/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { const bool DebugAppend = false; const bool DebugCompile = false; const bool DebugStack = false; const bool DebugRegisters = false; const bool DebugFrameIndexes = false; const bool DebugFrame = false; const bool DebugControl = false; const bool DebugReads = false; const bool DebugMoves = false; const int AnyFrameIndex = -2; const int NoFrameIndex = -1; class Context; class Value; class Stack; class Site; class ConstantSite; class AddressSite; class RegisterSite; class MemorySite; class Event; class PushEvent; class Read; class MultiRead; class StubRead; class Block; class Snapshot; void NO_RETURN abort(Context*); void apply(Context* c, UnaryOperation op, unsigned s1Size, Site* s1); void apply(Context* c, BinaryOperation op, unsigned s1Size, Site* s1, unsigned s2Size, Site* s2); void apply(Context* c, TernaryOperation op, unsigned s1Size, Site* s1, unsigned s2Size, Site* s2, unsigned s3Size, Site* s3); enum ConstantCompare { CompareNone, CompareLess, CompareGreater, CompareEqual }; class Cell { public: Cell(Cell* next, void* value): next(next), value(value) { } Cell* next; void* value; }; class Local { public: Value* value; unsigned footprint; }; class Site { public: Site(): next(0) { } virtual Site* readTarget(Context*, Read*) { return this; } virtual void toString(Context*, char*, unsigned) = 0; virtual unsigned copyCost(Context*, Site*) = 0; virtual bool match(Context*, uint8_t, uint64_t, int) = 0; virtual void acquire(Context*, Stack*, Local*, unsigned, Value*) { } virtual void release(Context*) { } virtual void freeze(Context*) { } virtual void thaw(Context*) { } virtual bool usesRegister(Context*, int) { return false; } virtual OperandType type(Context*) = 0; virtual Assembler::Operand* asAssemblerOperand(Context*) = 0; virtual Site* copy(Context*) = 0; Site* next; }; class Stack: public Compiler::StackElement { public: Stack(unsigned index, unsigned footprint, Value* value, Stack* next): index(index), footprint(footprint), value(value), next(next) { } unsigned index; unsigned footprint; Value* value; Stack* next; }; class SavedValue { public: SavedValue(unsigned footprint, Value* value, SavedValue* next): footprint(footprint), value(value), next(next) { } unsigned footprint; Value* value; SavedValue* next; }; class ForkElement { public: Value* value; MultiRead* read; bool local; }; class ForkState: public Compiler::State { public: ForkState(Stack* stack, Local* locals, SavedValue* saved, Event* predecessor, unsigned logicalIp): stack(stack), locals(locals), saved(saved), predecessor(predecessor), logicalIp(logicalIp), readCount(0) { } Stack* stack; Local* locals; SavedValue* saved; Event* predecessor; unsigned logicalIp; unsigned readCount; ForkElement elements[0]; }; class LogicalInstruction { public: LogicalInstruction(int index, Stack* stack, Local* locals): firstEvent(0), lastEvent(0), immediatePredecessor(0), stack(stack), locals(locals), machineOffset(0), index(index) { } Event* firstEvent; Event* lastEvent; LogicalInstruction* immediatePredecessor; Stack* stack; Local* locals; Promise* machineOffset; int index; }; class Register { public: Register(int number): value(0), site(0), number(number), size(0), refCount(0), freezeCount(0), reserved(false) { } Value* value; RegisterSite* site; int number; unsigned size; unsigned refCount; unsigned freezeCount; bool reserved; }; class FrameResource { public: Value* value; MemorySite* site; unsigned size; }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Read { public: Read(unsigned size): value(0), event(0), eventNext(0), size(size) { } virtual Site* pickSite(Context* c, Value* v, bool includeBuddies) = 0; virtual Site* allocateSite(Context* c) = 0; virtual bool intersect(uint8_t* typeMask, uint64_t* registerMask, int* frameIndex) = 0; virtual bool valid() = 0; virtual void append(Context* c, Read* r) = 0; virtual Read* next(Context* c) = 0; Value* value; Event* event; Read* eventNext; unsigned size; }; int intersectFrameIndexes(int a, int b) { if (a == NoFrameIndex or b == NoFrameIndex) return NoFrameIndex; if (a == AnyFrameIndex) return b; if (b == AnyFrameIndex) return a; if (a == b) return a; return NoFrameIndex; } class Value: public Compiler::Operand { public: Value(Site* site, Site* target): reads(0), lastRead(0), sites(site), source(0), target(target), buddy(this), local(false) { } virtual void addPredecessor(Context*, Event*) { } Read* reads; Read* lastRead; Site* sites; Site* source; Site* target; Value* buddy; bool local; }; enum Pass { ScanPass, CompilePass }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone, Compiler::Client* client): system(system), assembler(assembler), arch(assembler->arch()), zone(zone), client(client), stack(0), locals(0), saved(0), predecessor(0), logicalCode(0), registers (static_cast (zone->allocate(sizeof(Register*) * arch->registerCount()))), frameResources(0), firstConstant(0), lastConstant(0), machineCode(0), firstEvent(0), lastEvent(0), forkState(0), logicalIp(-1), constantCount(0), logicalCodeLength(0), parameterFootprint(0), localFootprint(0), machineCodeSize(0), alignedFrameSize(0), availableRegisterCount(arch->registerCount()), constantCompare(CompareNone), pass(ScanPass) { for (unsigned i = 0; i < arch->registerCount(); ++i) { registers[i] = new (zone->allocate(sizeof(Register))) Register(i); if (arch->reserved(i)) { registers[i]->reserved = true; -- availableRegisterCount; } } } System* system; Assembler* assembler; Assembler::Architecture* arch; Zone* zone; Compiler::Client* client; Stack* stack; Local* locals; SavedValue* saved; Event* predecessor; LogicalInstruction** logicalCode; Register** registers; FrameResource* frameResources; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; uint8_t* machineCode; Event* firstEvent; Event* lastEvent; ForkState* forkState; int logicalIp; unsigned constantCount; unsigned logicalCodeLength; unsigned parameterFootprint; unsigned localFootprint; unsigned machineCodeSize; unsigned alignedFrameSize; unsigned availableRegisterCount; ConstantCompare constantCompare; Pass pass; }; class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->machineCodeSize) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(0), next(next) { } CodePromise(Context* c, Promise* offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset->value()); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset and offset->resolved(); } Context* c; Promise* offset; CodePromise* next; }; unsigned machineOffset(Context* c, int logicalIp) { return c->logicalCode[logicalIp]->machineOffset->value(); } class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + machineOffset(c, logicalIp)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } Cell* cons(Context* c, void* value, Cell* next) { return new (c->zone->allocate(sizeof(Cell))) Cell(next, value); } Cell* append(Context* c, Cell* first, Cell* second) { if (first) { if (second) { Cell* start = cons(c, first->value, second); Cell* end = start; for (Cell* cell = first->next; cell; cell = cell->next) { Cell* n = cons(c, cell->value, second); end->next = n; end = n; } return start; } else { return first; } } else { return second; } } Cell* reverseDestroy(Cell* cell) { Cell* previous = 0; while (cell) { Cell* next = cell->next; cell->next = previous; previous = cell; cell = next; } return previous; } class StubReadPair { public: Value* value; StubRead* read; }; class JunctionState { public: JunctionState(): readCount(0) { } unsigned readCount; StubReadPair reads[0]; }; class Link { public: Link(Event* predecessor, Link* nextPredecessor, Event* successor, Link* nextSuccessor, ForkState* forkState): predecessor(predecessor), nextPredecessor(nextPredecessor), successor(successor), nextSuccessor(nextSuccessor), forkState(forkState), junctionState(0) { } Event* predecessor; Link* nextPredecessor; Event* successor; Link* nextSuccessor; ForkState* forkState; JunctionState* junctionState; }; Link* link(Context* c, Event* predecessor, Link* nextPredecessor, Event* successor, Link* nextSuccessor, ForkState* forkState) { return new (c->zone->allocate(sizeof(Link))) Link (predecessor, nextPredecessor, successor, nextSuccessor, forkState); } unsigned countPredecessors(Link* link) { unsigned c = 0; for (; link; link = link->nextPredecessor) ++ c; return c; } Link* lastPredecessor(Link* link) { while (link->nextPredecessor) link = link->nextPredecessor; return link; } unsigned countSuccessors(Link* link) { unsigned c = 0; for (; link; link = link->nextSuccessor) ++ c; return c; } class Event { public: Event(Context* c): next(0), stackBefore(c->stack), localsBefore(c->locals), stackAfter(0), localsAfter(0), promises(0), reads(0), junctionSites(0), snapshots(0), predecessors(0), successors(0), visitLinks(0), block(0), logicalInstruction(c->logicalCode[c->logicalIp]), readCount(0) { } virtual const char* name() = 0; virtual void compile(Context* c) = 0; virtual bool isBranch() { return false; } Event* next; Stack* stackBefore; Local* localsBefore; Stack* stackAfter; Local* localsAfter; CodePromise* promises; Read* reads; Site** junctionSites; Snapshot* snapshots; Link* predecessors; Link* successors; Cell* visitLinks; Block* block; LogicalInstruction* logicalInstruction; unsigned readCount; }; int frameIndex(Context* c, int index, unsigned footprint) { return c->alignedFrameSize + c->parameterFootprint - index - footprint; } unsigned frameIndexToOffset(Context* c, unsigned frameIndex) { return ((frameIndex >= c->alignedFrameSize) ? (frameIndex + (c->arch->frameFooterSize() * 2) + c->arch->frameHeaderSize()) : (frameIndex + c->arch->frameFooterSize())) * BytesPerWord; } unsigned offsetToFrameIndex(Context* c, unsigned offset) { unsigned normalizedOffset = offset / BytesPerWord; return ((normalizedOffset >= c->alignedFrameSize + c->arch->frameFooterSize()) ? (normalizedOffset - (c->arch->frameFooterSize() * 2) - c->arch->frameHeaderSize()) : (normalizedOffset - c->arch->frameFooterSize())); } class FrameIterator { public: class Element { public: Element(Value* value, unsigned localIndex, unsigned footprint): value(value), localIndex(localIndex), footprint(footprint) { } Value* const value; const unsigned localIndex; const unsigned footprint; }; FrameIterator(Context* c, Stack* stack, Local* locals): stack(stack), locals(locals), localIndex(c->localFootprint - 1) { } bool hasMore() { while (localIndex >= 0 and locals[localIndex].value == 0) -- localIndex; return stack != 0 or localIndex >= 0; } Element next(Context* c) { Value* v; unsigned li; unsigned footprint; if (stack) { Stack* s = stack; v = s->value; li = s->index + c->localFootprint; footprint = s->footprint; stack = stack->next; } else { Local* l = locals + localIndex; v = l->value; li = localIndex; footprint = l->footprint; -- localIndex; } return Element(v, li, footprint); } Stack* stack; Local* locals; int localIndex; }; int frameIndex(Context* c, FrameIterator::Element* element) { return frameIndex(c, element->localIndex, element->footprint); } class SiteIterator { public: SiteIterator(Value* v, bool includeBuddies = true): originalValue(v), currentValue(v), includeBuddies(includeBuddies), next_(findNext(&(v->sites))), previous(0) { } Site** findNext(Site** p) { if (*p) { return p; } else { if (includeBuddies) { for (Value* v = currentValue->buddy; v != originalValue; v = v->buddy) { if (v->sites) { currentValue = v; return &(v->sites); } } } return 0; } } bool hasMore() { if (previous) { next_ = findNext(&((*previous)->next)); previous = 0; } return next_ != 0; } Site* next() { previous = next_; return *previous; } void remove(Context* c) { (*previous)->release(c); *previous = (*previous)->next; next_ = findNext(previous); previous = 0; } Value* originalValue; Value* currentValue; bool includeBuddies; Site** next_; Site** previous; }; bool hasMoreThanOneSite(Value* v) { SiteIterator it(v); if (it.hasMore()) { it.next(); return it.hasMore(); } else { return false; } } bool hasSite(Value* v) { SiteIterator it(v); return it.hasMore(); } bool findSite(Context*, Value* v, Site* site) { for (Site* s = v->sites; s; s = s->next) { if (s == site) return true; } return false; } void addSite(Context* c, Stack* stack, Local* locals, unsigned size, Value* v, Site* s) { if (not findSite(c, v, s)) { // fprintf(stderr, "add site %p (%d) to %p\n", s, s->type(c), v); s->acquire(c, stack, locals, size, v); s->next = v->sites; v->sites = s; } } void removeSite(Context* c, Value* v, Site* s) { for (SiteIterator it(v); it.hasMore();) { if (s == it.next()) { // fprintf(stderr, "remove site %p from %p\n", s, v); it.remove(c); break; } } } void clearSites(Context* c, Value* v) { // fprintf(stderr, "clear sites for %p\n", v); for (SiteIterator it(v); it.hasMore();) { it.next(); it.remove(c); } } bool valid(Read* r) { return r and r->valid(); } Read* live(Value* v) { if (valid(v->reads)) return v->reads; for (Value* p = v->buddy; p != v; p = p->buddy) { if (valid(p->reads)) return p->reads; } return 0; } Read* liveNext(Context* c, Value* v) { Read* r = v->reads->next(c); if (valid(r)) return r; for (Value* p = v->buddy; p != v; p = p->buddy) { if (valid(p->reads)) return p->reads; } return 0; } void nextRead(Context* c, Event* e, Value* v) { assert(c, e == v->reads->event); // if (DebugReads) { // fprintf(stderr, "pop read %p from %p next %p event %p (%s)\n", // v->reads, v, v->reads->next(c), e, (e ? e->name() : 0)); // } v->reads = v->reads->next(c); if (not live(v)) { clearSites(c, v); } } ConstantSite* constantSite(Context* c, Promise* value); class ConstantSite: public Site { public: ConstantSite(Promise* value): value(value) { } virtual void toString(Context*, char* buffer, unsigned bufferSize) { if (value.value->resolved()) { snprintf(buffer, bufferSize, "constant %"LLD, value.value->value()); } else { snprintf(buffer, bufferSize, "constant unresolved"); } } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 1); } virtual bool match(Context*, uint8_t typeMask, uint64_t, int) { return typeMask & (1 << ConstantOperand); } virtual OperandType type(Context*) { return ConstantOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } virtual Site* copy(Context* c) { return constantSite(c, value.value); } Assembler::Constant value; }; ConstantSite* constantSite(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantSite))) ConstantSite(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantSite* constantSite(Context* c, int64_t value) { return constantSite(c, resolved(c, value)); } AddressSite* addressSite(Context* c, Promise* address); class AddressSite: public Site { public: AddressSite(Promise* address): address(address) { } virtual void toString(Context*, char* buffer, unsigned bufferSize) { if (address.address->resolved()) { snprintf(buffer, bufferSize, "address %"LLD, address.address->value()); } else { snprintf(buffer, bufferSize, "address unresolved"); } } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 3); } virtual bool match(Context*, uint8_t typeMask, uint64_t, int) { return typeMask & (1 << AddressOperand); } virtual OperandType type(Context*) { return AddressOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &address; } virtual Site* copy(Context* c) { return addressSite(c, address.address); } Assembler::Address address; }; AddressSite* addressSite(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressSite))) AddressSite(address); } void freeze(Context* c, Register* r) { assert(c, c->availableRegisterCount); if (DebugRegisters) { fprintf(stderr, "freeze %d to %d\n", r->number, r->freezeCount + 1); } ++ r->freezeCount; -- c->availableRegisterCount; } void thaw(Context* c, Register* r) { assert(c, r->freezeCount); if (DebugRegisters) { fprintf(stderr, "thaw %d to %d\n", r->number, r->freezeCount - 1); } -- r->freezeCount; ++ c->availableRegisterCount; } Register* acquire(Context* c, uint32_t mask, Stack* stack, Local* locals, unsigned newSize, Value* newValue, RegisterSite* newSite); void release(Context* c, Register* r); Register* validate(Context* c, uint32_t mask, Stack* stack, Local* locals, unsigned size, Value* value, RegisterSite* site, Register* current); RegisterSite* freeRegisterSite(Context* c, uint64_t mask = ~static_cast(0)); class RegisterSite: public Site { public: RegisterSite(uint64_t mask, Register* low = 0, Register* high = 0): mask(mask), low(low), high(high), register_(NoRegister, NoRegister) { } void sync(Context* c UNUSED) { assert(c, low); register_.low = low->number; register_.high = (high? high->number : NoRegister); } virtual void toString(Context* c, char* buffer, unsigned bufferSize) { if (low) { sync(c); snprintf(buffer, bufferSize, "register %d %d", register_.low, register_.high); } else { snprintf(buffer, bufferSize, "register unacquired"); } } virtual unsigned copyCost(Context* c, Site* s) { sync(c); if (s and (this == s or (s->type(c) == RegisterOperand and (static_cast(s)->mask & (static_cast(1) << register_.low)) and (register_.high == NoRegister or (static_cast(s)->mask & (static_cast(1) << (register_.high + 32))))))) { return 0; } else { return 2; } } virtual bool match(Context* c, uint8_t typeMask, uint64_t registerMask, int) { if ((typeMask & (1 << RegisterOperand)) and low) { sync(c); return ((static_cast(1) << register_.low) & registerMask) and (register_.high == NoRegister or ((static_cast(1) << (register_.high + 32)) & registerMask)); } else { return false; } } virtual void acquire(Context* c, Stack* stack, Local* locals, unsigned size, Value* v) { low = ::validate(c, mask, stack, locals, size, v, this, low); if (size > BytesPerWord) { ::freeze(c, low); high = ::validate(c, mask >> 32, stack, locals, size, v, this, high); ::thaw(c, low); } } virtual void release(Context* c) { assert(c, low); ::release(c, low); if (high) { ::release(c, high); } } virtual void freeze(Context* c UNUSED) { assert(c, low); ::freeze(c, low); if (high) { ::freeze(c, high); } } virtual void thaw(Context* c UNUSED) { assert(c, low); ::thaw(c, low); if (high) { ::thaw(c, high); } } virtual bool usesRegister(Context* c, int r) { sync(c); return register_.low == r or register_.high == r; } virtual OperandType type(Context*) { return RegisterOperand; } virtual Assembler::Operand* asAssemblerOperand(Context* c) { sync(c); return ®ister_; } virtual Site* copy(Context* c) { uint64_t mask; if (low) { sync(c); mask = static_cast(1) << register_.low; if (register_.high != NoRegister) { mask |= static_cast(1) << (register_.high + 32); } } else { mask = this->mask; } return freeRegisterSite(c, mask); } uint64_t mask; Register* low; Register* high; Assembler::Register register_; }; RegisterSite* registerSite(Context* c, int low, int high = NoRegister) { assert(c, low != NoRegister); assert(c, low < static_cast(c->arch->registerCount())); assert(c, high == NoRegister or high < static_cast(c->arch->registerCount())); Register* hr; if (high == NoRegister) { hr = 0; } else { hr = c->registers[high]; } return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(~static_cast(0), c->registers[low], hr); } RegisterSite* freeRegisterSite(Context* c, uint64_t mask) { return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(mask); } Register* increment(Context* c, int i) { Register* r = c->registers[i]; if (DebugRegisters) { fprintf(stderr, "increment %d to %d\n", r->number, r->refCount + 1); } ++ r->refCount; return r; } void decrement(Context* c UNUSED, Register* r) { assert(c, r->refCount > 0); if (DebugRegisters) { fprintf(stderr, "decrement %d to %d\n", r->number, r->refCount - 1); } -- r->refCount; } void acquireFrameIndex(Context* c, int index, Stack* stack, Local* locals, unsigned newSize, Value* newValue, MemorySite* newSite, bool recurse = true); void releaseFrameIndex(Context* c, int index, bool recurse = true); MemorySite* memorySite(Context* c, int base, int offset = 0, int index = NoRegister, unsigned scale = 1); class MemorySite: public Site { public: MemorySite(int base, int offset, int index, unsigned scale): base(0), index(0), value(base, offset, index, scale) { } void sync(Context* c UNUSED) { assert(c, base); value.base = base->number; value.index = (index? index->number : NoRegister); } virtual void toString(Context* c, char* buffer, unsigned bufferSize) { if (base) { sync(c); snprintf(buffer, bufferSize, "memory %d 0x%x %d %d", value.base, value.offset, value.index, value.scale); } else { snprintf(buffer, bufferSize, "memory unacquired"); } } virtual unsigned copyCost(Context* c, Site* s) { sync(c); if (s and (this == s or (s->type(c) == MemoryOperand and static_cast(s)->value.base == value.base and static_cast(s)->value.offset == value.offset and static_cast(s)->value.index == value.index and static_cast(s)->value.scale == value.scale))) { return 0; } else { return 4; } } virtual bool match(Context* c, uint8_t typeMask, uint64_t, int frameIndex) { if (typeMask & (1 << MemoryOperand)) { sync(c); if (value.base == c->arch->stack()) { assert(c, value.index == NoRegister); return frameIndex == AnyFrameIndex || (frameIndex != NoFrameIndex && static_cast(frameIndexToOffset(c, frameIndex)) == value.offset); } else { return true; } } else { return false; } } virtual void acquire(Context* c, Stack* stack, Local* locals, unsigned size, Value* v) { base = increment(c, value.base); if (value.index != NoRegister) { index = increment(c, value.index); } if (value.base == c->arch->stack()) { assert(c, value.index == NoRegister); acquireFrameIndex (c, offsetToFrameIndex(c, value.offset), stack, locals, size, v, this); } } virtual void release(Context* c) { if (value.base == c->arch->stack()) { assert(c, value.index == NoRegister); releaseFrameIndex(c, offsetToFrameIndex(c, value.offset)); } decrement(c, base); if (index) { decrement(c, index); } } virtual bool usesRegister(Context* c, int r) { sync(c); return value.base == r or value.index == r; } virtual OperandType type(Context*) { return MemoryOperand; } virtual Assembler::Operand* asAssemblerOperand(Context* c) { sync(c); return &value; } virtual Site* copy(Context* c) { return memorySite(c, value.base, value.offset, value.index, value.scale); } Register* base; Register* index; Assembler::Memory value; }; MemorySite* memorySite(Context* c, int base, int offset, int index, unsigned scale) { return new (c->zone->allocate(sizeof(MemorySite))) MemorySite(base, offset, index, scale); } MemorySite* frameSite(Context* c, int frameIndex) { assert(c, frameIndex >= 0); return memorySite (c, c->arch->stack(), frameIndexToOffset(c, frameIndex)); } Site* targetOrNull(Context* c, Value* v, Read* r) { if (v->target) { return v->target; } else { return r->allocateSite(c); } } Site* targetOrNull(Context* c, Value* v) { if (v->target) { return v->target; } else if (live(v)) { return v->reads->allocateSite(c); } return 0; } Site* pickSite(Context* c, Value* value, uint8_t typeMask, uint64_t registerMask, int frameIndex, bool includeBuddies) { Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (SiteIterator it(value, includeBuddies); it.hasMore();) { Site* s = it.next(); if (s->match(c, typeMask, registerMask, frameIndex)) { unsigned v = s->copyCost(c, 0); if (v < copyCost) { site = s; copyCost = v; } } } return site; } Site* allocateSite(Context* c, uint8_t typeMask, uint64_t registerMask, int frameIndex) { if ((typeMask & (1 << RegisterOperand)) and registerMask) { return freeRegisterSite(c, registerMask); } else if (frameIndex >= 0) { return frameSite(c, frameIndex); } else { return 0; } } class SingleRead: public Read { public: SingleRead(unsigned size, uint8_t typeMask, uint64_t registerMask, int frameIndex): Read(size), next_(0), typeMask(typeMask), registerMask(registerMask), frameIndex(frameIndex) { } virtual Site* pickSite(Context* c, Value* value, bool includeBuddies) { return ::pickSite (c, value, typeMask, registerMask, frameIndex, includeBuddies); } virtual Site* allocateSite(Context* c) { return ::allocateSite(c, typeMask, registerMask, frameIndex); } virtual bool intersect(uint8_t* typeMask, uint64_t* registerMask, int* frameIndex) { *typeMask &= this->typeMask; *registerMask &= this->registerMask; *frameIndex = intersectFrameIndexes(*frameIndex, this->frameIndex); return true; } virtual bool valid() { return true; } virtual void append(Context* c, Read* r) { assert(c, next_ == 0); next_ = r; } virtual Read* next(Context*) { return next_; } Read* next_; uint8_t typeMask; uint64_t registerMask; int frameIndex; }; Read* read(Context* c, unsigned size, uint8_t typeMask, uint64_t registerMask, int frameIndex) { assert(c, (typeMask != 1 << MemoryOperand) or frameIndex >= 0); return new (c->zone->allocate(sizeof(SingleRead))) SingleRead(size, typeMask, registerMask, frameIndex); } Read* anyRegisterRead(Context* c, unsigned size) { return read(c, size, 1 << RegisterOperand, ~static_cast(0), NoFrameIndex); } Read* registerOrConstantRead(Context* c, unsigned size) { return read(c, size, (1 << RegisterOperand) | (1 << ConstantOperand), ~static_cast(0), NoFrameIndex); } Read* fixedRegisterRead(Context* c, unsigned size, int low, int high = NoRegister) { uint64_t mask; if (high == NoRegister) { mask = (~static_cast(0) << 32) | (static_cast(1) << low); } else { mask = (static_cast(1) << (high + 32)) | (static_cast(1) << low); } return read(c, size, 1 << RegisterOperand, mask, NoFrameIndex); } class MultiRead: public Read { public: MultiRead(unsigned size): Read(size), reads(0), lastRead(0), firstTarget(0), lastTarget(0), visited(false) { } virtual Site* pickSite(Context* c, Value* value, bool includeBuddies) { uint8_t typeMask = ~static_cast(0); uint64_t registerMask = ~static_cast(0); int frameIndex = AnyFrameIndex; intersect(&typeMask, ®isterMask, &frameIndex); return ::pickSite (c, value, typeMask, registerMask, frameIndex, includeBuddies); } virtual Site* allocateSite(Context* c) { uint8_t typeMask = ~static_cast(0); uint64_t registerMask = ~static_cast(0); int frameIndex = AnyFrameIndex; intersect(&typeMask, ®isterMask, &frameIndex); return ::allocateSite(c, typeMask, registerMask, frameIndex); } virtual bool intersect(uint8_t* typeMask, uint64_t* registerMask, int* frameIndex) { bool result = false; if (not visited) { visited = true; for (Cell** cell = &reads; *cell;) { Read* r = static_cast((*cell)->value); bool valid = r->intersect(typeMask, registerMask, frameIndex); if (valid) { result = true; cell = &((*cell)->next); } else { *cell = (*cell)->next; } } visited = false; } return result; } virtual bool valid() { bool result = false; if (not visited) { visited = true; for (Cell** cell = &reads; *cell;) { Read* r = static_cast((*cell)->value); if (r->valid()) { result = true; cell = &((*cell)->next); } else { *cell = (*cell)->next; } } visited = false; } return result; } virtual void append(Context* c, Read* r) { Cell* cell = cons(c, r, 0); if (lastRead == 0) { reads = cell; } else { lastRead->next = cell; } lastRead = cell; lastTarget->value = r; } virtual Read* next(Context* c) { abort(c); } void allocateTarget(Context* c) { Cell* cell = cons(c, 0, 0); if (lastTarget) { lastTarget->next = cell; } else { firstTarget = cell; } lastTarget = cell; } Read* nextTarget() { Read* r = static_cast(firstTarget->value); firstTarget = firstTarget->next; return r; } Cell* reads; Cell* lastRead; Cell* firstTarget; Cell* lastTarget; bool visited; }; MultiRead* multiRead(Context* c, unsigned size) { return new (c->zone->allocate(sizeof(MultiRead))) MultiRead(size); } class StubRead: public Read { public: StubRead(unsigned size): Read(size), next_(0), read(0), visited(false) { } virtual Site* pickSite(Context* c, Value* value, bool includeBuddies) { uint8_t typeMask = ~static_cast(0); uint64_t registerMask = ~static_cast(0); int frameIndex = AnyFrameIndex; intersect(&typeMask, ®isterMask, &frameIndex); return ::pickSite (c, value, typeMask, registerMask, frameIndex, includeBuddies); } virtual Site* allocateSite(Context* c) { uint8_t typeMask = ~static_cast(0); uint64_t registerMask = ~static_cast(0); int frameIndex = AnyFrameIndex; intersect(&typeMask, ®isterMask, &frameIndex); return ::allocateSite(c, typeMask, registerMask, frameIndex); } virtual bool intersect(uint8_t* typeMask, uint64_t* registerMask, int* frameIndex) { if (not visited) { visited = true; if (read) { bool valid = read->intersect(typeMask, registerMask, frameIndex); if (not valid) { read = 0; } } visited = false; } return true; } virtual bool valid() { return true; } virtual void append(Context* c, Read* r) { assert(c, next_ == 0); next_ = r; } virtual Read* next(Context*) { return next_; } Read* next_; Read* read; bool visited; }; StubRead* stubRead(Context* c, unsigned size) { return new (c->zone->allocate(sizeof(StubRead))) StubRead(size); } Site* targetOrRegister(Context* c, Value* v) { Site* s = targetOrNull(c, v); if (s) { return s; } else { return freeRegisterSite(c); } } Site* targetOrRegister(Context* c, Value* v, Read* r) { Site* s = targetOrNull(c, v, r); if (s) { return s; } else { return freeRegisterSite(c); } } Site* pick(Context* c, Value* value, Site* target, unsigned* cost, bool includeBuddies) { Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (SiteIterator it(value, includeBuddies); it.hasMore();) { Site* s = it.next(); unsigned v = s->copyCost(c, target); if (v < copyCost) { site = s; copyCost = v; } } if (cost) *cost = copyCost; return site; } void move(Context* c, Stack* stack, Local* locals, unsigned size, Value* value, Site* src, Site* dst) { if (dst->type(c) == MemoryOperand and (src->type(c) == MemoryOperand or src->type(c) == AddressOperand)) { Site* tmp = freeRegisterSite(c); addSite(c, stack, locals, size, value, tmp); if (DebugMoves) { char srcb[256]; src->toString(c, srcb, 256); char tmpb[256]; tmp->toString(c, tmpb, 256); fprintf(stderr, "move %s to %s for %p\n", srcb, tmpb, value); } apply(c, Move, size, src, size, tmp); src = tmp; } addSite(c, stack, locals, size, value, dst); if (DebugMoves) { char srcb[256]; src->toString(c, srcb, 256); char dstb[256]; dst->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p\n", srcb, dstb, value); } apply(c, Move, size, src, size, dst); } void toString(Context* c, Site* sites, char* buffer, unsigned size) { if (sites) { sites->toString(c, buffer, size); if (sites->next) { unsigned length = strlen(buffer); assert(c, length + 2 < size); memcpy(buffer + length, ", ", 2); length += 2; sites->next->toString(c, buffer + length, size - length); } } else { assert(c, size); *buffer = 0; } } bool find(Value* needle, Value* haystack) { if (haystack) { if (needle == haystack) return true; for (Value* p = haystack->buddy; p != haystack; p = p->buddy) { if (needle == p) return true; } } return false; } bool trySteal(Context* c, Site* site, Value* v, unsigned size, Stack* stack, Local* locals, int avoid) { if (not hasMoreThanOneSite(v)) { Read* r = live(v); if (r->pickSite(c, v, true)) { int index = NoFrameIndex; for (unsigned li = 0; li < c->localFootprint; ++li) { Local* local = locals + li; if (find(v, local->value)) { int fi = frameIndex(c, li, local->footprint); if (fi != avoid) { index = fi; break; } } } if (index == NoFrameIndex) { for (Stack* s = stack; s; s = s->next) { if (find(v, s->value)) { uint8_t typeMask; uint64_t registerMask; int frameIndex = AnyFrameIndex; live(v)->intersect(&typeMask, ®isterMask, &frameIndex); if (frameIndex >= 0 and frameIndex != avoid) { index = frameIndex; break; } else { int fi = ::frameIndex (c, s->index + c->localFootprint, s->footprint); if (fi != avoid) { index = fi; break; } } } } } if (index != NoFrameIndex) { move(c, stack, locals, size, v, site, frameSite(c, index)); } else { if (DebugRegisters or DebugFrameIndexes) { fprintf(stderr, "unable to steal %p from %p\n", site, v); } return false; } } else { move(c, stack, locals, size, v, site, r->allocateSite(c)); } } removeSite(c, v, site); return true; } bool trySteal(Context* c, Register* r, Stack* stack, Local* locals) { assert(c, r->refCount == 0); Value* v = r->value; assert(c, live(v)); if (DebugRegisters) { fprintf(stderr, "try steal %d from %p\n", r->number, v); } return trySteal(c, r->site, r->value, r->size, stack, locals, NoFrameIndex); } bool used(Context* c, Register* r) { Value* v = r->value; return v and findSite(c, v, r->site); } bool usedExclusively(Context* c, Register* r) { return used(c, r) and not hasMoreThanOneSite(r->value); } void releaseRegister(Context* c, Value* v, unsigned frameIndex, unsigned sizeInBytes, int r) { Site* source = 0; for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); if (s->usesRegister(c, r)) { if (DebugRegisters) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "%p (%s) in %p at %d uses %d\n", s, buffer, v, frameIndex, r); } source = s; it.remove(c); } else { if (DebugRegisters) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "%p (%s) in %p at %d does not use %d\n", s, buffer, v, frameIndex, r); } } } if (not hasSite(v)) { move(c, c->stack, c->locals, sizeInBytes, v, source, frameSite(c, frameIndex)); } if (DebugRegisters) { char buffer[256]; toString(c, v->sites, buffer, 256); fprintf(stderr, "%p is left with %s\n", v, buffer); } } unsigned footprintSizeInBytes(unsigned footprint) { if (BytesPerWord == 8) { return 8; } else { return footprint * 4; } } void releaseRegister(Context* c, int r) { Register* reg = c->registers[r]; if (used(c, reg) and not usedExclusively(c, reg)) { removeSite(c, reg->value, reg->site); if (reg->refCount == 0) return; } for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); releaseRegister(c, e.value, frameIndex(c, &e), footprintSizeInBytes(e.footprint), r); } } unsigned registerCost(Context* c, Register* r) { if (r->reserved or r->freezeCount) { return 6; } unsigned cost = 0; if (used(c, r)) { ++ cost; if (usedExclusively(c, r)) { cost += 2; } } if (r->refCount) { cost += 2; } return cost; } Register* pickRegister(Context* c, uint32_t mask) { Register* register_ = 0; unsigned cost = 5; for (int i = c->arch->registerCount() - 1; i >= 0; --i) { if ((1 << i) & mask) { Register* r = c->registers[i]; if ((static_cast(1) << i) == mask) { return r; } unsigned myCost = registerCost(c, r); if (myCost < cost) { register_ = r; cost = myCost; } } } expect(c, register_); return register_; } void swap(Context* c, Register* a, Register* b) { assert(c, a != b); assert(c, a->number != b->number); Assembler::Register ar(a->number); Assembler::Register br(b->number); c->assembler->apply (Swap, BytesPerWord, RegisterOperand, &ar, BytesPerWord, RegisterOperand, &br); c->registers[a->number] = b; c->registers[b->number] = a; int t = a->number; a->number = b->number; b->number = t; } Register* replace(Context* c, Stack* stack, Local* locals, Register* r) { uint32_t mask = (r->freezeCount? r->site->mask : ~0); freeze(c, r); Register* s = acquire(c, mask, stack, locals, r->size, r->value, r->site); thaw(c, r); if (DebugRegisters) { fprintf(stderr, "replace %d with %d\n", r->number, s->number); } swap(c, r, s); return s; } Register* acquire(Context* c, uint32_t mask, Stack* stack, Local* locals, unsigned newSize, Value* newValue, RegisterSite* newSite) { Register* r = pickRegister(c, mask); if (r->reserved) return r; if (DebugRegisters) { fprintf(stderr, "acquire %d value %p site %p freeze count %d " "ref count %d used %d used exclusively %d\n", r->number, newValue, newSite, r->freezeCount, r->refCount, used(c, r), usedExclusively(c, r)); } if (r->refCount) { r = replace(c, stack, locals, r); } else { Value* oldValue = r->value; if (oldValue and oldValue != newValue and findSite(c, oldValue, r->site)) { if (not trySteal(c, r, stack, locals)) { r = replace(c, stack, locals, r); } } } r->size = newSize; r->value = newValue; r->site = newSite; return r; } void release(Context*, Register* r) { if (DebugRegisters) { fprintf(stderr, "release %d\n", r->number); } r->size = 0; r->value = 0; r->site = 0; } Register* validate(Context* c, uint32_t mask, Stack* stack, Local* locals, unsigned size, Value* value, RegisterSite* site, Register* current) { if (current and (mask & (1 << current->number))) { if (current->reserved or current->value == value) { return current; } if (current->value == 0) { if (DebugRegisters) { fprintf(stderr, "validate acquire %d value %p site %p freeze count %d " "ref count %d\n", current->number, value, site, current->freezeCount, current->refCount); } current->size = size; current->value = value; current->site = site; return current; } } Register* r = acquire(c, mask, stack, locals, size, value, site); if (current and current != r) { release(c, current); Assembler::Register rr(r->number); Assembler::Register cr(current->number); c->assembler->apply (Move, BytesPerWord, RegisterOperand, &cr, BytesPerWord, RegisterOperand, &rr); } return r; } bool trySteal(Context* c, FrameResource* r, Stack* stack, Local* locals) { assert(c, live(r->value)); if (DebugFrameIndexes) { int index = r - c->frameResources; fprintf(stderr, "try steal frame index %d offset 0x%x from value %p site %p\n", index, frameIndexToOffset(c, index), r->value, r->site); } return trySteal(c, r->site, r->value, r->size, stack, locals, r - c->frameResources); } void acquireFrameIndex(Context* c, int frameIndex, Stack* stack, Local* locals, unsigned newSize, Value* newValue, MemorySite* newSite, bool recurse) { assert(c, frameIndex >= 0); assert(c, frameIndex < static_cast (c->alignedFrameSize + c->parameterFootprint)); if (DebugFrameIndexes) { fprintf(stderr, "acquire frame index %d offset 0x%x value %p site %p\n", frameIndex, frameIndexToOffset(c, frameIndex), newValue, newSite); } FrameResource* r = c->frameResources + frameIndex; if (recurse and newSize > BytesPerWord) { acquireFrameIndex (c, frameIndex + 1, stack, locals, newSize, newValue, newSite, false); } Value* oldValue = r->value; if (oldValue and oldValue != newValue and findSite(c, oldValue, r->site)) { if (not trySteal(c, r, stack, locals)) { abort(c); } } r->size = newSize; r->value = newValue; r->site = newSite; } void releaseFrameIndex(Context* c, int frameIndex, bool recurse) { assert(c, frameIndex >= 0); assert(c, frameIndex < static_cast (c->alignedFrameSize + c->parameterFootprint)); if (DebugFrameIndexes) { fprintf(stderr, "release frame index %d offset 0x%x\n", frameIndex, frameIndexToOffset(c, frameIndex)); } FrameResource* r = c->frameResources + frameIndex; if (recurse and r->size > BytesPerWord) { releaseFrameIndex(c, frameIndex + 1, false); } r->size = 0; r->value = 0; r->site = 0; } void apply(Context* c, UnaryOperation op, unsigned s1Size, Site* s1) { OperandType s1Type = s1->type(c); Assembler::Operand* s1Operand = s1->asAssemblerOperand(c); c->assembler->apply(op, s1Size, s1Type, s1Operand); } void apply(Context* c, BinaryOperation op, unsigned s1Size, Site* s1, unsigned s2Size, Site* s2) { OperandType s1Type = s1->type(c); Assembler::Operand* s1Operand = s1->asAssemblerOperand(c); OperandType s2Type = s2->type(c); Assembler::Operand* s2Operand = s2->asAssemblerOperand(c); c->assembler->apply(op, s1Size, s1Type, s1Operand, s2Size, s2Type, s2Operand); } void apply(Context* c, TernaryOperation op, unsigned s1Size, Site* s1, unsigned s2Size, Site* s2, unsigned s3Size, Site* s3) { OperandType s1Type = s1->type(c); Assembler::Operand* s1Operand = s1->asAssemblerOperand(c); OperandType s2Type = s2->type(c); Assembler::Operand* s2Operand = s2->asAssemblerOperand(c); OperandType s3Type = s3->type(c); Assembler::Operand* s3Operand = s3->asAssemblerOperand(c); c->assembler->apply(op, s1Size, s1Type, s1Operand, s2Size, s2Type, s2Operand, s3Size, s3Type, s3Operand); } void addRead(Context* c, Event* e, Value* v, Read* r) { if (DebugReads) { fprintf(stderr, "add read %p to %p last %p event %p (%s)\n", r, v, v->lastRead, e, (e ? e->name() : 0)); } r->value = v; if (e) { r->event = e; r->eventNext = e->reads; e->reads = r; ++ e->readCount; } if (v->lastRead) { if (DebugReads) { fprintf(stderr, "append %p to %p for %p\n", r, v->lastRead, v); } v->lastRead->append(c, r); } else { v->reads = r; } v->lastRead = r; } void clean(Context* c, Value* v, unsigned popIndex) { for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); if (not (s->match(c, 1 << MemoryOperand, 0, AnyFrameIndex) and offsetToFrameIndex (c, static_cast(s)->value.offset) >= popIndex)) { // char buffer[256]; s->toString(c, buffer, 256); // fprintf(stderr, "remove %s from %p at %d pop index %d\n", // buffer, v, offsetToFrameIndex // (c, static_cast(s)->value.offset), popIndex); it.remove(c); } } } void clean(Context* c, Event* e, Stack* stack, Local* locals, Read* reads, unsigned popIndex) { for (FrameIterator it(c, stack, locals); it.hasMore();) { FrameIterator::Element e = it.next(c); clean(c, e.value, popIndex); } for (Read* r = reads; r; r = r->eventNext) { nextRead(c, e, r->value); } } CodePromise* codePromise(Context* c, Event* e) { return e->promises = new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, e->promises); } CodePromise* codePromise(Context* c, Promise* offset) { return new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, offset); } void append(Context* c, Event* e); class CallEvent: public Event { public: CallEvent(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount, unsigned stackArgumentFootprint): Event(c), address(address), traceHandler(traceHandler), result(result), popIndex(0), padIndex(0), padding(0), flags(flags), resultSize(resultSize) { uint32_t mask = ~0; Stack* s = argumentStack; unsigned index = 0; unsigned frameIndex = 0; if (argumentCount) { unsigned ai = 0; while (true) { Read* target; if (index < c->arch->argumentRegisterCount()) { int r = c->arch->argumentRegister(index); if (DebugReads) { fprintf(stderr, "reg %d arg read %p\n", r, s->value); } target = fixedRegisterRead(c, footprintSizeInBytes(s->footprint), r); mask &= ~(1 << r); } else { if (DebugReads) { fprintf(stderr, "stack %d arg read %p\n", frameIndex, s->value); } target = read(c, footprintSizeInBytes(s->footprint), 1 << MemoryOperand, 0, frameIndex); frameIndex += s->footprint; } addRead(c, this, s->value, target); index += s->footprint; if ((++ ai) < argumentCount) { s = s->next; } else { break; } } } if (DebugReads) { fprintf(stderr, "address read %p\n", address); } addRead(c, this, address, read (c, BytesPerWord, ~0, (static_cast(mask) << 32) | mask, AnyFrameIndex)); int footprint = stackArgumentFootprint; for (Stack* s = stackBefore; s; s = s->next) { if (footprint > 0) { if (DebugReads) { fprintf(stderr, "stack arg read %p of footprint %d at %d of %d\n", s->value, s->footprint, frameIndex, c->alignedFrameSize + c->parameterFootprint); } addRead(c, this, s->value, read (c, footprintSizeInBytes(s->footprint), 1 << MemoryOperand, 0, frameIndex)); } else { unsigned index = ::frameIndex (c, s->index + c->localFootprint, s->footprint); if (DebugReads) { fprintf(stderr, "stack save read %p of footprint %d at %d of %d\n", s->value, s->footprint, index, c->alignedFrameSize + c->parameterFootprint); } addRead(c, this, s->value, read (c, footprintSizeInBytes(s->footprint), 1 << MemoryOperand, 0, index)); } footprint -= s->footprint; if (footprint == 0) { unsigned logicalIndex = ::frameIndex (c, s->index + c->localFootprint, s->footprint); assert(c, logicalIndex >= frameIndex); padding = logicalIndex - frameIndex; padIndex = s->index + c->localFootprint; popIndex = frameIndex + s->footprint; } frameIndex += s->footprint; } for (unsigned li = 0; li < c->localFootprint; ++li) { Local* local = localsBefore + li; if (local->value) { if (DebugReads) { fprintf(stderr, "local save read %p of footprint %d at %d of %d\n", local->value, local->footprint, ::frameIndex(c, li, local->footprint), c->alignedFrameSize + c->parameterFootprint); } addRead(c, this, local->value, read (c, footprintSizeInBytes(local->footprint), 1 << MemoryOperand, 0, ::frameIndex(c, li, local->footprint))); } } } virtual const char* name() { return "CallEvent"; } virtual void compile(Context* c) { apply(c, (flags & Compiler::Aligned) ? AlignedCall : Call, BytesPerWord, address->source); if (traceHandler) { traceHandler->handleTrace(codePromise(c, c->assembler->offset()), padIndex, padding); } clean(c, this, stackBefore, localsBefore, reads, popIndex); if (resultSize and live(result)) { addSite(c, 0, 0, resultSize, result, registerSite (c, c->arch->returnLow(), resultSize > BytesPerWord ? c->arch->returnHigh() : NoRegister)); } } Value* address; TraceHandler* traceHandler; Value* result; unsigned popIndex; unsigned padIndex; unsigned padding; unsigned flags; unsigned resultSize; }; void appendCall(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount, unsigned stackArgumentFootprint) { append(c, new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, flags, traceHandler, result, resultSize, argumentStack, argumentCount, stackArgumentFootprint)); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, this, value, fixedRegisterRead (c, size, c->arch->returnLow(), size > BytesPerWord ? c->arch->returnHigh() : NoRegister)); } } virtual const char* name() { return "ReturnEvent"; } virtual void compile(Context* c) { if (value) { nextRead(c, this, value); } c->assembler->popFrame(); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, Value* value) { append(c, new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value)); } void preserve(Context* c, Stack* stack, Local* locals, unsigned size, Value* v, Site* s, Read* read) { Site* r = targetOrRegister(c, v, read); move(c, stack, locals, size, v, s, r); } void maybePreserve(Context* c, Stack* stack, Local* locals, unsigned size, Value* v, Site* s) { Read* r = liveNext(c, v); if (r and not hasMoreThanOneSite(v)) { preserve(c, stack, locals, size, v, s, r); } } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned srcSize, Value* src, unsigned dstSize, Value* dst, Read* srcRead, Read* dstRead): Event(c), type(type), srcSize(srcSize), src(src), dstSize(dstSize), dst(dst), dstRead(dstRead) { addRead(c, this, src, srcRead); } virtual const char* name() { return "MoveEvent"; } virtual void compile(Context* c) { bool isStore = not live(dst); Site* target = targetOrRegister(c, dst); unsigned cost = src->source->copyCost(c, target); if (cost == 0) { target = src->source; if (DebugMoves) { char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "null move in %s for %p to %p\n", dstb, src, dst); } } if (target == src->source) { maybePreserve(c, stackBefore, localsBefore, srcSize, src, target); removeSite(c, src, target); } if (not isStore) { addSite(c, stackBefore, localsBefore, dstSize, dst, target); } if (cost or srcSize != dstSize) { uint8_t typeMask = ~static_cast(0); uint64_t registerMask = ~static_cast(0); int frameIndex = AnyFrameIndex; dstRead->intersect(&typeMask, ®isterMask, &frameIndex); bool useTemporary = ((target->type(c) == MemoryOperand and src->source->type(c) == MemoryOperand) or (srcSize != dstSize and target->type(c) != RegisterOperand)); if (target->match(c, typeMask, registerMask, frameIndex) and not useTemporary) { if (DebugMoves) { char srcb[256]; src->source->toString(c, srcb, 256); char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, type, srcSize, src->source, dstSize, target); } else { assert(c, typeMask & (1 << RegisterOperand)); Site* tmpTarget = freeRegisterSite(c, registerMask); addSite(c, stackBefore, localsBefore, dstSize, dst, tmpTarget); if (DebugMoves) { char srcb[256]; src->source->toString(c, srcb, 256); char dstb[256]; tmpTarget->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, type, srcSize, src->source, dstSize, tmpTarget); if (isStore) { removeSite(c, dst, tmpTarget); } if (useTemporary or isStore) { if (DebugMoves) { char srcb[256]; tmpTarget->toString(c, srcb, 256); char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, Move, dstSize, tmpTarget, dstSize, target); } else { removeSite(c, dst, target); } } } if (isStore) { removeSite(c, dst, target); } nextRead(c, this, src); } BinaryOperation type; unsigned srcSize; Value* src; unsigned dstSize; Value* dst; Read* dstRead; }; void appendMove(Context* c, BinaryOperation type, unsigned srcSize, Value* src, unsigned dstSize, Value* dst) { bool thunk; uint8_t srcTypeMask; uint64_t srcRegisterMask; uint8_t dstTypeMask; uint64_t dstRegisterMask; c->arch->plan(type, srcSize, &srcTypeMask, &srcRegisterMask, dstSize, &dstTypeMask, &dstRegisterMask, &thunk); assert(c, not thunk); // todo append(c, new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent (c, type, srcSize, src, dstSize, dst, read(c, srcSize, srcTypeMask, srcRegisterMask, AnyFrameIndex), read(c, dstSize, dstTypeMask, dstRegisterMask, AnyFrameIndex))); } ConstantSite* findConstantSite(Context* c, Value* v) { for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); if (s->type(c) == ConstantOperand) { return static_cast(s); } } return 0; } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second, Read* firstRead, Read* secondRead): Event(c), size(size), first(first), second(second) { addRead(c, this, first, firstRead); addRead(c, this, second, secondRead); } virtual const char* name() { return "CompareEvent"; } virtual void compile(Context* c) { ConstantSite* firstConstant = findConstantSite(c, first); ConstantSite* secondConstant = findConstantSite(c, second); if (firstConstant and secondConstant) { int64_t d = firstConstant->value.value->value() - secondConstant->value.value->value(); if (d < 0) { c->constantCompare = CompareLess; } else if (d > 0) { c->constantCompare = CompareGreater; } else { c->constantCompare = CompareEqual; } } else { c->constantCompare = CompareNone; apply(c, Compare, size, first->source, size, second->source); } nextRead(c, this, first); nextRead(c, this, second); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t secondTypeMask; uint64_t secondRegisterMask; c->arch->plan(Compare, size, &firstTypeMask, &firstRegisterMask, size, &secondTypeMask, &secondRegisterMask, &thunk); assert(c, not thunk); // todo append(c, new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent (c, size, first, second, read(c, size, firstTypeMask, firstRegisterMask, AnyFrameIndex), read(c, size, secondTypeMask, secondRegisterMask, AnyFrameIndex))); } class CombineEvent: public Event { public: CombineEvent(Context* c, TernaryOperation type, unsigned firstSize, Value* first, unsigned secondSize, Value* second, unsigned resultSize, Value* result, Read* firstRead, Read* secondRead, Read* resultRead): Event(c), type(type), firstSize(firstSize), first(first), secondSize(secondSize), second(second), resultSize(resultSize), result(result), resultRead(resultRead) { addRead(c, this, first, firstRead); addRead(c, this, second, secondRead); } virtual const char* name() { return "CombineEvent"; } virtual void compile(Context* c) { Site* target; if (c->arch->condensedAddressing()) { maybePreserve(c, stackBefore, localsBefore, secondSize, second, second->source); target = second->source; } else { target = resultRead->allocateSite(c); addSite(c, stackBefore, localsBefore, resultSize, result, target); } // fprintf(stderr, "combine %p and %p into %p\n", first, second, result); apply(c, type, firstSize, first->source, secondSize, second->source, resultSize, target); nextRead(c, this, first); nextRead(c, this, second); if (c->arch->condensedAddressing()) { removeSite(c, second, second->source); if (live(result)) { addSite(c, 0, 0, resultSize, result, target); } } } TernaryOperation type; unsigned firstSize; Value* first; unsigned secondSize; Value* second; unsigned resultSize; Value* result; Read* resultRead; }; Value* value(Context* c, Site* site = 0, Site* target = 0) { return new (c->zone->allocate(sizeof(Value))) Value(site, target); } void removeBuddy(Context* c, Value* v) { if (v->buddy != v) { // fprintf(stderr, "remove buddy %p from", v); // for (Value* p = v->buddy; p != v; p = p->buddy) { // fprintf(stderr, " %p", p); // } // fprintf(stderr, "\n"); Value* next = v->buddy; v->buddy = v; Value* p = next; while (p->buddy != v) p = p->buddy; p->buddy = next; if (not live(next)) { clearSites(c, next); } } } Site* copy(Context* c, Site* s) { Site* start = 0; Site* end = 0; for (; s; s = s->next) { Site* n = s->copy(c); if (end) { end->next = n; } else { start = n; } end = n; } return start; } class Snapshot { public: Snapshot(Context* c, Value* value, Snapshot* next): value(value), buddy(value->buddy), sites(copy(c, value->sites)), next(next) { } Value* value; Value* buddy; Site* sites; Snapshot* next; }; Snapshot* snapshot(Context* c, Value* value, Snapshot* next) { if (DebugControl) { char buffer[256]; toString(c, value->sites, buffer, 256); fprintf(stderr, "snapshot %p buddy %p sites %s\n", value, value->buddy, buffer); } return new (c->zone->allocate(sizeof(Snapshot))) Snapshot(c, value, next); } Snapshot* makeSnapshots(Context* c, Value* value, Snapshot* next) { next = snapshot(c, value, next); for (Value* p = value->buddy; p != value; p = p->buddy) { next = snapshot(c, p, next); } return next; } Stack* stack(Context* c, Value* value, unsigned footprint, unsigned index, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(index, footprint, value, next); } Stack* stack(Context* c, Value* value, unsigned footprint, Stack* next) { return stack (c, value, footprint, (next ? next->index + next->footprint : 0), next); } SavedValue* savedValue(Context* c, Value* value, unsigned footprint, SavedValue* next) { return new (c->zone->allocate(sizeof(SavedValue))) SavedValue(footprint, value, next); } Value* maybeBuddy(Context* c, Value* v, unsigned sizeInBytes); void push(Context* c, unsigned footprint, Value* v) { assert(c, footprint); v = maybeBuddy(c, v, footprintSizeInBytes(footprint)); if (DebugFrame) { fprintf(stderr, "push %p of footprint %d\n", v, footprint); } v->local = true; c->stack = stack(c, v, footprint, c->stack); } Value* pop(Context* c, unsigned footprint UNUSED) { Stack* s = c->stack; assert(c, footprint == s->footprint); assert(c, s->value->local); if (DebugFrame) { fprintf(stderr, "pop %p of size %d\n", s->value, footprint); } c->stack = s->next; s->value->local = false; return s->value; } void appendCombine(Context* c, TernaryOperation type, unsigned firstSize, Value* first, unsigned secondSize, Value* second, unsigned resultSize, Value* result) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t secondTypeMask; uint64_t secondRegisterMask; uint8_t resultTypeMask; uint64_t resultRegisterMask; c->arch->plan(type, firstSize, &firstTypeMask, &firstRegisterMask, secondSize, &secondTypeMask, &secondRegisterMask, resultSize, &resultTypeMask, &resultRegisterMask, &thunk); if (thunk) { Stack* oldStack = c->stack; ::push(c, ceiling(secondSize, BytesPerWord), second); ::push(c, ceiling(firstSize, BytesPerWord), first); Stack* argumentStack = c->stack; c->stack = oldStack; appendCall (c, value(c, constantSite(c, c->client->getThunk(type, resultSize))), 0, 0, result, resultSize, argumentStack, 2, 0); } else { Read* resultRead = read (c, resultSize, resultTypeMask, resultRegisterMask, AnyFrameIndex); Read* secondRead; if (c->arch->condensedAddressing()) { secondRead = resultRead; } else { secondRead = read (c, secondSize, secondTypeMask, secondRegisterMask, AnyFrameIndex); } append (c, new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent (c, type, firstSize, first, secondSize, second, resultSize, result, read(c, firstSize, firstTypeMask, firstRegisterMask, AnyFrameIndex), secondRead, resultRead)); } } class TranslateEvent: public Event { public: TranslateEvent(Context* c, BinaryOperation type, unsigned size, Value* value, Value* result, Read* valueRead, Read* resultRead): Event(c), type(type), size(size), value(value), result(result), resultRead(resultRead) { addRead(c, this, value, valueRead); } virtual const char* name() { return "TranslateEvent"; } virtual void compile(Context* c) { Site* target; if (c->arch->condensedAddressing()) { maybePreserve(c, stackBefore, localsBefore, size, value, value->source); target = value->source; } else { target = resultRead->allocateSite(c); addSite(c, stackBefore, localsBefore, size, result, target); } apply(c, type, size, value->source, size, target); nextRead(c, this, value); if (c->arch->condensedAddressing()) { removeSite(c, value, value->source); if (live(result)) { addSite(c, 0, 0, size, result, target); } } } BinaryOperation type; unsigned size; Value* value; Value* result; Read* resultRead; }; void appendTranslate(Context* c, BinaryOperation type, unsigned size, Value* value, Value* result) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t resultTypeMask; uint64_t resultRegisterMask; c->arch->plan(type, size, &firstTypeMask, &firstRegisterMask, size, &resultTypeMask, &resultRegisterMask, &thunk); assert(c, not thunk); // todo Read* resultRead = read (c, size, resultTypeMask, resultRegisterMask, AnyFrameIndex); Read* firstRead; if (c->arch->condensedAddressing()) { firstRead = resultRead; } else { firstRead = read (c, size, firstTypeMask, firstRegisterMask, AnyFrameIndex); } // todo: respect resultTypeMask and resultRegisterMask append(c, new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent (c, type, size, value, result, firstRead, resultRead)); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result): Event(c), base(base), displacement(displacement), index(index), scale(scale), result(result) { addRead(c, this, base, anyRegisterRead(c, BytesPerWord)); if (index) addRead(c, this, index, registerOrConstantRead(c, BytesPerWord)); } virtual const char* name() { return "MemoryEvent"; } virtual void compile(Context* c) { int indexRegister; int displacement = this->displacement; unsigned scale = this->scale; if (index) { ConstantSite* constant = findConstantSite(c, index); if (constant) { indexRegister = NoRegister; displacement += (constant->value.value->value() * scale); scale = 1; } else { assert(c, index->source->type(c) == RegisterOperand); indexRegister = static_cast (index->source)->register_.low; } } else { indexRegister = NoRegister; } assert(c, base->source->type(c) == RegisterOperand); int baseRegister = static_cast(base->source)->register_.low; nextRead(c, this, base); if (index) { if (BytesPerWord == 8 and indexRegister != NoRegister) { apply(c, Move, 4, index->source, 8, index->source); } nextRead(c, this, index); } result->target = memorySite (c, baseRegister, displacement, indexRegister, scale); addSite(c, 0, 0, 0, result, result->target); } Value* base; int displacement; Value* index; unsigned scale; Value* result; }; void appendMemory(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result) { append(c, new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, displacement, index, scale, result)); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { address->addPredecessor(c, this); addRead(c, this, address, read (c, BytesPerWord, ~0, ~static_cast(0), AnyFrameIndex)); } virtual const char* name() { return "BranchEvent"; } virtual void compile(Context* c) { bool jump; UnaryOperation type = this->type; if (type != Jump) { switch (c->constantCompare) { case CompareLess: switch (type) { case JumpIfLess: case JumpIfLessOrEqual: case JumpIfNotEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareGreater: switch (type) { case JumpIfGreater: case JumpIfGreaterOrEqual: case JumpIfNotEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareEqual: switch (type) { case JumpIfEqual: case JumpIfLessOrEqual: case JumpIfGreaterOrEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareNone: jump = true; break; default: abort(c); } } else { jump = true; } if (jump) { apply(c, type, BytesPerWord, address->source); } nextRead(c, this, address); } virtual bool isBranch() { return true; } UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { append(c, new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address)); } class BoundsCheckEvent: public Event { public: BoundsCheckEvent(Context* c, Value* object, unsigned lengthOffset, Value* index, intptr_t handler): Event(c), object(object), lengthOffset(lengthOffset), index(index), handler(handler) { addRead(c, this, object, anyRegisterRead(c, BytesPerWord)); addRead(c, this, index, registerOrConstantRead(c, BytesPerWord)); } virtual const char* name() { return "BoundsCheckEvent"; } virtual void compile(Context* c) { Assembler* a = c->assembler; ConstantSite* constant = findConstantSite(c, index); CodePromise* nextPromise = codePromise (c, static_cast(0)); CodePromise* outOfBoundsPromise = 0; if (constant) { expect(c, constant->value.value->value() >= 0); } else { outOfBoundsPromise = codePromise(c, static_cast(0)); apply(c, Compare, 4, constantSite(c, resolved(c, 0)), 4, index->source); Assembler::Constant outOfBoundsConstant(outOfBoundsPromise); a->apply (JumpIfLess, BytesPerWord, ConstantOperand, &outOfBoundsConstant); } assert(c, object->source->type(c) == RegisterOperand); int base = static_cast(object->source)->register_.low; Site* length = memorySite(c, base, lengthOffset); length->acquire(c, 0, 0, 0, 0); apply(c, Compare, 4, index->source, 4, length); length->release(c); Assembler::Constant nextConstant(nextPromise); a->apply(JumpIfGreater, BytesPerWord, ConstantOperand, &nextConstant); if (constant == 0) { outOfBoundsPromise->offset = a->offset(); } Assembler::Constant handlerConstant(resolved(c, handler)); a->apply(Call, BytesPerWord, ConstantOperand, &handlerConstant); nextPromise->offset = a->offset(); nextRead(c, this, object); nextRead(c, this, index); } Value* object; unsigned lengthOffset; Value* index; intptr_t handler; }; void appendBoundsCheck(Context* c, Value* object, unsigned lengthOffset, Value* index, intptr_t handler) { append(c, new (c->zone->allocate(sizeof(BoundsCheckEvent))) BoundsCheckEvent(c, object, lengthOffset, index, handler)); } class FrameSiteEvent: public Event { public: FrameSiteEvent(Context* c, Value* value, unsigned size, int index): Event(c), value(value), size(size), index(index) { } virtual const char* name() { return "FrameSiteEvent"; } virtual void compile(Context* c) { addSite(c, stackBefore, localsBefore, size, value, frameSite(c, index)); } Value* value; unsigned size; int index; }; void appendFrameSite(Context* c, Value* value, unsigned size, int index) { append(c, new (c->zone->allocate(sizeof(FrameSiteEvent))) FrameSiteEvent(c, value, size, index)); } unsigned frameFootprint(Context* c, Stack* s) { return c->localFootprint + (s ? (s->index + s->footprint) : 0); } void visit(Context* c, Link* link) { // fprintf(stderr, "visit link from %d to %d\n", // link->predecessor->logicalInstruction->index, // link->successor->logicalInstruction->index); ForkState* forkState = link->forkState; if (forkState) { for (unsigned i = 0; i < forkState->readCount; ++i) { ForkElement* p = forkState->elements + i; Value* v = p->value; v->reads = p->read->nextTarget(); // fprintf(stderr, "next read %p for %p\n", v->reads, v); if (not live(v)) { clearSites(c, v); } } } JunctionState* junctionState = link->junctionState; if (junctionState) { for (unsigned i = 0; i < junctionState->readCount; ++i) { assert(c, junctionState->reads[i].value->reads == junctionState->reads[i].read); nextRead(c, 0, junctionState->reads[i].value); } } } class BuddyEvent: public Event { public: BuddyEvent(Context* c, Value* original, Value* buddy, unsigned size): Event(c), original(original), buddy(buddy) { addRead(c, this, original, read(c, size, ~0, ~static_cast(0), AnyFrameIndex)); } virtual const char* name() { return "BuddyEvent"; } virtual void compile(Context* c) { buddy->buddy = original; Value* p = original; while (p->buddy != original) p = p->buddy; p->buddy = buddy; // fprintf(stderr, "add buddy %p to", buddy); // for (Value* p = buddy->buddy; p != buddy; p = p->buddy) { // fprintf(stderr, " %p", p); // } // fprintf(stderr, "\n"); nextRead(c, this, original); } Value* original; Value* buddy; }; void appendBuddy(Context* c, Value* original, Value* buddy, unsigned size) { append(c, new (c->zone->allocate(sizeof(BuddyEvent))) BuddyEvent(c, original, buddy, size)); } class DummyEvent: public Event { public: DummyEvent(Context* c): Event(c) { } virtual const char* name() { return "DummyEvent"; } virtual void compile(Context*) { } }; void appendDummy(Context* c) { Stack* stack = c->stack; Local* locals = c->locals; LogicalInstruction* i = c->logicalCode[c->logicalIp]; c->stack = i->stack; c->locals = i->locals; append(c, new (c->zone->allocate(sizeof(DummyEvent))) DummyEvent(c)); c->stack = stack; c->locals = locals; } void append(Context* c, Event* e) { LogicalInstruction* i = c->logicalCode[c->logicalIp]; if (c->stack != i->stack or c->locals != i->locals) { appendDummy(c); } if (DebugAppend) { fprintf(stderr, " -- append %s at %d with %d stack before\n", e->name(), e->logicalInstruction->index, c->stack ? c->stack->index + c->stack->footprint : 0); } if (c->lastEvent) { c->lastEvent->next = e; } else { c->firstEvent = e; } c->lastEvent = e; Event* p = c->predecessor; if (p) { Link* link = ::link(c, p, e->predecessors, e, p->successors, c->forkState); e->predecessors = link; p->successors = link; } c->forkState = 0; c->predecessor = e; if (e->logicalInstruction->firstEvent == 0) { e->logicalInstruction->firstEvent = e; } e->logicalInstruction->lastEvent = e; } Site* readSource(Context* c, Stack* stack, Local* locals, Read* r) { if (not hasSite(r->value)) return 0; // fprintf(stderr, "read source for %p\n", r->value); Site* site = r->pickSite(c, r->value, true); if (site) { return site; } else { Site* target = r->allocateSite(c); unsigned copyCost; site = pick(c, r->value, target, ©Cost, true); assert(c, copyCost); move(c, stack, locals, r->size, r->value, site, target); return target; } } Site* pickJunctionSite(Context* c, Value* v, Read* r, unsigned frameIndex) { Site* s = r->pickSite(c, v, false); if (s == 0) { s = pick(c, v, 0, 0, false); } if (s and s->match (c, (1 << RegisterOperand) | (1 << MemoryOperand), ~0, AnyFrameIndex)) { return s; } s = r->allocateSite(c); if (s and (c->availableRegisterCount > 1 or s->type(c) != RegisterOperand)) { return s; } if (c->availableRegisterCount > 1) { return freeRegisterSite(c); } else { return frameSite(c, frameIndex); } } unsigned resolveJunctionSite(Context* c, Event* e, Value* v, unsigned siteIndex, unsigned frameIndex, Site** frozenSites, unsigned frozenSiteIndex) { assert(c, siteIndex < frameFootprint(c, e->stackAfter)); if (live(v)) { assert(c, hasSite(v)); Read* r = live(v); Site* original = e->junctionSites[siteIndex]; Site* target; if (original) { target = original; } else { target = pickJunctionSite(c, v, r, frameIndex); } unsigned copyCost; Site* site = pick(c, v, target, ©Cost, true); if (copyCost or not findSite(c, v, site)) { move(c, e->stackAfter, e->localsAfter, r->size, v, site, target); } else { target = site; } if (original == 0) { frozenSites[frozenSiteIndex++] = target; target->freeze(c); e->junctionSites[siteIndex] = target->copy(c); } if (DebugControl) { char buffer[256]; target->toString(c, buffer, 256); fprintf(stderr, "resolved junction site local %d frame %d %s %p\n", siteIndex, frameIndex, buffer, v); } } return frozenSiteIndex; } void propagateJunctionSites(Context* c, Event* e, Site** sites) { for (Link* pl = e->predecessors; pl; pl = pl->nextPredecessor) { Event* p = pl->predecessor; if (p->junctionSites == 0) { p->junctionSites = sites; for (Link* sl = p->successors; sl; sl = sl->nextSuccessor) { Event* s = sl->successor; propagateJunctionSites(c, s, sites); } } } } void populateSiteTables(Context* c, Event* e) { unsigned frameFootprint = ::frameFootprint(c, e->stackAfter); { Site* frozenSites[frameFootprint]; unsigned frozenSiteIndex = 0; if (e->junctionSites) { for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); if (e->junctionSites[el.localIndex]) { frozenSiteIndex = resolveJunctionSite (c, e, el.value, el.localIndex, frameIndex(c, &el), frozenSites, frozenSiteIndex); } } } else { for (Link* sl = e->successors; sl; sl = sl->nextSuccessor) { Event* s = sl->successor; if (s->predecessors->nextPredecessor) { unsigned size = sizeof(Site*) * frameFootprint; Site** junctionSites = static_cast (c->zone->allocate(size)); memset(junctionSites, 0, size); propagateJunctionSites(c, s, junctionSites); break; } } } if (e->junctionSites) { for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); if (e->junctionSites[el.localIndex] == 0) { frozenSiteIndex = resolveJunctionSite (c, e, el.value, el.localIndex, frameIndex(c, &el), frozenSites, frozenSiteIndex); } } if (DebugControl) { fprintf(stderr, "resolved junction sites %p at %d\n", e->junctionSites, e->logicalInstruction->index); } for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); removeBuddy(c, el.value); } } while (frozenSiteIndex) { frozenSites[--frozenSiteIndex]->thaw(c); } } if (e->successors->nextSuccessor) { for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); e->snapshots = makeSnapshots(c, el.value, e->snapshots); } for (SavedValue* sv = e->successors->forkState->saved; sv; sv = sv->next) { e->snapshots = makeSnapshots(c, sv->value, e->snapshots); } if (DebugControl) { fprintf(stderr, "captured snapshots %p at %d\n", e->snapshots, e->logicalInstruction->index); } } } void setSites(Context* c, Event* e, Value* v, Site* s, unsigned size) { for (; s; s = s->next) { addSite(c, e->stackBefore, e->localsBefore, size, v, s->copy(c)); } if (DebugControl) { char buffer[256]; toString(c, v->sites, buffer, 256); fprintf(stderr, "set sites %s for %p\n", buffer, v); } } void resetFrame(Context* c, Event* e) { for (FrameIterator it(c, e->stackBefore, e->localsBefore); it.hasMore();) { FrameIterator::Element el = it.next(c); clearSites(c, el.value); } } void setSites(Context* c, Event* e, Site** sites) { resetFrame(c, e); for (FrameIterator it(c, e->stackBefore, e->localsBefore); it.hasMore();) { FrameIterator::Element el = it.next(c); if (sites[el.localIndex]) { Read* r = live(el.value); if (r) { setSites(c, e, el.value, sites[el.localIndex], r->size); } } } } void restore(Context* c, Event* e, Snapshot* snapshots) { for (Snapshot* s = snapshots; s; s = s->next) { // char buffer[256]; toString(c, s->sites, buffer, 256); // fprintf(stderr, "restore %p buddy %p sites %s\n", // s->value, s->value->buddy, buffer); s->value->buddy = s->buddy; } resetFrame(c, e); for (Snapshot* s = snapshots; s; s = s->next) { if (live(s->value)) { Read* r = live(s->value); if (r and s->sites and s->value->sites == 0) { setSites(c, e, s->value, s->sites, r->size); } } } } void populateSources(Context* c, Event* e) { Site* frozenSites[e->readCount]; unsigned frozenSiteIndex = 0; for (Read* r = e->reads; r; r = r->eventNext) { r->value->source = readSource(c, e->stackBefore, e->localsBefore, r); if (r->value->source) { assert(c, frozenSiteIndex < e->readCount); frozenSites[frozenSiteIndex++] = r->value->source; r->value->source->freeze(c); } } while (frozenSiteIndex) { frozenSites[--frozenSiteIndex]->thaw(c); } } void addStubRead(Context* c, Value* v, unsigned size, JunctionState* state, unsigned* count) { if (v) { StubRead* r = stubRead(c, size); // fprintf(stderr, "add stub read %p to %p\n", r, v); addRead(c, 0, v, r); StubReadPair* p = state->reads + ((*count)++); p->value = v; p->read = r; } } void populateJunctionReads(Context* c, Link* link) { JunctionState* state = new (c->zone->allocate (sizeof(JunctionState) + (sizeof(StubReadPair) * frameFootprint(c, c->stack)))) JunctionState; link->junctionState = state; unsigned count = 0; for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); addStubRead(c, e.value, footprintSizeInBytes(e.footprint), state, &count); } state->readCount = count; } void updateJunctionReads(Context*, JunctionState* state) { for (unsigned i = 0; i < state->readCount; ++i) { StubReadPair* p = state->reads + i; if (p->read->read == 0) p->read->read = p->value->reads; } } LogicalInstruction* next(Context* c, LogicalInstruction* i) { for (unsigned n = i->index + 1; n < c->logicalCodeLength; ++n) { i = c->logicalCode[n]; if (i) return i; } return 0; } class Block { public: Block(Event* head): head(head), nextBlock(0), nextInstruction(0), assemblerBlock(0), start(0) { } Event* head; Block* nextBlock; LogicalInstruction* nextInstruction; Assembler::Block* assemblerBlock; unsigned start; }; Block* block(Context* c, Event* head) { return new (c->zone->allocate(sizeof(Block))) Block(head); } unsigned compile(Context* c) { if (c->logicalCode[c->logicalIp]->lastEvent == 0) { appendDummy(c); } Assembler* a = c->assembler; c->pass = CompilePass; Block* firstBlock = block(c, c->firstEvent); Block* block = firstBlock; a->allocateFrame(c->alignedFrameSize); for (Event* e = c->firstEvent; e; e = e->next) { if (DebugCompile) { fprintf(stderr, " -- compile %s at %d with %d preds %d succs %d stack\n", e->name(), e->logicalInstruction->index, countPredecessors(e->predecessors), countSuccessors(e->successors), e->stackBefore ? e->stackBefore->index + e->stackBefore->footprint : 0); } e->block = block; c->stack = e->stackBefore; c->locals = e->localsBefore; if (e->logicalInstruction->machineOffset == 0) { e->logicalInstruction->machineOffset = a->offset(); } if (e->predecessors) { visit(c, lastPredecessor(e->predecessors)); Event* first = e->predecessors->predecessor; if (e->predecessors->nextPredecessor) { for (Link* pl = e->predecessors; pl->nextPredecessor; pl = pl->nextPredecessor) { updateJunctionReads(c, pl->junctionState); } if (DebugControl) { fprintf(stderr, "set sites to junction sites %p at %d\n", first->junctionSites, first->logicalInstruction->index); } setSites(c, e, first->junctionSites); } else if (first->successors->nextSuccessor) { if (DebugControl) { fprintf(stderr, "restore snapshots %p at %d\n", first->snapshots, first->logicalInstruction->index); } restore(c, e, first->snapshots); } } populateSources(c, e); bool branch = e->isBranch(); if (branch and e->successors) { populateSiteTables(c, e); } e->compile(c); if ((not branch) and e->successors) { populateSiteTables(c, e); } if (e->visitLinks) { for (Cell* cell = reverseDestroy(e->visitLinks); cell; cell = cell->next) { visit(c, static_cast(cell->value)); } e->visitLinks = 0; } for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->offset(); } LogicalInstruction* nextInstruction = next(c, e->logicalInstruction); if (e->next == 0 or (e->next->logicalInstruction != e->logicalInstruction and (e->logicalInstruction->lastEvent == e or e->next->logicalInstruction != nextInstruction))) { Block* b = e->logicalInstruction->firstEvent->block; if (b != block) { while (b->nextBlock) b = b->nextBlock; b->nextBlock = block; } block->nextInstruction = nextInstruction; block->assemblerBlock = a->endBlock(e->next != 0); // fprintf(stderr, "end block %p at %d\n", block->assemblerBlock, e->logicalInstruction->index); if (e->next) { block = ::block(c, e->next); } } } block = firstBlock; while (block->nextBlock or block->nextInstruction) { Block* next = block->nextBlock ? block->nextBlock : block->nextInstruction->firstEvent->block; next->start = block->assemblerBlock->resolve (block->start, next->assemblerBlock); // fprintf(stderr, "resolve block %p\n", block->assemblerBlock); block = next; } return block->assemblerBlock->resolve(block->start, 0); } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void restore(Context* c, ForkState* state) { for (unsigned i = 0; i < state->readCount; ++i) { ForkElement* p = state->elements + i; p->value->lastRead = p->read; p->read->allocateTarget(c); p->value->local = p->local; } } void addForkElement(Context* c, Value* v, unsigned size, ForkState* state, unsigned index) { MultiRead* r = multiRead(c, size); // fprintf(stderr, "add multi read %p to %p\n", r, v); addRead(c, 0, v, r); ForkElement* p = state->elements + index; p->value = v; p->local = v->local; p->read = r; } unsigned count(SavedValue* sv) { unsigned count = 0; while (sv) { ++ count; sv = sv->next; } return count; } ForkState* saveState(Context* c) { unsigned elementCount = frameFootprint(c, c->stack) + count(c->saved); ForkState* state = new (c->zone->allocate (sizeof(ForkState) + (sizeof(ForkElement) * elementCount))) ForkState(c->stack, c->locals, c->saved, c->predecessor, c->logicalIp); if (c->predecessor) { c->forkState = state; unsigned count = 0; for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); addForkElement (c, e.value, footprintSizeInBytes(e.footprint), state, count++); } for (SavedValue* sv = c->saved; sv; sv = sv->next) { addForkElement (c, sv->value, footprintSizeInBytes(sv->footprint), state, count++); } state->readCount = count; restore(c, state); } c->saved = 0; return state; } void restoreState(Context* c, ForkState* s) { if (c->logicalCode[c->logicalIp]->lastEvent == 0) { appendDummy(c); } c->stack = s->stack; c->locals = s->locals; c->predecessor = s->predecessor; c->logicalIp = s->logicalIp; if (c->predecessor) { c->forkState = s; restore(c, s); } } Value* maybeBuddy(Context* c, Value* v, unsigned sizeInBytes) { if (v->local) { Value* n = value(c); appendBuddy(c, v, n, sizeInBytes); return n; } else { return v; } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(uint32_t mask) { int r = pickRegister(c, mask)->number; save(r); increment(c, r); return r; } virtual void releaseTemporary(int r) { decrement(c, c->registers[r]); restore(r); } virtual void save(int r) { Register* reg = c->registers[r]; if (reg->refCount or reg->value) { releaseRegister(c, r); } assert(c, reg->refCount == 0); assert(c, reg->value == 0); } virtual void restore(int) { // todo } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone, Compiler::Client* compilerClient): c(s, assembler, zone, compilerClient), client(&c) { assembler->setClient(&client); } virtual State* saveState() { return ::saveState(&c); } virtual void save(unsigned footprint, Operand* value) { c.saved = savedValue(&c, static_cast(value), footprint, c.saved); } virtual void restoreState(State* state) { ::restoreState(&c, static_cast(state)); } virtual void init(unsigned logicalCodeLength, unsigned parameterFootprint, unsigned localFootprint, unsigned alignedFrameSize) { c.logicalCodeLength = logicalCodeLength; c.parameterFootprint = parameterFootprint; c.localFootprint = localFootprint; c.alignedFrameSize = alignedFrameSize; unsigned frameResourceSize = sizeof(FrameResource) * (alignedFrameSize + parameterFootprint); c.frameResources = static_cast (c.zone->allocate(frameResourceSize)); memset(c.frameResources, 0, frameResourceSize); // leave room for logical instruction -1 unsigned codeSize = sizeof(LogicalInstruction*) * (logicalCodeLength + 1); c.logicalCode = static_cast (c.zone->allocate(codeSize)); memset(c.logicalCode, 0, codeSize); c.logicalCode++; c.locals = static_cast (c.zone->allocate(sizeof(Local) * localFootprint)); memset(c.locals, 0, sizeof(Local) * localFootprint); c.logicalCode[-1] = new (c.zone->allocate(sizeof(LogicalInstruction))) LogicalInstruction(-1, c.stack, c.locals); } virtual void visitLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); if (c.logicalCode[c.logicalIp]->lastEvent == 0) { appendDummy(&c); } Event* e = c.logicalCode[logicalIp]->firstEvent; Event* p = c.predecessor; if (p) { // fprintf(stderr, "visit %d pred %d\n", logicalIp, // p->logicalInstruction->index); p->stackAfter = c.stack; p->localsAfter = c.locals; Link* link = ::link (&c, p, e->predecessors, e, p->successors, c.forkState); e->predecessors = link; p->successors = link; c.lastEvent->visitLinks = cons(&c, link, c.lastEvent->visitLinks); // fprintf(stderr, "populate junction reads for %d to %d\n", // p->logicalInstruction->index, logicalIp); populateJunctionReads(&c, e->predecessors); } c.forkState = false; } virtual void startLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); assert(&c, c.logicalCode[logicalIp] == 0); if (c.logicalCode[c.logicalIp]->lastEvent == 0) { appendDummy(&c); } Event* p = c.predecessor; if (p) { p->stackAfter = c.stack; p->localsAfter = c.locals; } c.logicalCode[logicalIp] = new (c.zone->allocate(sizeof(LogicalInstruction))) LogicalInstruction(logicalIp, c.stack, c.locals); c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return ::value(&c, ::constantSite(&c, value)); } virtual Operand* address(Promise* address) { return value(&c, ::addressSite(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1) { Value* result = value(&c); appendMemory(&c, static_cast(base), displacement, static_cast(index), scale, result); return result; } virtual Operand* stack() { Site* s = registerSite(&c, c.arch->stack()); return value(&c, s, s); } virtual Operand* thread() { Site* s = registerSite(&c, c.arch->thread()); return value(&c, s, s); } Promise* machineIp() { return codePromise(&c, c.logicalCode[c.logicalIp]->lastEvent); } virtual void push(unsigned footprint) { assert(&c, footprint); Value* v = value(&c); v->local = true; c.stack = ::stack(&c, v, footprint, c.stack); } virtual void push(unsigned footprint, Operand* value) { ::push(&c, footprint, static_cast(value)); } virtual Operand* pop(unsigned footprint) { return ::pop(&c, footprint); } virtual void pushed() { Value* v = value(&c); v->local = true; appendFrameSite (&c, v, BytesPerWord, frameIndex(&c, (c.stack ? c.stack->index : 0) + c.localFootprint, 1)); c.stack = ::stack(&c, v, 1, c.stack); } virtual void popped() { assert(&c, c.stack->value->local); c.stack = c.stack->next; } virtual StackElement* top() { return c.stack; } virtual unsigned footprint(StackElement* e) { return static_cast(e)->footprint; } virtual unsigned index(StackElement* e) { return static_cast(e)->index; } virtual Operand* peek(unsigned footprint UNUSED, unsigned index) { Stack* s = c.stack; for (unsigned i = index; i > 0;) { i -= s->footprint; s = s->next; } assert(&c, s->footprint == footprint); return s->value; } virtual Operand* call(Operand* address, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; Value* arguments[argumentCount]; unsigned argumentSizes[argumentCount]; int index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Value* o = va_arg(a, Value*); if (o) { arguments[index] = o; argumentSizes[index] = size; size = BytesPerWord; ++ index; } else { size = 8; } ++ footprint; } va_end(a); Stack* oldStack = c.stack; Stack* bottomArgument = 0; for (int i = index - 1; i >= 0; --i) { ::push(&c, ceiling(argumentSizes[i], BytesPerWord), arguments[i]); if (i == index - 1) { bottomArgument = c.stack; } } Stack* argumentStack = c.stack; c.stack = oldStack; Value* result = value(&c); appendCall(&c, static_cast(address), flags, traceHandler, result, resultSize, argumentStack, index, 0); return result; } virtual Operand* stackCall(Operand* address, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentFootprint) { Value* result = value(&c); appendCall(&c, static_cast(address), flags, traceHandler, result, resultSize, c.stack, 0, argumentFootprint); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void initLocal(unsigned footprint, unsigned index) { assert(&c, index < c.localFootprint); Value* v = value(&c); if (DebugFrame) { fprintf(stderr, "init local %p of footprint %d at %d (%d)\n", v, footprint, index, frameIndex(&c, index, footprint)); } appendFrameSite (&c, v, footprintSizeInBytes(footprint), frameIndex(&c, index, footprint)); Local* local = c.locals + index; local->value = v; v->local = true; local->footprint = footprint; } virtual void initLocalsFromLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); unsigned footprint = sizeof(Local) * c.localFootprint; Local* newLocals = static_cast(c.zone->allocate(footprint)); memset(newLocals, 0, footprint); c.locals = newLocals; Event* e = c.logicalCode[logicalIp]->firstEvent; for (unsigned i = 0; i < c.localFootprint; ++i) { Local* local = e->localsBefore + i; if (local->value) { initLocal(local->footprint, i); } } } virtual void storeLocal(unsigned footprint, Operand* src, unsigned index) { assert(&c, index < c.localFootprint); Local* local = c.locals + index; if (local->value) local->value->local = false; unsigned sizeInBytes = sizeof(Local) * c.localFootprint; Local* newLocals = static_cast(c.zone->allocate(sizeInBytes)); memcpy(newLocals, c.locals, sizeInBytes); c.locals = newLocals; local = c.locals + index; local->value = maybeBuddy (&c, static_cast(src), footprintSizeInBytes(footprint)); if (footprint == 2) { Local* clobber = local + 1; clobber->value = 0; clobber->footprint = 0; } if (DebugFrame) { fprintf(stderr, "store local %p of footprint %d at %d\n", local->value, footprint, index); } local->value->local = true; local->footprint = footprint; } virtual Operand* loadLocal(unsigned footprint UNUSED, unsigned index) { assert(&c, index < c.localFootprint); assert(&c, c.locals[index].value); assert(&c, c.locals[index].value->local); assert(&c, c.locals[index].footprint == footprint); if (DebugFrame) { fprintf(stderr, "load local %p of size %d at %d\n", c.locals[index].value, footprint, index); } return c.locals[index].value; } virtual void checkBounds(Operand* object, unsigned lengthOffset, Operand* index, intptr_t handler) { appendBoundsCheck(&c, static_cast(object), lengthOffset, static_cast(index), handler); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), size, static_cast(dst)); } virtual Operand* load(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, Move, size, static_cast(src), max(size, BytesPerWord), dst); return dst; } virtual Operand* loadz(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, MoveZ, size, static_cast(src), max(size, BytesPerWord), dst); return dst; } virtual Operand* load4To8(Operand* src) { Value* dst = value(&c); appendMove(&c, Move, 4, static_cast(src), 8, dst); return dst; } virtual Operand* lcmp(Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, LongCompare, 8, static_cast(a), 8, static_cast(b), 8, result); return result; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { appendBranch(&c, Jump, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Add, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Subtract, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Multiply, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Divide, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Remainder, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftLeft, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftRight, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, UnsignedShiftRight, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, And, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Or, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Xor, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* neg(unsigned size, Operand* a) { Value* result = value(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { return c.machineCodeSize = ::compile(&c); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.machineCodeSize) + i) = n->promise->value(); i += BytesPerWord; } } virtual void dispose() { // ignore } Context c; ::Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone, Compiler::Client* client) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone, client); } } // namespace vm