/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { class Context; void NO_RETURN abort(Context* c); // scratch class Value: public Compiler::Operand { public: Value(Site* site): reads(0), sites(site), source(0), target(0) { } Read* reads; Site* sites; Site* source; Site* target; }; class Event { public: Event(Context* c): next(0), stack(c->state->stack), promises(0) { assert(c, c->logicalIp >= 0); if (c->event) { c->event->next = this; } if (c->logicalCode[c->logicalIp].firstEvent == 0) { c->logicalCode[c->logicalIp].firstEvent = this; } c->event = this; } virtual ~Event() { } virtual void compile(Context* c) = 0; Event* next; Stack* stack; CodePromise* promises; }; class Stack { public: Stack(Value* value, unsigned size, unsigned index, Stack* next): value(value), size(size), index(index), next(next) { } Value* value; unsigned size; unsigned index; Stack* next; }; class CallEvent: public Event { public: CallEvent(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, unsigned argumentCount): Event(c), address(address), indirection(indirection), flags(flags), traceHandler(traceHandler), result(result) { addRead(c, address, BytesPerWord, (indirection ? registerSite(c, c->assembler->returnLow()) : 0)); unsigned index = 0; Stack* s = stack; for (unsigned i = 0; i < argumentCount; ++i) { addRead(c, s->value, s->size * BytesPerWord, index < c->assembler->argumentRegisterCount() ? registerSite(c, c->assembler->argumentRegister(index)) : stackSite(c, s)); index += s->size; s = s->next; } if (result) { addWrite(c, result, resultSize); } } virtual void compile(Context* c) { fprintf(stderr, "CallEvent.compile\n"); UnaryOperation type = ((flags & Compiler::Aligned) ? AlignedCall : Call); if (indirection) { apply(c, type, BytesPerWord, constantSite(c, reinterpret_cast(indirection))); } else { apply(c, type, BytesPerWord, address->source); } if (traceHandler) { traceHandler->handleTrace (new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, c->assembler->length())); } } Value* address; void* indirection; unsigned flags; TraceHandler* traceHandler; Value* result; }; void appendCall(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned argumentCount) { new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, indirection, flags, traceHandler, result, argumentCount); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, value, size, registerSite (c, c->assembler->returnLow(), size > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } } virtual void compile(Context* c) { fprintf(stderr, "ReturnEvent.compile\n"); Assembler::Register base(c->assembler->base()); Assembler::Register stack(c->assembler->stack()); c->assembler->apply(Move, BytesPerWord, Register, &base, Register, &stack); c->assembler->apply(Pop, BytesPerWord, Register, &base); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, MyOperand* value) { new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value); } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst): Event(c), type(type), size(size), src(src), dst(dst) { addRead(c, src, size, 0); addWrite(c, dst, size); } virtual void compile(Context* c) { fprintf(stderr, "MoveEvent.compile\n"); apply(c, type, size, src->source, dst->target); } BinaryOperation type; unsigned size; Value* src; Value* dst; }; void appendMove(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst) { new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent(c, type, size, src, dst); } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second): Event(c), size(size), first(first), second(second) { addRead(c, first, size, 0); addRead(c, second, size, 0); } virtual void compile(Context* c) { fprintf(stderr, "CompareEvent.compile\n"); apply(c, Compare, size, first->source, second->source); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent(c, size, first, second); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { addRead(c, address, BytesPerWord, 0); } virtual void compile(Context* c) { fprintf(stderr, "BranchEvent.compile\n"); apply(c, type, BytesPerWord, address->source); } UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address); } class JumpEvent: public Event { public: JumpEvent(Context* c, Value* address): Event(c), address(address) { addRead(c, address, BytesPerWord, 0); } virtual void compile(Context* c) { fprintf(stderr, "JumpEvent.compile\n"); apply(c, Jump, BytesPerWord, address->source); } Value* address; }; void appendJump(Context* c, Value* address) { new (c->zone->allocate(sizeof(JumpEvent))) JumpEvent(c, address); } class CombineEvent: public Event { public: CombineEvent(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result): Event(c), type(type), size(size), first(first), second(second), result(result) { Assembler::Register r1(NoRegister); Assembler::Register r2(NoRegister); c->assembler->getTargets(type, size, &r1, &r2); addRead(c, first, size, r1.low == NoRegister ? 0 : registerSite(c, r1.low, r1.high)); addRead(c, second, size, r2.low == NoRegister ? valueSite(c, result) : registerSite(c, r2.low, r2.high)); addWrite(c, result, size); } virtual void compile(Context* c) { fprintf(stderr, "CombineEvent.compile\n"); apply(c, type, size, first->source, second->source); } BinaryOperation type; unsigned size; Value* first; Value* second; MyOperand* result; }; void appendCombine(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result) { new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent(c, type, size, first, second, result); } class TranslateEvent: public Event { public: TranslateEvent(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result): Event(c), type(type), size(size), value(value), result(result) { addRead(c, value, size, valueSite(c, result)); addWrite(c, result, size); } virtual void compile(Context* c) { fprintf(stderr, "TranslateEvent.compile\n"); apply(c, type, size, value->source); } UnaryOperation type; unsigned size; Value* value; Value* result; }; void appendTranslate(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result) { new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent(c, type, size, value, result); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, Value* index, Value* result): Event(c), base(base), index(index), result(result) { addRead(c, base, BytesPerWord, anyRegisterSite(c)); if (index) addRead(c, index, BytesPerWord, anyRegisterSite(c)); addWrite(c, BytesPerWord, size); } virtual void compile(Context*) { fprintf(stderr, "MemoryEvent.compile\n"); } Value* base; Value* index; Value* result; }; void appendMemory(Context* c, Value* base, Value* index, Value* result) { new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, index, result); } void compile(Context* c) { Assembler* a = c->assembler; Assembler::Register base(a->base()); Assembler::Register stack(a->stack()); a->apply(Push, BytesPerWord, Register, &base); a->apply(Move, BytesPerWord, Register, &stack, Register, &base); if (c->stackOffset) { Assembler::Constant offset(resolved(c, c->stackOffset * BytesPerWord)); a->apply(Subtract, BytesPerWord, Constant, &offset, Register, &stack); } for (Event* e = c->firstEvent; e; e = e->next) { LogicalInstruction* li = c->logicalCode + e->logicalIp; li->machineOffset = a->length(); e->compile(c); for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->length(); } } } // end scratch class Stack { public: Stack(MyOperand* operand, unsigned size, unsigned index, Stack* next): operand(operand), size(size), index(index), next(next) { } MyOperand* operand; unsigned size; unsigned index; Stack* next; }; class State { public: State(State* s): stack(s ? s->stack : 0), next(s) { } Stack* stack; State* next; }; class LogicalInstruction { public: unsigned visits; Event* firstEvent; Event* lastEvent; unsigned machineOffset; int predecessor; }; class RegisterElement { public: bool reserved; MyOperand* operand; }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Junction { public: Junction(unsigned logicalIp, Junction* next): logicalIp(logicalIp), next(next) { } unsigned logicalIp; Junction* next; }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone): system(system), assembler(assembler), zone(zone), logicalIp(-1), state(new (zone->allocate(sizeof(State))) State(0)), event(0), logicalCode(0), logicalCodeLength(0), stackOffset(0), registers(static_cast (zone->allocate (sizeof(RegisterElement) * assembler->registerCount()))), firstConstant(0), lastConstant(0), constantCount(0), junctions(0), machineCode(0) { memset(registers, 0, sizeof(RegisterElement) * assembler->registerCount()); registers[assembler->base()].reserved = true; registers[assembler->stack()].reserved = true; registers[assembler->thread()].reserved = true; } System* system; Assembler* assembler; Zone* zone; int logicalIp; State* state; Event* event; LogicalInstruction* logicalCode; unsigned logicalCodeLength; unsigned stackOffset; RegisterElement* registers; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; unsigned constantCount; Junction* junctions; uint8_t* machineCode; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } void apply(Context* c, UnaryOperation op, unsigned size, Value* a) { OperandType type; Assembler::Operand* operand; a->asAssemblerOperand(c, &type, &operand); c->assembler->apply(op, size, type, operand); } void apply(Context* c, BinaryOperation op, unsigned size, Value* a, Value* b) { OperandType aType; Assembler::Operand* aOperand; a->asAssemblerOperand(c, &aType, &aOperand); OperandType bType; Assembler::Operand* bOperand; b->asAssemblerOperand(c, &bType, &bOperand); c->assembler->apply(op, size, aType, aOperand, bType, bOperand); } class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->assembler->length()) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(-1), next(next) { } CodePromise(Context* c, int offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset >= 0; } Context* c; int offset; CodePromise* next; }; class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + c->logicalCode[logicalIp].machineOffset); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; RegisterValue* freeRegister(Context* c, unsigned size, bool allowAcquired); class ConstantValue: public Value { public: ConstantValue(Promise* value): value(value) { } virtual OperandType type(Context*) { return Constant; } virtual void asAssemblerOperand(Context*, OperandType* type, Assembler::Operand** operand) { *type = Constant; *operand = &value; } virtual int64_t constantValue(Context*) { return value.value->value(); } Assembler::Constant value; }; ConstantValue* constant(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantValue))) ConstantValue(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantValue* constant(Context* c, int64_t value) { return constant(c, resolved(c, value)); } class AddressValue: public Value { public: AddressValue(Promise* address): address(address) { } virtual OperandType type(Context*) { return Address; } virtual void asAssemblerOperand(Context*, OperandType* type, Assembler::Operand** operand) { *type = Address; *operand = &address; } Assembler::Address address; }; AddressValue* address(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressValue))) AddressValue(address); } void preserve(Context*, Stack*, int, MyOperand*); class RegisterValue: public Value { public: RegisterValue(int low, int high): register_(low, high) { } virtual OperandType type(Context*) { return Register; } virtual bool equals(Context* c, Value* o) { return this == o or (o->type(c) == Register and static_cast(o)->register_.low == register_.low and static_cast(o)->register_.high == register_.high); } virtual void preserve(Context* c, Stack* s, MyOperand* a) { ::preserve(c, s, register_.low, a); if (register_.high >= 0) ::preserve(c, s, register_.high, a); } virtual void acquire(Context* c, Stack* s, MyOperand* a) { if (a != c->registers[register_.low].operand) { fprintf(stderr, "%p acquire %d\n", a, register_.low); preserve(c, s, a); c->registers[register_.low].operand = a; if (register_.high >= 0) { c->registers[register_.high].operand = a; } } } virtual void release(Context* c, MyOperand* a) { if (a == c->registers[register_.low].operand) { fprintf(stderr, "%p release %d\n", a, register_.low); c->registers[register_.low].operand = 0; if (register_.high >= 0) c->registers[register_.high].operand = 0; } } virtual int registerValue(Context*) { return register_.low; } virtual void asAssemblerOperand(Context*, OperandType* type, Assembler::Operand** operand) { *type = Register; *operand = ®ister_; } Assembler::Register register_; }; RegisterValue* register_(Context* c, int low, int high = NoRegister) { return new (c->zone->allocate(sizeof(RegisterValue))) RegisterValue(low, high); } class MemoryValue: public Value { public: MemoryValue(int base, int offset, int index, unsigned scale, TraceHandler* traceHandler): value(base, offset, index, scale, traceHandler) { } virtual OperandType type(Context*) { return Memory; } virtual bool equals(Context* c, Value* o) { return this == o or (o->type(c) == Memory and static_cast(o)->value.base == value.base and static_cast(o)->value.offset == value.offset and static_cast(o)->value.index == value.index and static_cast(o)->value.scale == value.scale); } virtual int base(Context*) { return value.base; } virtual int index(Context*) { return value.index; } virtual void asAssemblerOperand(Context* c, OperandType* type, Assembler::Operand** operand) { value.base = base(c); value.index = index(c); *type = Memory; *operand = &value; } Assembler::Memory value; }; class AbstractMemoryValue: public MemoryValue { public: AbstractMemoryValue(MyOperand* base, int offset, MyOperand* index, unsigned scale, TraceHandler* traceHandler): MemoryValue(NoRegister, offset, NoRegister, scale, traceHandler), base_(base), index_(index) { } virtual void preserve(Context* c, Stack* s, MyOperand*) { base_->value->preserve(c, s, base_); if (index_) { index_->value->preserve(c, s, index_); } } virtual void release(Context* c, MyOperand*) { base_->value->release(c, base_); if (index_) { index_->value->release(c, index_); } } virtual bool ready(Context* c) { return base_->value->registerValue(c) != NoRegister and (index_ == 0 or index_->value->registerValue(c) != NoRegister); } virtual int base(Context* c) { int r = base_->value->registerValue(c); assert(c, r != NoRegister); return r; } virtual int index(Context* c) { if (index_) { int r = index_->value->registerValue(c); assert(c, r != NoRegister); return r; } else { return NoRegister; } } MyOperand* base_; MyOperand* index_; }; AbstractMemoryValue* memory(Context* c, MyOperand* base, int offset, MyOperand* index, unsigned scale, TraceHandler* traceHandler) { return new (c->zone->allocate(sizeof(AbstractMemoryValue))) AbstractMemoryValue(base, offset, index, scale, traceHandler); } class StackValue: public Value { public: StackValue(Context* c, Stack* stack): stack(stack), value (c->assembler->base(), - (c->stackOffset + stack->index + 1) * BytesPerWord, NoRegister, 0, 0) { } virtual OperandType type(Context*) { return Memory; } virtual void asAssemblerOperand(Context*, OperandType* type, Assembler::Operand** operand) { *type = Memory; *operand = &value; } Stack* stack; Assembler::Memory value; }; StackValue* stackValue(Context* c, Stack* stack) { return new (c->zone->allocate(sizeof(StackValue))) StackValue(c, stack); } class Event { public: Event(Context* c): next(0), stack(c->state->stack), promises(0) { assert(c, c->logicalIp >= 0); if (c->event) { c->event->next = this; } if (c->logicalCode[c->logicalIp].firstEvent == 0) { c->logicalCode[c->logicalIp].firstEvent = this; } c->event = this; } Event(Event* next): next(next) { } virtual ~Event() { } virtual Value* target(Context* c, MyOperand* value) = 0; virtual unsigned operandSize(Context* c) = 0; virtual void compile(Context* c) = 0; virtual bool isCritical(Context*) { return false; } Event* next; Stack* stack; CodePromise* promises; }; class NullEvent: public Event { public: NullEvent(Context* c): Event(c) { } virtual Value* target(Context*, MyOperand*) { return 0; } virtual unsigned operandSize(Context*) { return 0; } virtual void compile(Context*) { // ignore } }; void setEvent(Context* c, MyOperand* a, Event* e) { if (a->event) { a->event = new (c->zone->allocate(sizeof(NullEvent))) NullEvent(c); } else{ a->event = e; } } class ArgumentEvent: public Event { public: ArgumentEvent(Context* c, unsigned size, MyOperand* a, unsigned index): Event(c), size(size), a(a), index(index) { setEvent(c, a, this); } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == a); if (index < c->assembler->argumentRegisterCount()) { return register_(c, c->assembler->argumentRegister(index)); } else { return 0; } } virtual unsigned operandSize(Context*) { return size; } virtual void compile(Context* c) { fprintf(stderr, "ArgumentEvent.compile\n"); if (a->target == 0) a->target = target(c, a); if (a->target == 0) { apply(c, Push, size, a->value); a->value = 0; } else { if (not a->target->equals(c, a->value)) { a->target->preserve(c, stack, a); apply(c, Move, size, a->value, a->target); } a->value->release(c, a); } } unsigned size; MyOperand* a; unsigned index; }; void appendArgument(Context* c, unsigned size, MyOperand* value, unsigned index) { new (c->zone->allocate(sizeof(ArgumentEvent))) ArgumentEvent(c, size, value, index); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, MyOperand* a): Event(c), size(size), a(a) { if (a) { setEvent(c, a, this); } } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == a); return register_(c, c->assembler->returnLow(), c->assembler->returnHigh()); } virtual unsigned operandSize(Context*) { return size; } virtual void compile(Context* c) { fprintf(stderr, "ReturnEvent.compile\n"); if (a) { if (a->target == 0) a->target = target(c, a); if (not a->target->equals(c, a->value)) { apply(c, Move, size, a->value, a->target); } a->value->release(c, a); } Assembler::Register base(c->assembler->base()); Assembler::Register stack(c->assembler->stack()); c->assembler->apply(Move, BytesPerWord, Register, &base, Register, &stack); c->assembler->apply(Pop, BytesPerWord, Register, &base); c->assembler->apply(Return); } unsigned size; MyOperand* a; }; void appendReturn(Context* c, unsigned size, MyOperand* value) { new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value); } void syncStack(Context* c, Stack* start, unsigned count) { Stack* segment[count]; unsigned index = count; for (Stack* s = start; s and index; s = s->next) { segment[--index] = s; } for (unsigned i = 0; i < count; ++i) { Stack* s = segment[i]; if (s->operand->value) { apply(c, Push, s->size * BytesPerWord, s->operand->value); s->operand->value->release(c, s->operand); } else { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, s->size * BytesPerWord)); c->assembler->apply (Subtract, BytesPerWord, Constant, &offset, Register, &stack); } s->operand->pushed = true; s->operand->value = stackValue(c, s); } } void syncStack(Context* c, Stack* start) { unsigned count = 0; for (Stack* s = start; s and (not s->operand->pushed); s = s->next) { ++ count; } syncStack(c, start, count); } class PushEvent: public Event { public: PushEvent(Context* c): Event(c), active(false) { assert(c, stack->operand->push == 0); stack->operand->push = this; } virtual Value* target(Context*, MyOperand*) { return 0; } virtual unsigned operandSize(Context*) { return 0; } virtual void compile(Context* c) { fprintf(stderr, "PushEvent.compile\n"); if (active) { fprintf(stderr, "PushEvent.compile: active\n"); syncStack(c, stack); } } void markStack(Context*) { active = true; } bool active; }; void appendPush(Context* c) { new (c->zone->allocate(sizeof(PushEvent))) PushEvent(c); } class CallEvent: public Event { public: CallEvent(Context* c, MyOperand* address, void* indirection, unsigned flags, TraceHandler* traceHandler, MyOperand* result): Event(c), address(address), indirection(indirection), flags(flags), traceHandler(traceHandler), result(result) { setEvent(c, address, this); } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == address); if (indirection) { return register_(c, c->assembler->returnLow(), NoRegister); } else { return 0; } } virtual unsigned operandSize(Context*) { return BytesPerWord; } virtual void compile(Context* c) { fprintf(stderr, "CallEvent.compile\n"); if (indirection and address->target == 0) { address->target = target(c, address); } UnaryOperation type = ((flags & Compiler::Aligned) ? AlignedCall : Call); if (indirection) { if (not address->target->equals(c, address->value)) { apply(c, Move, BytesPerWord, address->value, address->target); } apply(c, type, BytesPerWord, constant(c, reinterpret_cast(indirection))); } else { apply(c, type, BytesPerWord, address->value); } address->value->release(c, address); if (result->event or (result->push and result->push->active)) { result->value = register_ (c, c->assembler->returnLow(), c->assembler->returnHigh()); result->value->acquire(c, stack, result); } if (traceHandler) { traceHandler->handleTrace (new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, c->assembler->length())); } } MyOperand* address; void* indirection; unsigned flags; TraceHandler* traceHandler; MyOperand* result; }; void appendCall(Context* c, MyOperand* address, void* indirection, unsigned flags, TraceHandler* traceHandler, MyOperand* result) { new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, indirection, flags, traceHandler, result); } int freeRegisterExcept(Context* c, int except, bool allowAcquired) { for (int i = c->assembler->registerCount(); i >= 0; --i) { if (i != except and (not c->registers[i].reserved) and c->registers[i].operand == 0) { return i; } } if (allowAcquired) { for (int i = c->assembler->registerCount(); i >= 0; --i) { if (i != except and (not c->registers[i].reserved)) { return i; } } } abort(c); } inline int freeRegister(Context* c, bool allowAcquired) { return freeRegisterExcept(c, NoRegister, allowAcquired); } RegisterValue* freeRegister(Context* c, unsigned size, bool allowAcquired) { if (BytesPerWord == 4 and size == 8) { int low = freeRegister(c, allowAcquired); return register_(c, low, freeRegisterExcept(c, low, allowAcquired)); } else { return register_(c, freeRegister(c, allowAcquired)); } } class PopEvent: public Event { public: PopEvent(Context* c, unsigned count, bool ignore): Event(c), count(count), ignore(ignore) { } virtual Value* target(Context* c, MyOperand*) { abort(c); } virtual unsigned operandSize(Context* c) { abort(c); } virtual void compile(Context* c) { fprintf(stderr, "PopEvent.compile\n"); Stack* s = stack; unsigned ignored = 0; for (unsigned i = count; i;) { MyOperand* dst = s->operand; if (dst->pushed) { if (dst->event and (not ignore)) { assert(c, ignored == 0); Value* target = 0; if (dst->event->operandSize(c) == BytesPerWord) { target = dst->event->target(c, dst); } if (target == 0 or (not target->ready(c))) { target = freeRegister(c, BytesPerWord * s->size, false); } target->acquire(c, 0, dst); apply(c, Pop, BytesPerWord * s->size, target); dst->value = target; } else { ignored += s->size; } } i -= s->size; s = s->next; } if (ignored) { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, ignored * BytesPerWord)); c->assembler->apply (Add, BytesPerWord, Constant, &offset, Register, &stack); } } unsigned count; bool ignore; }; void appendPop(Context* c, unsigned count, bool ignore) { new (c->zone->allocate(sizeof(PopEvent))) PopEvent(c, count, ignore); } bool safeToSkipMove(Context* c, MyOperand* a, Event* e) { for (; a->push and a->push != e; e = e->next) { if (e->isCritical(c)) return false; } return true; } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned size, MyOperand* src, MyOperand* dst): Event(c), type(type), size(size), src(src), dst(dst) { setEvent(c, src, this); } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == src); if (dst->value) { return dst->value; } else if (dst->event) { return dst->event->target(c, dst); } return 0; } virtual unsigned operandSize(Context*) { return size; } virtual void compile(Context* c) { fprintf(stderr, "MoveEvent.compile\n"); if (src->target == 0) src->target = target(c, src); if (src->target == 0) { if (type == Move and size == BytesPerWord and safeToSkipMove(c, dst, next)) { dst->value = src->value; return; } } else if (type == Move and size == BytesPerWord and src->target->type(c) == Register and src->target->equals(c, src->value)) { dst->value = src->value; return; } src->value->release(c, src); if (src->target == 0 or (not src->target->ready(c))) { src->target = freeRegister(c, size, false); } src->target->acquire(c, stack, dst); apply(c, type, size, src->value, src->target); dst->value = src->target; } virtual bool isCritical(Context* c) { if (src->target == 0) src->target = target(c, src); return src->target != 0; } BinaryOperation type; unsigned size; MyOperand* src; MyOperand* dst; }; void appendMove(Context* c, BinaryOperation type, unsigned size, MyOperand* src, MyOperand* dst) { new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent(c, type, size, src, dst); } class DupEvent: public Event { public: DupEvent(Context* c, unsigned size, MyOperand* src, MyOperand* dst): Event(c), size(size), src(src), dst(dst) { } virtual Value* target(Context* c, MyOperand*) { abort(c); } virtual unsigned operandSize(Context* c) { abort(c); } virtual void compile(Context* c) { fprintf(stderr, "DupEvent.compile\n"); Value* value = src->value; assert(c, dst->value == 0); Value* target = 0; if (safeToSkipMove(c, dst, next)) { dst->value = src->value; return; } if (dst->event) { target = dst->event->target(c, dst); } if (target == 0 or (not target->ready(c))) { target = freeRegister(c, size, true); } target->acquire(c, stack, dst); apply(c, Move, size, value, target); dst->value = target; } unsigned size; MyOperand* src; MyOperand* dst; }; void appendDup(Context* c, unsigned size, MyOperand* src, MyOperand* dst) { new (c->zone->allocate(sizeof(DupEvent))) DupEvent(c, size, src, dst); } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, MyOperand* a, MyOperand* b): Event(c), size(size), a(a), b(b) { setEvent(c, a, this); setEvent(c, b, this); } virtual Value* target(Context* c UNUSED, MyOperand* v UNUSED) { assert(c, v == a or v == b); return 0; } virtual unsigned operandSize(Context*) { return size; } virtual void compile(Context* c) { fprintf(stderr, "CompareEvent.compile\n"); apply(c, Compare, size, a->value, b->value); a->value->release(c, a); b->value->release(c, b); } unsigned size; MyOperand* a; MyOperand* b; }; void appendCompare(Context* c, unsigned size, MyOperand* a, MyOperand* b) { new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent(c, size, a, b); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, MyOperand* address): Event(c), type(type), address(address) { setEvent(c, address, this); } virtual Value* target(Context* c UNUSED, MyOperand* v UNUSED) { assert(c, v == address); return 0; } virtual unsigned operandSize(Context*) { return BytesPerWord; } virtual void compile(Context* c) { fprintf(stderr, "BranchEvent.compile\n"); apply(c, type, BytesPerWord, address->value); address->value->release(c, address); } UnaryOperation type; MyOperand* address; }; void appendBranch(Context* c, UnaryOperation type, MyOperand* address) { new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address); } class JumpEvent: public Event { public: JumpEvent(Context* c, MyOperand* address): Event(c), address(address) { setEvent(c, address, this); } virtual unsigned operandSize(Context*) { return BytesPerWord; } virtual Value* target(Context* c UNUSED, MyOperand* v UNUSED) { assert(c, v == address); return 0; } virtual void compile(Context* c) { fprintf(stderr, "JumpEvent.compile\n"); apply(c, Jump, BytesPerWord, address->value); address->value->release(c, address); } MyOperand* address; }; void appendJump(Context* c, MyOperand* address) { new (c->zone->allocate(sizeof(BranchEvent))) JumpEvent(c, address); } class CombineEvent: public Event { public: CombineEvent(Context* c, BinaryOperation type, unsigned size, MyOperand* a, MyOperand* b, MyOperand* result): Event(c), type(type), size(size), a(a), b(b), result(result) { setEvent(c, a, this); setEvent(c, b, this); } virtual unsigned operandSize(Context*) { return size; } virtual Value* target(Context* c, MyOperand* v) { Assembler::Register ar(NoRegister); Assembler::Register br(NoRegister); c->assembler->getTargets(type, size, &ar, &br); if (v == a) { if (ar.low == NoRegister) { return 0; } else { return register_(c, ar.low, ar.high); } } else { assert(c, v == b); if (br.low == NoRegister) { if (result->event) { Value* v = result->event->target(c, result); if (v and v->type(c) == Register) { return v; } else { return 0; } } else { return 0; } } else { return register_(c, br.low, br.high); } } } virtual void compile(Context* c) { fprintf(stderr, "CombineEvent.compile\n"); if (a->target == 0) a->target = target(c, a); if (b->target == 0) b->target = target(c, b); if (b->target == 0 or (not b->target->ready(c))) { b->target = freeRegister(c, BytesPerWord, true); } if (a->target and not a->target->equals(c, a->value)) { apply(c, Move, size, a->value, a->target); a->value->release(c, a); a->value = a->target; a->value->acquire(c, stack, a); } if (b->target and not b->target->equals(c, b->value)) { apply(c, Move, size, b->value, b->target); b->value->release(c, b); b->value = b->target; b->value->acquire(c, stack, b); } apply(c, type, size, a->value, b->value); a->value->release(c, a); b->value->release(c, b); b->value->acquire(c, stack, result); result->value = b->value; } BinaryOperation type; unsigned size; MyOperand* a; MyOperand* b; MyOperand* result; }; void appendCombine(Context* c, BinaryOperation type, unsigned size, MyOperand* a, MyOperand* b, MyOperand* result) { new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent(c, type, size, a, b, result); } class TranslateEvent: public Event { public: TranslateEvent(Context* c, UnaryOperation type, unsigned size, MyOperand* a, MyOperand* result): Event(c), type(type), size(size), a(a), result(result) { setEvent(c, a, this); } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == a); Assembler::Register r(NoRegister); c->assembler->getTargets(type, size, &r); if (r.low == NoRegister) { return result->event->target(c, result); } else { return register_(c, r.low, r.high); } } virtual unsigned operandSize(Context*) { return size; } virtual void compile(Context* c) { fprintf(stderr, "TranslateEvent.compile\n"); if (a->target == 0) a->target = target(c, a); if (not a->target->ready(c)) { a->target = a->value; } result->value->acquire(c, stack, result); if (a->target and not a->target->equals(c, a->value)) { apply(c, Move, size, a->value, a->target); } apply(c, type, size, a->value); result->value = a->value; } UnaryOperation type; unsigned size; MyOperand* a; MyOperand* result; }; void appendTranslate(Context* c, UnaryOperation type, unsigned size, MyOperand* a, MyOperand* result) { new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent(c, type, size, a, result); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, MyOperand* base, MyOperand* index, MyOperand* result): Event(c), base(base), index(index), result(result) { setEvent(c, base, this); if (index) setEvent(c, index, this); } virtual unsigned operandSize(Context*) { return BytesPerWord; } virtual Value* target(Context* c, MyOperand* v UNUSED) { assert(c, v == base or v == index); return 0; } virtual void compile(Context* c) { fprintf(stderr, "MemoryEvent.compile\n"); if (base->value->type(c) != Register) { base->target = freeRegister(c, BytesPerWord, true); apply(c, Move, BytesPerWord, base->value, base->target); base->value->release(c, base); base->value = base->target; } if (index and index->value->type(c) != Register) { index->target = freeRegister(c, BytesPerWord, true); apply(c, Move, BytesPerWord, index->value, index->target); index->value->release(c, index); index->value = index->target; } } MyOperand* base; MyOperand* index; MyOperand* result; }; void appendMemory(Context* c, MyOperand* a, MyOperand* b, MyOperand* result) { new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, a, b, result); } void preserve(Context* c, Stack* stack, int reg, MyOperand* a) { MyOperand* b = c->registers[reg].operand; if (b and a != b) { fprintf(stderr, "%p preserve %d for %p\n", a, reg, b); unsigned count = 0; Stack* start = 0; for (Stack* s = stack; s and (not s->operand->pushed); s = s->next) { if (s->operand == b) { start = s; } if (start) { ++ count; } } assert(c, start); syncStack(c, start, count); } } MyOperand* operand(Context* c, Value* value = 0) { return new (c->zone->allocate(sizeof(MyOperand))) MyOperand(value); } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void pushState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state); } void popState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state->next); } Stack* stack(Context* c, MyOperand* operand, unsigned size, unsigned index, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(operand, size, index, next); } Stack* stack(Context* c, MyOperand* operand, unsigned size, Stack* next) { return stack(c, operand, size, (next ? next->index + size : 0), next); } void push(Context* c, unsigned size, MyOperand* o) { assert(c, ceiling(size, BytesPerWord)); c->state->stack = stack(c, o, ceiling(size, BytesPerWord), c->state->stack); appendPush(c); } MyOperand* pop(Context* c, unsigned size UNUSED) { Stack* s = c->state->stack; assert(c, ceiling(size, BytesPerWord) == s->size); appendPop(c, s->size, false); c->state->stack = s->next; return s->operand; } void markStack(Context* c, Stack* stack) { for (Stack* s = stack; s; s = s->next) { if (s->operand->push) { s->operand->push->markStack(c); } } } void markStack(Context* c) { markStack(c, c->state->stack); } void updateJunctions(Context* c) { for (Junction* j = c->junctions; j; j = j->next) { LogicalInstruction* i = c->logicalCode + j->logicalIp; if (i->predecessor >= 0) { LogicalInstruction* p = c->logicalCode + i->predecessor; markStack(c, p->lastEvent->stack); } } } void compile(Context* c) { Assembler* a = c->assembler; Assembler::Register base(a->base()); Assembler::Register stack(a->stack()); a->apply(Push, BytesPerWord, Register, &base); a->apply(Move, BytesPerWord, Register, &stack, Register, &base); if (c->stackOffset) { Assembler::Constant offset(resolved(c, c->stackOffset * BytesPerWord)); a->apply(Subtract, BytesPerWord, Constant, &offset, Register, &stack); } for (unsigned i = 0; i < c->logicalCodeLength; ++ i) { LogicalInstruction* li = c->logicalCode + i; li->machineOffset = a->length(); for (Event* e = li->firstEvent; e; e = e->next) { fprintf(stderr, "compile event at ip %d with stack count %d\n", i, count(e->stack)); e->compile(c); for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->length(); } if (e == li->lastEvent) break; } } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(int r) { if (r == NoRegister) { r = freeRegisterExcept(c, NoRegister, false); } else { expect(c, not c->registers[r].reserved); expect(c, c->registers[r].operand == 0); } c->registers[r].reserved = true; return r; } virtual void releaseTemporary(int r) { c->registers[r].reserved = false; } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone): c(s, assembler, zone), client(&c) { assembler->setClient(&client); } virtual void pushState() { ::pushState(&c); } virtual void popState() { ::popState(&c); } virtual void init(unsigned logicalCodeLength, unsigned stackOffset) { c.logicalCodeLength = logicalCodeLength; c.stackOffset = stackOffset; c.logicalCode = static_cast (c.zone->allocate(sizeof(LogicalInstruction) * logicalCodeLength)); memset(c.logicalCode, 0, sizeof(LogicalInstruction) * logicalCodeLength); } virtual void visitLogicalIp(unsigned logicalIp) { if ((++ c.logicalCode[logicalIp].visits) == 1) { c.junctions = new (c.zone->allocate(sizeof(Junction))) Junction(logicalIp, c.junctions); } } virtual void startLogicalIp(unsigned logicalIp) { if (c.logicalIp >= 0) { c.logicalCode[c.logicalIp].lastEvent = c.event; } c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return operand(&c, ::constant(&c, value)); } virtual Operand* address(Promise* address) { return operand(&c, ::address(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1, TraceHandler* traceHandler = 0) { MyOperand* result = operand (&c, ::memory (&c, static_cast(base), displacement, static_cast(index), scale, traceHandler)); appendMemory(&c, static_cast(base), static_cast(index), result); return result; } virtual Operand* stack() { return operand(&c, register_(&c, c.assembler->stack())); } virtual Operand* base() { return operand(&c, register_(&c, c.assembler->base())); } virtual Operand* thread() { return operand(&c, register_(&c, c.assembler->thread())); } virtual bool isConstant(Operand* a) { return static_cast(a)->value and static_cast(a)->value->type(&c) == Constant; } virtual int64_t constantValue(Operand* a) { assert(&c, isConstant(a)); return static_cast(a)->value->constantValue(&c); } virtual Operand* label() { return operand(&c, ::constant(&c, static_cast(0))); } Promise* machineIp() { return c.event->promises = new (c.zone->allocate(sizeof(CodePromise))) CodePromise(&c, c.event->promises); } virtual void mark(Operand* label) { markStack(&c); static_cast(static_cast(label)->value)->value = machineIp(); } virtual void push(unsigned size, Operand* value) { ::push(&c, size, static_cast(value)); } virtual Operand* pop(unsigned size) { return ::pop(&c, size); } virtual void pushed(unsigned count) { for (unsigned i = 0; i < count; ++i) { MyOperand* a = operand(&c); ::push(&c, BytesPerWord, a); a->value = stackValue(&c, c.state->stack); } } virtual void popped(unsigned count) { appendPop(&c, count, true); for (unsigned i = count; i;) { Stack* s = c.state->stack; c.state->stack = s->next; i -= s->size; } } virtual Operand* peek(unsigned size UNUSED, unsigned index) { Stack* s = c.state->stack; for (unsigned i = index; i > 0;) { s = s->next; i -= s->size; } assert(&c, s->size == ceiling(size, BytesPerWord)); return s->operand; } virtual Operand* call(Operand* address, void* indirection, unsigned flags, TraceHandler* traceHandler, unsigned, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; for (unsigned i = 0; i < argumentCount; ++i) { MyOperand* o = va_arg(a, MyOperand*); if (o) { appendArgument(&c, size, o, footprint); size = BytesPerWord; } else { size = 8; } ++ footprint; } va_end(a); markStack(&c); MyOperand* result = operand(&c); appendCall(&c, static_cast(address), indirection, flags, traceHandler, result); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), static_cast(dst)); } virtual Operand* load(unsigned size, Operand* src) { MyOperand* dst = operand(&c); appendMove(&c, Move, size, static_cast(src), dst); return dst; } virtual Operand* loadz(unsigned size, Operand* src) { MyOperand* dst = operand(&c); appendMove(&c, MoveZ, size, static_cast(src), dst); return dst; } virtual Operand* load4To8(Operand* src) { MyOperand* dst = operand(&c); appendMove(&c, Move4To8, 0, static_cast(src), dst); return dst; } virtual Operand* dup(unsigned size, Operand* src) { MyOperand* dst = operand(&c); appendDup(&c, size, static_cast(src), dst); return dst; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { markStack(&c); appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { markStack(&c); appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { markStack(&c); appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { markStack(&c); appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { markStack(&c); appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { markStack(&c); appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { markStack(&c); appendJump(&c, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Add, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Subtract, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Multiply, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Divide, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Remainder, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, ShiftLeft, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, ShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, UnsignedShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, And, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Or, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { MyOperand* result = operand(&c); appendCombine(&c, Xor, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* neg(unsigned size, Operand* a) { MyOperand* result = operand(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { updateJunctions(&c); ::compile(&c); return c.assembler->length(); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.assembler->length()) + (i++)) = n->promise->value(); } } virtual void dispose() { // ignore } Context c; Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone); } } // namespace vm