY(s)); object c = t->m->processor->invoke(t, method, loader, specString); if (LIKELY(c and t->exception == 0)) { PROTECT(t, c); ACQUIRE(t, t->m->classLock); if (classLoaderMap(t, loader) == 0) { object map = makeHashMap(t, 0, 0); set(t, loader, ClassLoaderMap, map); } c = jclassVmClass(t, c); hashMapInsert (t, classLoaderMap(t, loader), spec, c, byteArrayHash); return c; } } } if (t->exception == 0) { object message = makeString(t, "%s", &byteArrayBody(t, spec, 0)); t->exception = t->m->classpath->makeThrowable (t, Machine::ClassNotFoundExceptionType, message); } return 0; } } } object resolveMethod(Thread* t, object class_, const char* methodName, const char* methodSpec) { PROTECT(t, class_); object name = makeByteArray(t, methodName); PROTECT(t, name); object spec = makeByteArray(t, methodSpec); object method = findMethodInClass(t, class_, name, spec); if (t->exception == 0 and method == 0) { object message = makeString (t, "%s %s not found in %s", methodName, methodSpec, &byteArrayBody(t, className(t, class_), 0)); t->exception = t->m->classpath->makeThrowable (t, Machine::NoSuchMethodErrorType, message); return 0; } else { return method; } } object resolveField(Thread* t, object class_, const char* fieldName, const char* fieldSpec) { PROTECT(t, class_); object name = makeByteArray(t, fieldName); PROTECT(t, name); object spec = makeByteArray(t, fieldSpec); PROTECT(t, spec); object field = findInInterfaces(t, class_, name, spec, findFieldInClass); object c = class_; PROTECT(t, c); for (; c != 0 and field == 0; c = classSuper(t, c)) { field = findFieldInClass(t, c, name, spec); } if (t->exception == 0 and field == 0) { object message = makeString (t, "%s %s not found in %s", fieldName, fieldSpec, &byteArrayBody(t, className(t, class_), 0)); t->exception = t->m->classpath->makeThrowable (t, Machine::NoSuchFieldErrorType, message); return 0; } else { return field; } } bool classNeedsInit(Thread* t, object c) { if (classVmFlags(t, c) & NeedInitFlag) { if (classVmFlags(t, c) & InitFlag) { // the class is currently being initialized. If this the thread // which is initializing it, we should not try to initialize it // recursively. Otherwise, we must wait for the responsible // thread to finish. for (Thread::ClassInitStack* s = t->classInitStack; s; s = s->next) { if (s->class_ == c) { return false; } } } return true; } else { return false; } } bool preInitClass(Thread* t, object c) { if (classVmFlags(t, c) & NeedInitFlag) { PROTECT(t, c); ACQUIRE(t, t->m->classLock); if (classVmFlags(t, c) & NeedInitFlag) { if (classVmFlags(t, c) & InitFlag) { // If the class is currently being initialized and this the thread // which is initializing it, we should not try to initialize it // recursively. if (t->m->processor->isInitializing(t, c)) { return false; } // some other thread is on the job - wait for it to finish. while (classVmFlags(t, c) & InitFlag) { ENTER(t, Thread::IdleState); t->m->classLock->wait(t->systemThread, 0); } } else if (classVmFlags(t, c) & InitErrorFlag) { object message = makeString (t, "%s", &byteArrayBody(t, className(t, c), 0)); t->exception = t->m->classpath->makeThrowable (t, Machine::NoClassDefFoundErrorType, message); } else { classVmFlags(t, c) |= InitFlag; return true; } } } return false; } void postInitClass(Thread* t, object c) { PROTECT(t, c); ACQUIRE(t, t->m->classLock); if (t->exception) { t->exception = t->m->classpath->makeThrowable (t, Machine::ExceptionInInitializerErrorType, 0, 0, t->exception); classVmFlags(t, c) |= NeedInitFlag | InitErrorFlag; classVmFlags(t, c) &= ~InitFlag; } else { classVmFlags(t, c) &= ~(NeedInitFlag | InitFlag); } t->m->classLock->notifyAll(t->systemThread); } void initClass(Thread* t, object c) { PROTECT(t, c); if (preInitClass(t, c)) { Thread::ClassInitStack stack(t, c); t->m->processor->invoke(t, classInitializer(t, c), 0); postInitClass(t, c); } } object resolveObjectArrayClass(Thread* t, object loader, object elementClass) { { object arrayClass = classRuntimeDataArrayClass (t, getClassRuntimeData(t, elementClass)); if (arrayClass) { return arrayClass; } } PROTECT(t, loader); PROTECT(t, elementClass); object elementSpec = className(t, elementClass); PROTECT(t, elementSpec); object spec; if (byteArrayBody(t, elementSpec, 0) == '[') { spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 1); byteArrayBody(t, spec, 0) = '['; memcpy(&byteArrayBody(t, spec, 1), &byteArrayBody(t, elementSpec, 0), byteArrayLength(t, elementSpec)); } else { spec = makeByteArray(t, byteArrayLength(t, elementSpec) + 3); byteArrayBody(t, spec, 0) = '['; byteArrayBody(t, spec, 1) = 'L'; memcpy(&byteArrayBody(t, spec, 2), &byteArrayBody(t, elementSpec, 0), byteArrayLength(t, elementSpec) - 1); byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 1) = ';'; byteArrayBody(t, spec, byteArrayLength(t, elementSpec) + 2) = 0; } object arrayClass = resolveClass(t, loader, spec); set(t, getClassRuntimeData(t, elementClass), ClassRuntimeDataArrayClass, arrayClass); return arrayClass; } object makeObjectArray(Thread* t, object elementClass, unsigned count) { object arrayClass = resolveObjectArrayClass (t, classLoader(t, elementClass), elementClass); PROTECT(t, arrayClass); object array = makeArray(t, count); setObjectClass(t, array, arrayClass); return array; } object findInTable(Thread* t, object table, object name, object spec, object& (*getName)(Thread*, object), object& (*getSpec)(Thread*, object)) { if (table) { for (unsigned i = 0; i < arrayLength(t, table); ++i) { object o = arrayBody(t, table, i); if (vm::strcmp(&byteArrayBody(t, getName(t, o), 0), &byteArrayBody(t, name, 0)) == 0 and vm::strcmp(&byteArrayBody(t, getSpec(t, o), 0), &byteArrayBody(t, spec, 0)) == 0) { return o; } } // fprintf(stderr, "%s %s not in\n", // &byteArrayBody(t, name, 0), // &byteArrayBody(t, spec, 0)); // for (unsigned i = 0; i < arrayLength(t, table); ++i) { // object o = arrayBody(t, table, i); // fprintf(stderr, "\t%s %s\n", // &byteArrayBody(t, getName(t, o), 0), // &byteArrayBody(t, getSpec(t, o), 0)); // } } return 0; } object findInHierarchyOrNull(Thread* t, object class_, object name, object spec, object (*find)(Thread*, object, object, object)) { object originalClass = class_; object o = 0; if ((classFlags(t, class_) & ACC_INTERFACE) and classVirtualTable(t, class_)) { o = findInTable (t, classVirtualTable(t, class_), name, spec, methodName, methodSpec); } if (o == 0) { for (; o == 0 and class_; class_ = classSuper(t, class_)) { o = find(t, class_, name, spec); } if (o == 0 and find == findFieldInClass) { o = findInInterfaces(t, originalClass, name, spec, find); } } return o; } unsigned parameterFootprint(Thread* t, const char* s, bool static_) { unsigned footprint = 0; for (MethodSpecIterator it(t, s); it.hasNext();) { switch (*it.next()) { case 'J': case 'D': footprint += 2; break; default: ++ footprint; break; } } if (not static_) { ++ footprint; } return footprint; } void addFinalizer(Thread* t, object target, void (*finalize)(Thread*, object)) { PROTECT(t, target); ACQUIRE(t, t->m->referenceLock); void* function; memcpy(&function, &finalize, BytesPerWord); object f = makeFinalizer(t, 0, function, 0); finalizerTarget(t, f) = target; finalizerNext(t, f) = t->m->finalizers; t->m->finalizers = f; } object objectMonitor(Thread* t, object o, bool createNew) { assert(t, t->state == Thread::ActiveState); object m = hashMapFind (t, root(t, Machine::MonitorMap), o, objectHash, objectEqual); if (m) { if (DebugMonitors) { fprintf(stderr, "found monitor %p for object %x\n", m, objectHash(t, o)); } return m; } else if (createNew) { PROTECT(t, o); PROTECT(t, m); { ENTER(t, Thread::ExclusiveState); m = hashMapFind (t, root(t, Machine::MonitorMap), o, objectHash, objectEqual); if (m) { if (DebugMonitors) { fprintf(stderr, "found monitor %p for object %x\n", m, objectHash(t, o)); } return m; } object head = makeMonitorNode(t, 0, 0); m = makeMonitor(t, 0, 0, 0, head, head, 0); if (DebugMonitors) { fprintf(stderr, "made monitor %p for object %x\n", m, objectHash(t, o)); } hashMapInsert(t, root(t, Machine::MonitorMap), o, m, objectHash); addFinalizer(t, o, removeMonitor); } return m; } else { return 0; } } object intern(Thread* t, object s) { PROTECT(t, s); ACQUIRE(t, t->m->referenceLock); object n = hashMapFindNode (t, root(t, Machine::StringMap), s, stringHash, stringEqual); if (n) { return jreferenceTarget(t, tripleFirst(t, n)); } else { hashMapInsert(t, root(t, Machine::StringMap), s, 0, stringHash); addFinalizer(t, s, removeString); return s; } } void collect(Thread* t, Heap::CollectionType type) { ENTER(t, Thread::ExclusiveState); #ifdef VM_STRESS bool stress = (t->flags |= Thread::StressFlag); if (not stress) atomicOr(&(t->flags), Thread::StressFlag); #endif Machine* m = t->m; m->unsafe = true; m->heap->collect(type, footprint(m->rootThread)); m->unsafe = false; postCollect(m->rootThread); killZombies(t, m->rootThread); for (unsigned i = 0; i < m->heapPoolIndex; ++i) { m->heap->free(m->heapPool[i], ThreadHeapSizeInBytes); } m->heapPoolIndex = 0; m->fixedFootprint = 0; #ifdef VM_STRESS if (not stress) atomicAnd(&(t->flags), ~Thread::StressFlag); #endif object f = t->m->finalizeQueue; t->m->finalizeQueue = 0; for (; f; f = finalizerNext(t, f)) { void (*function)(Thread*, object); memcpy(&function, &finalizerFinalize(t, f), BytesPerWord); if (function) { function(t, finalizerTarget(t, f)); } else { setRoot(t, Machine::ObjectsToFinalize, makePair (t, finalizerTarget(t, f), root(t, Machine::ObjectsToFinalize))); } } if (root(t, Machine::ObjectsToFinalize) and m->finalizeThread == 0) { m->finalizeThread = m->processor->makeThread (m, t->m->classpath->makeThread(t, m->rootThread), m->rootThread); if (not t->m->system->success (m->system->start(&(m->finalizeThread->runnable)))) { m->finalizeThread->exit(); m->finalizeThread = 0; } } } void walk(Thread* t, Heap::Walker* w, object o, unsigned start) { object class_ = static_cast(t->m->heap->follow(objectClass(t, o))); object objectMask = static_cast (t->m->heap->follow(classObjectMask(t, class_))); bool more = true; if (objectMask) { unsigned fixedSize = classFixedSize(t, class_); unsigned arrayElementSize = classArrayElementSize(t, class_); unsigned arrayLength = (arrayElementSize ? cast(o, fixedSize - BytesPerWord) : 0); RUNTIME_ARRAY(uint32_t, mask, intArrayLength(t, objectMask)); memcpy(RUNTIME_ARRAY_BODY(mask), &intArrayBody(t, objectMask, 0), intArrayLength(t, objectMask) * 4); more = ::walk(t, w, RUNTIME_ARRAY_BODY(mask), fixedSize, arrayElementSize, arrayLength, start); } else if (classVmFlags(t, class_) & SingletonFlag) { unsigned length = singletonLength(t, o); if (length) { more = ::walk(t, w, singletonMask(t, o), (singletonCount(t, o) + 2) * BytesPerWord, 0, 0, start); } else if (start == 0) { more = w->visit(0); } } else if (start == 0) { more = w->visit(0); } if (more and classVmFlags(t, class_) & ContinuationFlag) { t->m->processor->walkContinuationBody(t, w, o, start); } } int walkNext(Thread* t, object o, int previous) { class Walker: public Heap::Walker { public: Walker(): value(-1) { } bool visit(unsigned offset) { value = offset; return false; } int value; } walker; walk(t, &walker, o, previous + 1); return walker.value; } void visitRoots(Machine* m, Heap::Visitor* v) { v->visit(&(m->types)); v->visit(&(m->roots)); for (Thread* t = m->rootThread; t; t = t->peer) { ::visitRoots(t, v); } for (Reference* r = m->jniReferences; r; r = r->next) { v->visit(&(r->target)); } } void printTrace(Thread* t, object exception) { if (exception == 0) { exception = t->m->classpath->makeThrowable (t, Machine::NullPointerExceptionType); } for (object e = exception; e; e = throwableCause(t, e)) { if (e != exception) { fprintf(stderr, "caused by: "); } fprintf(stderr, "%s", &byteArrayBody (t, className(t, objectClass(t, e)), 0)); if (throwableMessage(t, e)) { object m = throwableMessage(t, e); RUNTIME_ARRAY(char, message, stringLength(t, m) + 1); stringChars(t, m, RUNTIME_ARRAY_BODY(message)); fprintf(stderr, ": %s\n", RUNTIME_ARRAY_BODY(message)); } else { fprintf(stderr, "\n"); } object trace = throwableTrace(t, e); for (unsigned i = 0; i < objectArrayLength(t, trace); ++i) { object e = objectArrayBody(t, trace, i); const int8_t* class_ = &byteArrayBody (t, className(t, methodClass(t, traceElementMethod(t, e))), 0); const int8_t* method = &byteArrayBody (t, methodName(t, traceElementMethod(t, e)), 0); int line = t->m->processor->lineNumber (t, traceElementMethod(t, e), traceElementIp(t, e)); fprintf(stderr, " at %s.%s ", class_, method); switch (line) { case NativeLine: fprintf(stderr, "(native)\n"); break; case UnknownLine: fprintf(stderr, "(unknown line)\n"); break; default: fprintf(stderr, "(line %d)\n", line); } } if (e == throwableCause(t, e)) { break; } } } object makeTrace(Thread* t, Processor::StackWalker* walker) { class Visitor: public Processor::StackVisitor { public: Visitor(Thread* t): t(t), trace(0), index(0), protector(t, &trace) { } virtual bool visit(Processor::StackWalker* walker) { if (trace == 0) { trace = makeObjectArray(t, walker->count()); } object e = makeTraceElement(t, walker->method(), walker->ip()); vm_assert(t, index < objectArrayLength(t, trace)); set(t, trace, ArrayBody + (index * BytesPerWord), e); ++ index; return true; } Thread* t; object trace; unsigned index; Thread::SingleProtector protector; } v(t); walker->walk(&v); return v.trace ? v.trace : makeObjectArray(t, 0); } object makeTrace(Thread* t, Thread* target) { class Visitor: public Processor::StackVisitor { public: Visitor(Thread* t): t(t), trace(0) { } virtual bool visit(Processor::StackWalker* walker) { trace = vm::makeTrace(t, walker); return false; } Thread* t; object trace; } v(t); t->m->processor->walkStack(target, &v); return v.trace ? v.trace : makeObjectArray(t, 0); } void runFinalizeThread(Thread* t) { setDaemon(t, t->javaThread, true); object list = 0; PROTECT(t, list); while (true) { { ACQUIRE(t, t->m->stateLock); while (t->m->finalizeThread and root(t, Machine::ObjectsToFinalize) == 0) { ENTER(t, Thread::IdleState); t->m->stateLock->wait(t->systemThread, 0); } if (t->m->finalizeThread == 0) { return; } else { list = root(t, Machine::ObjectsToFinalize); setRoot(t, Machine::ObjectsToFinalize, 0); } } for (; list; list = pairSecond(t, list)) { finalizeObject(t, pairFirst(t, list)); } } } object parseUtf8(Thread* t, const char* data, unsigned length) { class Client: public Stream::Client { public: Client(Thread* t): t(t) { } virtual void NO_RETURN handleError() { vm::abort(t); } private: Thread* t; } client(t); Stream s(&client, reinterpret_cast(data), length); return ::parseUtf8(t, s, length); } object getCaller(Thread* t, unsigned target) { class Visitor: public Processor::StackVisitor { public: Visitor(Thread* t, unsigned target): t(t), method(0), count(0), target(target) { } virtual bool visit(Processor::StackWalker* walker) { if (count == target) { method = walker->method(); return false; } else { ++ count; return true; } } Thread* t; object method; unsigned count; unsigned target; } v(t, target); t->m->processor->walkStack(t, &v); return v.method; } object defineClass(Thread* t, object loader, const uint8_t* buffer, unsigned length) { PROTECT(t, loader); object c = parseClass(t, loader, buffer, length); if (c) { PROTECT(t, c); ACQUIRE(t, t->m->classLock); if (classLoaderMap(t, loader) == 0) { object map = makeHashMap(t, 0, 0); set(t, loader, ClassLoaderMap, map); } hashMapInsert (t, classLoaderMap(t, loader), className(t, c), c, byteArrayHash); } return c; } void noop() { } #include "type-constructors.cpp" } // namespace vm // for debugging void vmPrintTrace(Thread* t) { class Visitor: public Processor::StackVisitor { public: Visitor(Thread* t): t(t) { } virtual bool visit(Processor::StackWalker* walker) { const int8_t* class_ = &byteArrayBody (t, className(t, methodClass(t, walker->method())), 0); const int8_t* method = &byteArrayBody (t, methodName(t, walker->method()), 0); int line = t->m->processor->lineNumber (t, walker->method(), walker->ip()); fprintf(stderr, " at %s.%s ", class_, method); switch (line) { case NativeLine: fprintf(stderr, "(native)\n"); break; case UnknownLine: fprintf(stderr, "(unknown line)\n"); break; default: fprintf(stderr, "(line %d)\n", line); } return true; } Thread* t; } v(t); fprintf(stderr, "debug trace for thread %p\n", t); t->m->processor->walkStack(t, &v); } // also for debugging void* vmAddressFromLine(Thread* t, object m, unsigned line) { object code = methodCode(t, m); printf("code: %p\n", code); object lnt = codeLineNumberTable(t, code); printf("lnt: %p\n", lnt); if (lnt) { unsigned last = 0; unsigned bottom = 0; unsigned top = lineNumberTableLength(t, lnt); for(unsigned i = bottom; i < top; i++) { LineNumber* ln = lineNumberTableBody(t, lnt, i); if(lineNumberLine(ln) == line) return reinterpret_cast(lineNumberIp(ln)); else if(lineNumberLine(ln) > line) return reinterpret_cast(last); last = lineNumberIp(ln); } } return 0; }