/* * Copyright (C) 2011-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "se_wrapper.h" #include "se_error_internal.h" #include "arch.h" #include "util.h" #include "loader.h" #include "se_page_attr.h" #include "enclave.h" #include "enclave_creator.h" #include "routine.h" #include "sgx_attributes.h" #include "se_vendor.h" #include "se_detect.h" #include "binparser.h" #include #include #include #define __STDC_FORMAT_MACROS #include #include // enclave creator instance extern EnclaveCreator* g_enclave_creator; EnclaveCreator* get_enclave_creator(void) { return g_enclave_creator; } CLoader::CLoader(uint8_t *mapped_file_base, BinParser &parser) : m_mapped_file_base(mapped_file_base) , m_enclave_id(0) , m_start_addr(NULL) , m_metadata(NULL) , m_parser(parser) { memset(&m_secs, 0, sizeof(m_secs)); } CLoader::~CLoader() { } sgx_enclave_id_t CLoader::get_enclave_id() const { return m_enclave_id; } const void* CLoader::get_start_addr() const { return m_start_addr; } const std::vector& CLoader::get_tcs_list() const { return m_tcs_list; } const secs_t& CLoader::get_secs() const { return m_secs; } void* CLoader::get_symbol_address(const char * const symbol) { uint64_t rva = m_parser.get_symbol_rva(symbol); if(0 == rva) return NULL; return GET_PTR(void, m_start_addr, rva); } // is_relocation_page returns true if the specified RVA is a writable relocation page based on the bitmap. bool CLoader::is_relocation_page(const uint64_t rva, vector *bitmap) { uint64_t page_frame = rva >> SE_PAGE_SHIFT; //NOTE: // Current enclave size is not beyond 128G, so the type-casting from (uint64>>15) to (size_t) is OK. // In the future, if the max enclave size is extended to beyond (1<<49), this type-casting will not work. // It only impacts the enclave signing process. (32bit signing tool to sign 64 bit enclaves) size_t index = (size_t)(page_frame / 8); if(bitmap && (index < bitmap->size())) { return ((*bitmap)[index] & (1 << (page_frame % 8))); } return false; } int CLoader::build_mem_region(const section_info_t &sec_info) { int ret = SGX_SUCCESS; uint64_t offset = 0; sec_info_t sinfo; memset(&sinfo, 0, sizeof(sinfo)); // Build pages of the section that are contain initialized data. Each page // needs to be added individually as the page may hold relocation data, in // which case the page needs to be marked writable. while(offset < sec_info.raw_data_size) { uint64_t rva = sec_info.rva + offset; uint64_t size = MIN((SE_PAGE_SIZE - PAGE_OFFSET(rva)), (sec_info.raw_data_size - offset)); sinfo.flags = sec_info.flag; if(is_relocation_page(rva, sec_info.bitmap)) sinfo.flags = sec_info.flag | SI_FLAG_W; if (size == SE_PAGE_SIZE) ret = build_pages(rva, size, sec_info.raw_data + offset, sinfo, ADD_EXTEND_PAGE); else ret = build_partial_page(rva, size, sec_info.raw_data + offset, sinfo, ADD_EXTEND_PAGE); if(SGX_SUCCESS != ret) return ret; // only the first time that rva may be not page aligned offset += SE_PAGE_SIZE - PAGE_OFFSET(rva); } assert(IS_PAGE_ALIGNED(sec_info.rva + offset)); // Add any remaining uninitialized data. We can call build_pages directly // even if there are partial pages since the source is null, i.e. everything // is filled with '0'. Uninitialied data cannot be a relocation table, ergo // there is no need to check the relocation bitmap. if(sec_info.virtual_size > offset) { uint64_t rva = sec_info.rva + offset; size_t size = (size_t)(ROUND_TO_PAGE(sec_info.virtual_size - offset)); sinfo.flags = sec_info.flag; if(SGX_SUCCESS != (ret = build_pages(rva, size, 0, sinfo, ADD_EXTEND_PAGE))) return ret; } return SGX_SUCCESS; } int CLoader::build_sections(vector *bitmap) { int ret = SGX_SUCCESS; std::vector sections = m_parser.get_sections(); uint64_t max_rva =0; Section* last_section = NULL; for(unsigned int i = 0; i < sections.size() ; i++) { if((META_DATA_MAKE_VERSION(SGX_1_5_MAJOR_VERSION,SGX_1_5_MINOR_VERSION ) == m_metadata->version) && (last_section != NULL) && (ROUND_TO_PAGE(last_section->virtual_size() + last_section->get_rva()) < ROUND_TO_PAGE(ROUND_TO_PAGE(last_section->virtual_size()) + last_section->get_rva())) && (ROUND_TO_PAGE(last_section->get_rva() + last_section->virtual_size()) < (sections[i]->get_rva() & (~(SE_PAGE_SIZE - 1))))) { size_t size = SE_PAGE_SIZE; sec_info_t sinfo; memset(&sinfo, 0, sizeof(sinfo)); sinfo.flags = last_section->get_si_flags(); uint64_t rva = ROUND_TO_PAGE(last_section->get_rva() + last_section->virtual_size()); if(SGX_SUCCESS != (ret = build_pages(rva, size, 0, sinfo, ADD_EXTEND_PAGE))) return ret; } if(sections[i]->get_rva() > max_rva) { max_rva = sections[i]->get_rva(); last_section = sections[i]; } section_info_t sec_info = { sections[i]->raw_data(), sections[i]->raw_data_size(), sections[i]->get_rva(), sections[i]->virtual_size(), sections[i]->get_si_flags(), bitmap }; if(SGX_SUCCESS != (ret = build_mem_region(sec_info))) return ret; } if((META_DATA_MAKE_VERSION(SGX_1_5_MAJOR_VERSION,SGX_1_5_MINOR_VERSION ) == m_metadata->version) && (last_section != NULL) && (ROUND_TO_PAGE(last_section->virtual_size() + last_section->get_rva()) < ROUND_TO_PAGE(ROUND_TO_PAGE(last_section->virtual_size()) + last_section->get_rva()))) { size_t size = SE_PAGE_SIZE; sec_info_t sinfo; memset(&sinfo, 0, sizeof(sinfo)); sinfo.flags = last_section->get_si_flags(); uint64_t rva = ROUND_TO_PAGE(last_section->get_rva() + last_section->virtual_size()); if(SGX_SUCCESS != (ret = build_pages(rva, size, 0, sinfo, ADD_EXTEND_PAGE))) return ret; } return SGX_SUCCESS; } int CLoader::build_partial_page(const uint64_t rva, const uint64_t size, const void *source, const sec_info_t &sinfo, const uint32_t attr) { // RVA may or may not be aligned. uint64_t offset = PAGE_OFFSET(rva); // Initialize the page with '0', this serves as both the padding at the start // of the page (if it's not aligned) as well as the fill for any unitilized // bytes at the end of the page, e.g. .bss data. uint8_t page_data[SE_PAGE_SIZE]; memset(page_data, 0, SE_PAGE_SIZE); // The amount of raw data may be less than the number of bytes on the page, // but that portion of page_data has already been filled (see above). memcpy_s(&page_data[offset], (size_t)(SE_PAGE_SIZE - offset), source, (size_t)size); // Add the page, trimming the start address to make it page aligned. return build_pages(TRIM_TO_PAGE(rva), SE_PAGE_SIZE, page_data, sinfo, attr); } int CLoader::build_pages(const uint64_t start_rva, const uint64_t size, const void *source, const sec_info_t &sinfo, const uint32_t attr) { int ret = SGX_SUCCESS; uint64_t offset = 0; uint64_t rva = start_rva; assert(IS_PAGE_ALIGNED(start_rva) && IS_PAGE_ALIGNED(size)); while(offset < size) { //call driver to add page; if(SGX_SUCCESS != (ret = get_enclave_creator()->add_enclave_page(ENCLAVE_ID_IOCTL, GET_PTR(void, source, 0), rva, sinfo, attr))) { //if add page failed , we should remove enclave somewhere; return ret; } offset += SE_PAGE_SIZE; rva += SE_PAGE_SIZE; } return SGX_SUCCESS; } int CLoader::build_context(const uint64_t start_rva, layout_entry_t *layout) { int ret = SGX_ERROR_UNEXPECTED; uint8_t added_page[SE_PAGE_SIZE]; sec_info_t sinfo; memset(&sinfo, 0, sizeof(sinfo)); uint64_t rva = start_rva + layout->rva; assert(IS_PAGE_ALIGNED(rva)); if (layout->content_offset) { // assume TCS is only 1 page if(layout->si_flags == SI_FLAGS_TCS) { memset(added_page, 0, SE_PAGE_SIZE); memcpy_s(added_page, SE_PAGE_SIZE, GET_PTR(uint8_t, m_metadata, layout->content_offset), layout->content_size); tcs_t *ptcs = reinterpret_cast(added_page); ptcs->ossa += rva; ptcs->ofs_base += rva; ptcs->ogs_base += rva; m_tcs_list.push_back(GET_PTR(tcs_t, m_start_addr, rva)); sinfo.flags = layout->si_flags; if(SGX_SUCCESS != (ret = build_pages(rva, (uint64_t)layout->page_count << SE_PAGE_SHIFT, added_page, sinfo, layout->attributes))) { return ret; } } else // guard page should not have content_offset != 0 { section_info_t sec_info = {GET_PTR(uint8_t, m_metadata, layout->content_offset), layout->content_size, rva, (uint64_t)layout->page_count << SE_PAGE_SHIFT, layout->si_flags, NULL}; if(SGX_SUCCESS != (ret = build_mem_region(sec_info))) { return ret; } } } else if (layout->si_flags != SI_FLAG_NONE) { sinfo.flags = layout->si_flags; void *source = NULL; if(layout->content_size) { for(uint32_t *p = (uint32_t *)added_page; p < GET_PTR(uint32_t, added_page, SE_PAGE_SIZE); p++) { *p = layout->content_size; } source = added_page; } if(SGX_SUCCESS != (ret = build_pages(rva, (uint64_t)layout->page_count << SE_PAGE_SHIFT, source, sinfo, layout->attributes))) { return ret; } } return SGX_SUCCESS; } int CLoader::build_contexts(layout_t *layout_start, layout_t *layout_end, uint64_t delta) { int ret = SGX_ERROR_UNEXPECTED; for(layout_t *layout = layout_start; layout < layout_end; layout++) { if (!IS_GROUP_ID(layout->group.id)) { if(SGX_SUCCESS != (ret = build_context(delta, &layout->entry))) { return ret; } } else { uint64_t step = 0; for(uint32_t j = 0; j < layout->group.load_times; j++) { step += layout->group.load_step; if(SGX_SUCCESS != (ret = build_contexts(&layout[-layout->group.entry_count], layout, step))) { return ret; } } } } return SGX_SUCCESS; } int CLoader::build_secs(sgx_attributes_t * const secs_attr, sgx_misc_attribute_t * const misc_attr) { memset(&m_secs, 0, sizeof(secs_t)); //should set resvered field of secs as 0. //create secs structure. m_secs.base = 0; //base is allocated by driver. set it as 0 m_secs.size = m_metadata->enclave_size; m_secs.misc_select = misc_attr->misc_select; memcpy_s(&m_secs.attributes, sizeof(m_secs.attributes), secs_attr, sizeof(m_secs.attributes)); m_secs.ssa_frame_size = m_metadata->ssa_frame_size; EnclaveCreator *enclave_creator = get_enclave_creator(); if(NULL == enclave_creator) return SGX_ERROR_UNEXPECTED; int ret = enclave_creator->create_enclave(&m_secs, &m_enclave_id, &m_start_addr, is_ae(&m_metadata->enclave_css)); if(SGX_SUCCESS == ret) { SE_TRACE(SE_TRACE_NOTICE, "enclave start address = %p, size = 0x%x\n", m_start_addr, m_metadata->enclave_size); } return ret; } int CLoader::build_image(SGXLaunchToken * const lc, sgx_attributes_t * const secs_attr, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t * const misc_attr) { int ret = SGX_SUCCESS; if(SGX_SUCCESS != (ret = build_secs(secs_attr, misc_attr))) { SE_TRACE(SE_TRACE_WARNING, "build secs failed\n"); return ret; }; // read reloc bitmap before patch the enclave file // If load_enclave_ex try to load the enclave for the 2nd time, // the enclave image is already patched, and parser cannot read the information. // For linux, there's no map conflict. We assume load_enclave_ex will not do the retry. vector bitmap; if(!m_parser.get_reloc_bitmap(bitmap)) return SGX_ERROR_INVALID_ENCLAVE; // patch enclave file patch_entry_t *patch_start = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset); patch_entry_t *patch_end = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset + m_metadata->dirs[DIR_PATCH].size); for(patch_entry_t *patch = patch_start; patch < patch_end; patch++) { memcpy_s(GET_PTR(void, m_parser.get_start_addr(), patch->dst), patch->size, GET_PTR(void, m_metadata, patch->src), patch->size); } //build sections, copy export function table as well; if(SGX_SUCCESS != (ret = build_sections(&bitmap))) { SE_TRACE(SE_TRACE_WARNING, "build sections failed\n"); goto fail; } // build heap/thread context if (SGX_SUCCESS != (ret = build_contexts(GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset), GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size), 0))) { SE_TRACE(SE_TRACE_WARNING, "build heap/thread context failed\n"); goto fail; } //initialize Enclave ret = get_enclave_creator()->init_enclave(ENCLAVE_ID_IOCTL, const_cast(&m_metadata->enclave_css), lc, prd_css_file); if(SGX_SUCCESS != ret) { SE_TRACE(SE_TRACE_WARNING, "init_enclave failed\n"); goto fail; } return SGX_SUCCESS; fail: get_enclave_creator()->destroy_enclave(ENCLAVE_ID_IOCTL, m_secs.size); return ret; } bool CLoader::is_metadata_buffer(uint32_t offset, uint32_t size) { if((offsetof(metadata_t, data) > offset) || (offset >= m_metadata->size)) { return false; } uint32_t end = offset + size; if ((end < offset) || (end < size) || (end > m_metadata->size)) { return false; } return true; } bool CLoader::is_enclave_buffer(uint64_t offset, uint64_t size) { if(offset >= m_metadata->enclave_size) { return false; } uint64_t end = offset + size; if ((end < offset) || (end < size) || (end > m_metadata->enclave_size)) { return false; } return true; } int CLoader::validate_layout_table() { layout_t *layout_start = GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset); layout_t *layout_end = GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size); vector> rva_vector; for (layout_t *layout = layout_start; layout < layout_end; layout++) { if(!IS_GROUP_ID(layout->entry.id)) // layout entry { rva_vector.push_back(make_pair(layout->entry.rva, (uint64_t)layout->entry.page_count << SE_PAGE_SHIFT)); if(layout->entry.content_offset) { if(false == is_metadata_buffer(layout->entry.content_offset, layout->entry.content_size)) { return SGX_ERROR_INVALID_METADATA; } } } else // layout group { if (layout->group.entry_count > (uint32_t)(PTR_DIFF(layout, layout_start)/sizeof(layout_t))) { return SGX_ERROR_INVALID_METADATA; } uint64_t load_step = 0; for(uint32_t i = 0; i < layout->group.load_times; i++) { load_step += layout->group.load_step; if(load_step > m_metadata->enclave_size) { return SGX_ERROR_INVALID_METADATA; } for(layout_entry_t *entry = &layout[-layout->group.entry_count].entry; entry < &layout->entry; entry++) { if(IS_GROUP_ID(entry->id)) { return SGX_ERROR_INVALID_METADATA; } rva_vector.push_back(make_pair(entry->rva + load_step, (uint64_t)entry->page_count << SE_PAGE_SHIFT)); // no need to check integer overflow for entry->rva + load_step, because // entry->rva and load_step are less than enclave_size, whose size is no more than 37 bit } } } } sort(rva_vector.begin(), rva_vector.end()); for (vector>::iterator it = rva_vector.begin(); it != rva_vector.end(); it++) { if(!IS_PAGE_ALIGNED(it->first)) { return SGX_ERROR_INVALID_METADATA; } if(false == is_enclave_buffer(it->first, it->second)) { return SGX_ERROR_INVALID_METADATA; } if((it+1) != rva_vector.end()) { if((it->first+it->second) > (it+1)->first) { return SGX_ERROR_INVALID_METADATA; } } } return SGX_SUCCESS; } int CLoader::validate_patch_table() { patch_entry_t *patch_start = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset); patch_entry_t *patch_end = GET_PTR(patch_entry_t, m_metadata, m_metadata->dirs[DIR_PATCH].offset + m_metadata->dirs[DIR_PATCH].size); for(patch_entry_t *patch = patch_start; patch < patch_end; patch++) { if(false == is_metadata_buffer(patch->src, patch->size)) { return SGX_ERROR_INVALID_METADATA; } if(false == is_enclave_buffer(patch->dst, patch->size)) { return SGX_ERROR_INVALID_METADATA; } } return SGX_SUCCESS; } int CLoader::validate_metadata() { if(!m_metadata) return SGX_ERROR_INVALID_METADATA; uint64_t version2 = META_DATA_MAKE_VERSION(MAJOR_VERSION,MINOR_VERSION ); uint64_t version1 = META_DATA_MAKE_VERSION(SGX_1_5_MAJOR_VERSION,SGX_1_5_MINOR_VERSION ); //if the version of metadata does NOT match the version of metadata in urts, we should NOT launch enclave. if((m_metadata->version != version1) && (m_metadata->version != version2)) { SE_TRACE(SE_TRACE_WARNING, "Mismatch between the metadata urts required and the metadata in use.\n"); return SGX_ERROR_INVALID_VERSION; } if(m_metadata->size > sizeof(metadata_t)) { return SGX_ERROR_INVALID_METADATA; } if(m_metadata->tcs_policy > TCS_POLICY_UNBIND) return SGX_ERROR_INVALID_METADATA; if(m_metadata->ssa_frame_size < SSA_FRAME_SIZE_MIN || m_metadata->ssa_frame_size > SSA_FRAME_SIZE_MAX) return SGX_ERROR_INVALID_METADATA; uint64_t size = m_metadata->enclave_size; if(size > m_parser.get_enclave_max_size()) { return SGX_ERROR_INVALID_METADATA; } while ((size != 0) && ((size & 1) != 1)) { size = size >> 1; } if(size != 1) { return SGX_ERROR_INVALID_METADATA; } // check dirs for(uint32_t i = 0; i < DIR_NUM; i++) { if(false == is_metadata_buffer(m_metadata->dirs[i].offset, m_metadata->dirs[i].size)) { return SGX_ERROR_INVALID_METADATA; } } // check layout table int status = validate_layout_table(); if(SGX_SUCCESS != status) { return status; } // check patch table status = validate_patch_table(); if(SGX_SUCCESS != status) { return status; } return SGX_SUCCESS; } bool CLoader::is_ae(const enclave_css_t *enclave_css) { assert(NULL != enclave_css); if(INTEL_VENDOR_ID == enclave_css->header.module_vendor && AE_PRODUCT_ID == enclave_css->body.isv_prod_id) return true; return false; } int CLoader::load_enclave(SGXLaunchToken *lc, int debug, const metadata_t *metadata, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t *misc_attr) { int ret = SGX_SUCCESS; sgx_misc_attribute_t sgx_misc_attr; memset(&sgx_misc_attr, 0, sizeof(sgx_misc_attribute_t)); m_metadata = metadata; ret = validate_metadata(); if(SGX_SUCCESS != ret) { SE_TRACE(SE_TRACE_ERROR, "The metadata setting is not correct\n"); return ret; } ret = get_enclave_creator()->get_misc_attr(&sgx_misc_attr, const_cast(m_metadata), lc, debug); if(SGX_SUCCESS != ret) { return ret; } ret = build_image(lc, &sgx_misc_attr.secs_attr, prd_css_file, &sgx_misc_attr); // Update misc_attr with secs.attr upon success. if(SGX_SUCCESS == ret) { if(misc_attr) { memcpy_s(misc_attr, sizeof(sgx_misc_attribute_t), &sgx_misc_attr, sizeof(sgx_misc_attribute_t)); //When run here EINIT success, so SGX_FLAGS_INITTED should be set by ucode. uRTS align it with EINIT instruction. misc_attr->secs_attr.flags |= SGX_FLAGS_INITTED; } } return ret; } int CLoader::load_enclave_ex(SGXLaunchToken *lc, bool debug, const metadata_t *metadata, le_prd_css_file_t *prd_css_file, sgx_misc_attribute_t *misc_attr) { unsigned int ret = SGX_SUCCESS, map_conflict_count = 3; bool retry = true; while (retry) { ret = this->load_enclave(lc, debug, metadata, prd_css_file, misc_attr); switch(ret) { //If CreateEnclave failed due to power transition, we retry it. case SGX_ERROR_ENCLAVE_LOST: //caused by loading enclave while power transition occurs break; //If memroy map conflict occurs, we only retry 3 times. case SGX_ERROR_MEMORY_MAP_CONFLICT: if(0 == map_conflict_count) retry = false; else map_conflict_count--; break; //We don't re-load enclave due to other error code. default: retry = false; break; } } return ret; } int CLoader::destroy_enclave() { return get_enclave_creator()->destroy_enclave(ENCLAVE_ID_IOCTL, m_secs.size); } int CLoader::set_memory_protection() { uint64_t rva = 0; uint64_t len = 0; uint64_t last_section_end = 0; unsigned int i = 0; int ret = 0; //for sections std::vector sections = m_parser.get_sections(); for(i = 0; i < sections.size() ; i++) { //require the sec_info.rva be page aligned, we need handle the first page. //the first page; uint64_t offset = (sections[i]->get_rva() & (SE_PAGE_SIZE -1)); uint64_t size = SE_PAGE_SIZE - offset; //the raw data may be smaller than the size, we get the min of them if(sections[i]->raw_data_size() < size) size = sections[i]->raw_data_size(); len = SE_PAGE_SIZE; //if there is more pages, then calc the next paged aligned pages if((sections[i]->virtual_size() + offset) > SE_PAGE_SIZE) { uint64_t raw_data_size = sections[i]->raw_data_size() - size; //we need use (SE_PAGE_SIZE - offset), because (SE_PAGE_SIZE - offset) may larger than size uint64_t virtual_size = sections[i]->virtual_size() - (SE_PAGE_SIZE - offset); len += ROUND_TO_PAGE(raw_data_size); if(ROUND_TO_PAGE(virtual_size) > ROUND_TO_PAGE(raw_data_size)) { len += ROUND_TO_PAGE(virtual_size) - ROUND_TO_PAGE(raw_data_size); } } rva = TRIM_TO_PAGE(sections[i]->get_rva()) + (uint64_t)m_start_addr; ret = mprotect((void*)rva, (size_t)len, (int)(sections[i]->get_si_flags()&SI_MASK_MEM_ATTRIBUTE)); if(ret != 0) { SE_TRACE(SE_TRACE_WARNING, "section[%d]:mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%" PRIu64 ") failed\n", i, rva, len, (sections[i]->get_si_flags())); return SGX_ERROR_UNEXPECTED; } //there is a gap between sections, need to set those to NONE access if(last_section_end != 0) { ret = mprotect((void*)last_section_end, (size_t)(rva - last_section_end), (int)(SI_FLAG_NONE & SI_MASK_MEM_ATTRIBUTE)); if(ret != 0) { SE_TRACE(SE_TRACE_WARNING, "set protection for gap before section[%d]:mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%" PRIu64 ") failed\n", i, last_section_end, rva - last_section_end, SI_FLAG_NONE); return SGX_ERROR_UNEXPECTED; } } last_section_end = rva + len; } ret = set_context_protection(GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset), GET_PTR(layout_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size), 0); if (SGX_SUCCESS != ret) { return ret; } return SGX_SUCCESS; } int CLoader::set_context_protection(layout_t *layout_start, layout_t *layout_end, uint64_t delta) { int ret = SGX_ERROR_UNEXPECTED; for(layout_t *layout = layout_start; layout < layout_end; layout++) { if (!IS_GROUP_ID(layout->group.id)) { int prot = 0 ; if(layout->entry.si_flags == SI_FLAG_NONE) { prot = SI_FLAG_NONE & SI_MASK_MEM_ATTRIBUTE; } else { prot = SI_FLAGS_RWX & SI_MASK_MEM_ATTRIBUTE; } ret = mprotect(GET_PTR(void, m_start_addr, layout->entry.rva + delta), (size_t)layout->entry.page_count << SE_PAGE_SHIFT, prot); if(ret != 0) { SE_TRACE(SE_TRACE_WARNING, "mprotect(rva=%" PRIu64 ", len=%" PRIu64 ", flags=%d) failed\n", (uint64_t)m_start_addr + layout->entry.rva + delta, (uint64_t)layout->entry.page_count << SE_PAGE_SHIFT, prot); return SGX_ERROR_UNEXPECTED; } } else { uint64_t step = 0; for(uint32_t j = 0; j < layout->group.load_times; j++) { step += layout->group.load_step; if(SGX_SUCCESS != (ret = set_context_protection(&layout[-layout->group.entry_count], layout, step))) { return ret; } } } } return SGX_SUCCESS; }