/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { class Context; class Value; class Stack; class Site; class Event; class PushEvent; class Read; void NO_RETURN abort(Context*); void apply(Context* c, UnaryOperation op, unsigned size, Site* a); void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b); class Site { public: Site(): next(0) { } virtual ~Site() { } virtual Site* readTarget(Context*, Read*, Event*) { return this; } virtual unsigned copyCost(Context*, Site*) = 0; virtual void acquire(Context*, Stack*, unsigned, Value*, Site*) { } virtual OperandType type(Context*) = 0; virtual Assembler::Operand* asAssemblerOperand(Context*) = 0; Site* next; }; class Stack { public: Stack(Value* value, unsigned size, unsigned index, Stack* next): value(value), size(size), index(index), next(next), pushEvent(0), pushed(false) { } Value* value; unsigned size; unsigned index; Stack* next; PushEvent* pushEvent; bool pushed; }; class State { public: State(State* s): stack(s ? s->stack : 0), next(s) { } Stack* stack; State* next; }; class LogicalInstruction { public: unsigned visits; Event* lastEvent; unsigned machineOffset; int predecessor; }; class Register { public: Value* value; Site* site; unsigned size; bool reserved; }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Junction { public: Junction(unsigned logicalIp, Junction* next): logicalIp(logicalIp), next(next) { } unsigned logicalIp; Junction* next; }; class Read { public: Read(unsigned size, Value* value, Site* target, Read* next, Event* event, Read* eventNext): size(size), value(value), target(target), next(next), event(event), eventNext(eventNext) { } unsigned size; Value* value; Site* target; Read* next; Event* event; Read* eventNext; }; class Value: public Compiler::Operand { public: Value(Site* site): reads(0), lastRead(0), sites(site), source(0), pushCount(0) { } Read* reads; Read* lastRead; Site* sites; Site* source; unsigned pushCount; }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone): system(system), assembler(assembler), zone(zone), logicalIp(-1), state(new (zone->allocate(sizeof(State))) State(0)), firstEvent(0), lastEvent(0), logicalCode(0), logicalCodeLength(0), stackOffset(0), registers(static_cast (zone->allocate(sizeof(Register) * assembler->registerCount()))), firstConstant(0), lastConstant(0), constantCount(0), junctions(0), machineCode(0) { memset(registers, 0, sizeof(Register) * assembler->registerCount()); registers[assembler->base()].reserved = true; registers[assembler->stack()].reserved = true; registers[assembler->thread()].reserved = true; } System* system; Assembler* assembler; Zone* zone; int logicalIp; State* state; Event* firstEvent; Event* lastEvent; LogicalInstruction* logicalCode; unsigned logicalCodeLength; unsigned stackOffset; Register* registers; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; unsigned constantCount; Junction* junctions; uint8_t* machineCode; }; class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->assembler->length()) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(-1), next(next) { } CodePromise(Context* c, int offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset >= 0; } Context* c; int offset; CodePromise* next; }; class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + c->logicalCode[logicalIp].machineOffset); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } class Event { public: Event(Context* c): next(0), stack(c->state->stack), promises(0), reads(0), logicalIp(c->logicalIp) { assert(c, c->logicalIp >= 0); if (c->lastEvent) { c->lastEvent->next = this; sequence = c->lastEvent->sequence + 1; } else { c->firstEvent = this; sequence = 0; } c->lastEvent = this; } Event(Context*, Event* next): next(next), stack(next->stack), promises(0), reads(0), sequence(next->sequence), logicalIp(next->logicalIp) { } virtual ~Event() { } virtual void compile(Context* c) = 0; Event* next; Stack* stack; CodePromise* promises; Read* reads; unsigned sequence; unsigned logicalIp; }; void addSite(Context* c, Stack* stack, unsigned size, Value* v, Site* s) { s->acquire(c, stack, size, v, s); s->next = v->sites; v->sites = s; } bool findSite(Context*, Value* v, Site* site) { for (Site* s = v->sites; s; s = s->next) { if (s == site) return true; } return false; } void removeSite(Context*, Value* v, Site* s) { for (Site** p = &(v->sites); *p;) { if (s == *p) { *p = (*p)->next; break; } else { p = &((*p)->next); } } } class ConstantSite: public Site { public: ConstantSite(Promise* value): value(value) { } virtual unsigned copyCost(Context*, Site*) { return 1; } virtual OperandType type(Context*) { return ConstantOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } Assembler::Constant value; }; ConstantSite* constantSite(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantSite))) ConstantSite(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantSite* constantSite(Context* c, int64_t value) { return constantSite(c, resolved(c, value)); } class AddressSite: public Site { public: AddressSite(Promise* address): address(address) { } virtual unsigned copyCost(Context*, Site*) { return 3; } virtual OperandType type(Context*) { return AddressOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &address; } Assembler::Address address; }; AddressSite* addressSite(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressSite))) AddressSite(address); } void acquire(Context* c, int r, Stack* stack, unsigned newSize, Value* newValue, Site* newSite); class RegisterSite: public Site { public: RegisterSite(int low, int high): register_(low, high) { } virtual unsigned copyCost(Context* c, Site* s) { if (s and (this == s or (s->type(c) == RegisterOperand and static_cast(s)->register_.low == register_.low and static_cast(s)->register_.high == register_.high))) { return 0; } else { return 2; } } virtual void acquire(Context* c, Stack* stack, unsigned size, Value* v, Site* s) { ::acquire(c, register_.low, stack, size, v, s); if (register_.high >= 0) ::acquire(c, register_.high, stack, size, v, s); } virtual OperandType type(Context*) { return RegisterOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return ®ister_; } Assembler::Register register_; }; RegisterSite* registerSite(Context* c, int low, int high = NoRegister) { return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(low, high); } RegisterSite* freeRegister(Context* c, unsigned size, bool allowAcquired); class MemorySite: public Site { public: MemorySite(int base, int offset, int index, unsigned scale): value(base, offset, index, scale) { } virtual unsigned copyCost(Context* c, Site* s) { if (s and (this == s or (s->type(c) == MemoryOperand and static_cast(s)->value.base == value.base and static_cast(s)->value.offset == value.offset and static_cast(s)->value.index == value.index and static_cast(s)->value.scale == value.scale))) { return 0; } else { return 4; } } virtual OperandType type(Context*) { return MemoryOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } Assembler::Memory value; }; MemorySite* memorySite(Context* c, int base, int offset, int index, unsigned scale) { return new (c->zone->allocate(sizeof(MemorySite))) MemorySite(base, offset, index, scale); } class AbstractSite: public Site { public: virtual unsigned copyCost(Context* c, Site*) { abort(c); } virtual void copyTo(Context* c, unsigned, Site*) { abort(c); } virtual OperandType type(Context* c) { abort(c); } virtual Assembler::Operand* asAssemblerOperand(Context* c) { abort(c); } }; Site* targetOrNull(Context* c, Read* r, Event* event) { Value* v = r->value; if (v->sites) { assert(c, v->sites->next == 0); return v->sites; } else if (r->target) { return r->target->readTarget(c, r, event); } else { return 0; } } Site* targetOrNull(Context* c, Value* v, Event* event) { if (v->sites) { assert(c, v->sites->next == 0); return v->sites; } else if (v->reads and v->reads->target) { return v->reads->target->readTarget(c, v->reads, event); } else { return 0; } } Site* targetOrRegister(Context* c, unsigned size, Value* v, Event* event) { Site* s = targetOrNull(c, v, event); if (s) { return s; } else { return freeRegister(c, size, true); } } class ValueSite: public AbstractSite { public: ValueSite(Value* value): value(value) { } virtual Site* readTarget(Context* c, Read*, Event* event) { Site* s = targetOrNull(c, value, event); if (s->type(c) == RegisterOperand) { return s; } else { return 0; } } Value* value; }; ValueSite* valueSite(Context* c, Value* v) { return new (c->zone->allocate(sizeof(ValueSite))) ValueSite(v); } class MoveSite: public AbstractSite { public: MoveSite(Value* value): value(value) { } virtual Site* readTarget(Context* c, Read* read, Event* event) { if (event->next == read->event) { return targetOrNull(c, value, event); } else { return 0; } } Value* value; }; MoveSite* moveSite(Context* c, Value* v) { return new (c->zone->allocate(sizeof(MoveSite))) MoveSite(v); } class AnyRegisterSite: public AbstractSite { public: virtual Site* readTarget(Context* c, Read* r, Event*) { for (Site* s = r->value->sites; s; s = s->next) { if (s->type(c) == RegisterOperand) { return 0; } } return freeRegister(c, r->size, true); } Value* value; }; AnyRegisterSite* anyRegisterSite(Context* c) { return new (c->zone->allocate(sizeof(AnyRegisterSite))) AnyRegisterSite(); } Value* value(Context* c, Site* site = 0) { return new (c->zone->allocate(sizeof(Value))) Value(site); } Site* pick(Context* c, Site* sites, Site* target = 0, unsigned* cost = 0) { Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (Site* s = sites; s; s = s->next) { unsigned v = s->copyCost(c, target); if (v < copyCost) { site = s; copyCost = v; } } if (cost) *cost = copyCost; return site; } void syncStack(Context* c, Stack* start, unsigned count) { Stack* segment[count]; unsigned index = count; for (Stack* s = start; s and index; s = s->next) { segment[--index] = s; } for (unsigned i = 0; i < count; ++i) { Stack* s = segment[i]; assert(c, not s->pushed); if (s->value) { apply(c, Push, s->size * BytesPerWord, pick(c, s->value->sites)); ++ s->value->pushCount; } else { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, s->size * BytesPerWord)); c->assembler->apply (Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } fprintf(stderr, "pushed %p\n", s); s->pushed = true; } } void syncStack(Context* c, Stack* start) { unsigned count = 0; for (Stack* s = start; s and (not s->pushed); s = s->next) { ++ count; } syncStack(c, start, count); } void acquire(Context* c, int r, Stack* stack, unsigned newSize, Value* newValue, Site* newSite) { Value* oldValue = c->registers[r].value; if (oldValue and oldValue != newValue and findSite(c, oldValue, c->registers[r].site)) { if (oldValue->pushCount == 0 and oldValue->sites->next == 0 and oldValue->reads) { unsigned count = 0; Stack* start = 0; for (Stack* s = stack; s and (not s->pushed); s = s->next) { if (s->value == oldValue) { start = s; } if (start) { ++ count; } } assert(c, start); syncStack(c, start, count); } removeSite(c, oldValue, c->registers[r].site); } c->registers[r].size = newSize; c->registers[r].value = newValue; c->registers[r].site = newSite; } void apply(Context* c, UnaryOperation op, unsigned size, Site* a) { OperandType type = a->type(c); Assembler::Operand* operand = a->asAssemblerOperand(c); c->assembler->apply(op, size, type, operand); } void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b) { OperandType aType = a->type(c); Assembler::Operand* aOperand = a->asAssemblerOperand(c); OperandType bType = b->type(c); Assembler::Operand* bOperand = b->asAssemblerOperand(c); c->assembler->apply(op, size, aType, aOperand, bType, bOperand); } void insertRead(Context* c, Event* thisEvent, Event* before, Value* v, unsigned size, Site* target) { Read* r = new (c->zone->allocate(sizeof(Read))) Read(size, v, target, 0, thisEvent, thisEvent->reads); thisEvent->reads = r; if (before) { for (Read** p = &(v->reads); *p;) { if ((*p)->event->sequence >= before->sequence) { r->next = *p; *p = r; break; } else { p = &((*p)->next); } } } if (r->next == 0) { if (v->lastRead) { v->lastRead->next = r; } else { v->reads = r; } v->lastRead = r; } } void addRead(Context* c, Value* v, unsigned size, Site* target) { insertRead(c, c->lastEvent, 0, v, size, target); } void push(Context* c, unsigned size, Value* v); class CallEvent: public Event { public: CallEvent(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, unsigned argumentFootprint): Event(c), address(address), indirection(indirection), traceHandler(traceHandler), result(result), flags(flags), resultSize(resultSize), argumentFootprint(argumentFootprint) { addRead(c, address, BytesPerWord, (indirection ? registerSite(c, c->assembler->returnLow()) : 0)); } virtual void compile(Context* c) { fprintf(stderr, "CallEvent.compile\n"); UnaryOperation type = ((flags & Compiler::Aligned) ? AlignedCall : Call); if (indirection) { apply(c, type, BytesPerWord, constantSite(c, reinterpret_cast(indirection))); } else { apply(c, type, BytesPerWord, address->source); } addSite(c, 0, 0, result, registerSite (c, c->assembler->returnLow(), resultSize > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); if (traceHandler) { traceHandler->handleTrace (new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, c->assembler->length())); } if (argumentFootprint) { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset (resolved(c, argumentFootprint * BytesPerWord)); c->assembler->apply (Add, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } } Value* address; void* indirection; TraceHandler* traceHandler; Value* result; unsigned flags; unsigned resultSize; unsigned argumentFootprint; }; void appendCall(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, unsigned argumentFootprint) { fprintf(stderr, "appendCall\n"); new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, indirection, flags, traceHandler, result, resultSize, argumentFootprint); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, value, size, registerSite (c, c->assembler->returnLow(), size > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } } virtual void compile(Context* c) { fprintf(stderr, "ReturnEvent.compile\n"); Assembler::Register base(c->assembler->base()); Assembler::Register stack(c->assembler->stack()); c->assembler->apply(Move, BytesPerWord, RegisterOperand, &base, RegisterOperand, &stack); c->assembler->apply(Pop, BytesPerWord, RegisterOperand, &base); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, Value* value) { fprintf(stderr, "appendReturn\n"); new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value); } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst): Event(c), type(type), size(size), src(src), dst(dst) { Site* target; if (type == Move and size >= BytesPerWord) { target = moveSite(c, dst); } else { target = 0; } addRead(c, src, size, target); } virtual void compile(Context* c) { fprintf(stderr, "MoveEvent.compile\n"); Site* target; if (type == Move and size >= BytesPerWord and dst->reads and next == dst->reads->event) { target = src->source; } else { target = targetOrRegister(c, size, dst, this); if (src->source->copyCost(c, target)) { apply(c, type, size, src->source, target); } } addSite(c, stack, size, dst, target); } BinaryOperation type; unsigned size; Value* src; Value* dst; }; void appendMove(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst) { fprintf(stderr, "appendMove\n"); new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent(c, type, size, src, dst); } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second): Event(c), size(size), first(first), second(second) { addRead(c, first, size, 0); addRead(c, second, size, 0); } virtual void compile(Context* c) { fprintf(stderr, "CompareEvent.compile\n"); apply(c, Compare, size, first->source, second->source); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { fprintf(stderr, "appendCompare\n"); new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent(c, size, first, second); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { addRead(c, address, BytesPerWord, 0); } virtual void compile(Context* c) { fprintf(stderr, "BranchEvent.compile\n"); apply(c, type, BytesPerWord, address->source); } UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { fprintf(stderr, "appendBranch\n"); new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address); } class CombineEvent: public Event { public: CombineEvent(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result): Event(c), type(type), size(size), first(first), second(second), result(result) { Assembler::Register r1(NoRegister); Assembler::Register r2(NoRegister); c->assembler->getTargets(type, size, &r1, &r2); addRead(c, first, size, r1.low == NoRegister ? 0 : registerSite(c, r1.low, r1.high)); addRead(c, second, size, r2.low == NoRegister ? valueSite(c, result) : static_cast(registerSite(c, r2.low, r2.high))); } virtual void compile(Context* c) { fprintf(stderr, "CombineEvent.compile\n"); apply(c, type, size, first->source, second->source); removeSite(c, second, second->source); addSite(c, 0, 0, result, second->source); } BinaryOperation type; unsigned size; Value* first; Value* second; Value* result; }; void appendCombine(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result) { fprintf(stderr, "appendCombine\n"); new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent(c, type, size, first, second, result); } class TranslateEvent: public Event { public: TranslateEvent(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result): Event(c), type(type), size(size), value(value), result(result) { addRead(c, value, size, valueSite(c, result)); } virtual void compile(Context* c) { fprintf(stderr, "TranslateEvent.compile\n"); apply(c, type, size, value->source); removeSite(c, value, value->source); addSite(c, 0, 0, result, value->source); } UnaryOperation type; unsigned size; Value* value; Value* result; }; void appendTranslate(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result) { fprintf(stderr, "appendTranslate\n"); new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent(c, type, size, value, result); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result): Event(c), base(base), displacement(displacement), index(index), scale(scale), result(result) { addRead(c, base, BytesPerWord, anyRegisterSite(c)); if (index) addRead(c, index, BytesPerWord, anyRegisterSite(c)); } virtual void compile(Context* c) { fprintf(stderr, "MemoryEvent.compile\n"); int indexRegister; if (index) { assert(c, index->source->type(c) == RegisterOperand); indexRegister = static_cast(index->source)->register_.low; } else { indexRegister = NoRegister; } assert(c, base->source->type(c) == RegisterOperand); int baseRegister = static_cast(base->source)->register_.low; addSite(c, 0, 0, result, memorySite (c, baseRegister, displacement, indexRegister, scale)); } Value* base; int displacement; Value* index; unsigned scale; Value* result; }; void appendMemory(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result) { fprintf(stderr, "appendMemory\n"); new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, displacement, index, scale, result); } Site* stackSyncSite(Context* c, unsigned index, unsigned size) { int high = NoRegister; for (int i = c->assembler->registerCount(); i >= 0; --i) { if (not c->registers[i].reserved) { if (index == 0) { if (size == 1) { return registerSite(c, i, high); } else { high = i; -- size; } } else { -- index; } } } abort(c); } class StackSyncEvent: public Event { public: StackSyncEvent(Context* c): Event(c) { unsigned i = 0; for (Stack* s = stack; s; s = s->next) { addRead(c, s->value, s->size * BytesPerWord, stackSyncSite(c, i, s->size)); i += s->size; } } StackSyncEvent(Context* c, Event* next): Event(c, next) { unsigned i = 0; for (Stack* s = stack; s; s = s->next) { insertRead(c, this, next, s->value, s->size * BytesPerWord, stackSyncSite(c, i, s->size)); i += s->size; } } virtual void compile(Context*) { fprintf(stderr, "StackSyncEvent.compile\n"); for (Read* r = reads; r; r = r->eventNext) { r->value->sites = r->target; r->target->next = 0; } } }; void appendStackSync(Context* c) { fprintf(stderr, "appendStackSync\n"); new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c); } Site* pushSite(Context*, PushEvent*); class PushEvent: public Event { public: PushEvent(Context* c): Event(c), active(false) { stack->pushEvent = this; addRead(c, stack->value, stack->size * BytesPerWord, pushSite(c, this)); } virtual void compile(Context* c) { fprintf(stderr, "PushEvent.compile\n"); if (active) { syncStack(c, stack); } } bool active; }; class PushSite: public AbstractSite { public: PushSite(PushEvent* event): event(event) { } virtual Site* readTarget(Context* c, Read* r, Event* e) { if (r->next and (not event->active)) { return targetOrNull(c, r->next, e); } else { return 0; } } PushEvent* event; }; Site* pushSite(Context* c, PushEvent* e) { return new (c->zone->allocate(sizeof(PushSite))) PushSite(e); } void appendPush(Context* c) { fprintf(stderr, "appendPush\n"); new (c->zone->allocate(sizeof(PushEvent))) PushEvent(c); } class PopEvent: public Event { public: PopEvent(Context* c, unsigned count, bool ignore): Event(c), count(count), ignore(ignore) { } virtual void compile(Context* c) { fprintf(stderr, "PopEvent.compile\n"); Stack* s = stack; unsigned ignored = 0; for (unsigned i = count; i;) { if (s->pushed) { if (s->value->reads and (not ignore)) { assert(c, ignored == 0); fprintf(stderr, "pop %p\n", s); Site* target = targetOrRegister (c, s->size * BytesPerWord, s->value, this); apply(c, Pop, BytesPerWord * s->size, target); -- s->value->pushCount; addSite(c, stack, s->size * BytesPerWord, s->value, target); } else { fprintf(stderr, "ignore %p\n", s); ignored += s->size; } s->pushed = false; } else { fprintf(stderr, "%p not pushed\n", s); } i -= s->size; s = s->next; } if (ignored) { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, ignored * BytesPerWord)); c->assembler->apply (Add, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } } unsigned count; bool ignore; }; void appendPop(Context* c, unsigned count, bool ignore) { fprintf(stderr, "appendPop\n"); new (c->zone->allocate(sizeof(PopEvent))) PopEvent(c, count, ignore); } Site* readSource(Context* c, Stack* stack, Read* r, Event* e) { Site* target = (r->target ? r->target->readTarget(c, r, e) : 0); unsigned copyCost; Site* site = pick(c, r->value->sites, target, ©Cost); if (target) { if (copyCost) { addSite(c, stack, r->size, r->value, target); apply(c, Move, r->size, site, target); } return target; } else { return site; } } void compile(Context* c) { Assembler* a = c->assembler; Assembler::Register base(a->base()); Assembler::Register stack(a->stack()); a->apply(Push, BytesPerWord, RegisterOperand, &base); a->apply(Move, BytesPerWord, RegisterOperand, &stack, RegisterOperand, &base); if (c->stackOffset) { Assembler::Constant offset(resolved(c, c->stackOffset * BytesPerWord)); a->apply(Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } for (Event* e = c->firstEvent; e; e = e->next) { LogicalInstruction* li = c->logicalCode + e->logicalIp; li->machineOffset = a->length(); for (Read* r = e->reads; r; r = r->eventNext) { r->value->source = readSource(c, e->stack, r, e); r->value->reads = r->value->reads->next; } e->compile(c); for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->length(); } } } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void pushState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state); } void popState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state->next); } Stack* stack(Context* c, Value* value, unsigned size, unsigned index, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(value, size, index, next); } Stack* stack(Context* c, Value* value, unsigned size, Stack* next) { return stack(c, value, size, (next ? next->index + size : 0), next); } void push(Context* c, unsigned size, Value* v) { assert(c, ceiling(size, BytesPerWord)); c->state->stack = stack(c, v, ceiling(size, BytesPerWord), c->state->stack); appendPush(c); } Value* pop(Context* c, unsigned size UNUSED) { Stack* s = c->state->stack; assert(c, ceiling(size, BytesPerWord) == s->size); appendPop(c, s->size, false); c->state->stack = s->next; return s->value; } void updateJunctions(Context* c) { for (Junction* j = c->junctions; j; j = j->next) { LogicalInstruction* i = c->logicalCode + j->logicalIp; if (i->predecessor >= 0) { LogicalInstruction* p = c->logicalCode + i->predecessor; p->lastEvent = p->lastEvent->next = new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c, p->lastEvent->next); } } } bool used(Context* c, int r) { Value* v = c->registers[r].value; return v and findSite(c, v, c->registers[r].site) and v->pushCount == 0 and v->sites->next == 0 and v->reads; } int freeRegisterExcept(Context* c, int except, bool allowAcquired) { for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { if (i != except and (not c->registers[i].reserved) and (not used(c, i))) { return i; } } if (allowAcquired) { for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { if (i != except and (not c->registers[i].reserved)) { return i; } } } abort(c); } int freeRegister(Context* c, bool allowAcquired) { return freeRegisterExcept(c, NoRegister, allowAcquired); } RegisterSite* freeRegister(Context* c, unsigned size, bool allowAcquired) { if (BytesPerWord == 4 and size == 8) { int low = freeRegister(c, allowAcquired); return registerSite(c, low, freeRegisterExcept(c, low, allowAcquired)); } else { return registerSite(c, freeRegister(c, allowAcquired)); } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(int r) { if (r == NoRegister) { r = freeRegisterExcept(c, NoRegister, false); } else { expect(c, not c->registers[r].reserved); expect(c, c->registers[r].value == 0); } c->registers[r].reserved = true; return r; } virtual void releaseTemporary(int r) { c->registers[r].reserved = false; } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone): c(s, assembler, zone), client(&c) { assembler->setClient(&client); } virtual void pushState() { ::pushState(&c); } virtual void popState() { ::popState(&c); } virtual void init(unsigned logicalCodeLength, unsigned stackOffset) { c.logicalCodeLength = logicalCodeLength; c.stackOffset = stackOffset; c.logicalCode = static_cast (c.zone->allocate(sizeof(LogicalInstruction) * logicalCodeLength)); memset(c.logicalCode, 0, sizeof(LogicalInstruction) * logicalCodeLength); } virtual void visitLogicalIp(unsigned logicalIp) { if ((++ c.logicalCode[logicalIp].visits) == 1) { c.junctions = new (c.zone->allocate(sizeof(Junction))) Junction(logicalIp, c.junctions); } } virtual void startLogicalIp(unsigned logicalIp) { if (c.logicalIp >= 0) { c.logicalCode[c.logicalIp].lastEvent = c.lastEvent; } c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return ::value(&c, ::constantSite(&c, value)); } virtual Operand* address(Promise* address) { return value(&c, ::addressSite(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1) { Value* result = value(&c); appendMemory(&c, static_cast(base), displacement, static_cast(index), scale, result); return result; } virtual Operand* stack() { return value(&c, registerSite(&c, c.assembler->stack())); } virtual Operand* base() { return value(&c, registerSite(&c, c.assembler->base())); } virtual Operand* thread() { return value(&c, registerSite(&c, c.assembler->thread())); } virtual bool isConstant(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) return true; } return false; } virtual int64_t constantValue(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { return static_cast(s)->value.value->value(); } } abort(&c); } virtual Operand* label() { return value(&c, ::constantSite(&c, static_cast(0))); } Promise* machineIp() { return c.lastEvent->promises = new (c.zone->allocate(sizeof(CodePromise))) CodePromise(&c, c.lastEvent->promises); } virtual void mark(Operand* label) { appendStackSync(&c); for (Site* s = static_cast(label)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { static_cast(s)->value.value = machineIp(); return; } } abort(&c); } virtual void push(unsigned size, Operand* value) { ::push(&c, size, static_cast(value)); } virtual Operand* pop(unsigned size) { return ::pop(&c, size); } virtual void pushed(unsigned count) { for (unsigned i = 0; i < count; ++i) { Value* a = value(&c); ::push(&c, BytesPerWord, a); } } virtual void popped(unsigned count) { appendPop(&c, count, true); for (unsigned i = count; i;) { Stack* s = c.state->stack; c.state->stack = s->next; i -= s->size; } } virtual Operand* peek(unsigned size UNUSED, unsigned index) { Stack* s = c.state->stack; for (unsigned i = index; i > 0;) { s = s->next; i -= s->size; } assert(&c, s->size == ceiling(size, BytesPerWord)); return s->value; } virtual Operand* call(Operand* address, void* indirection, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; Value* arguments[argumentCount]; unsigned argumentSizes[argumentCount]; unsigned index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Value* o = va_arg(a, Value*); if (o) { arguments[index] = o; argumentSizes[index] = size; size = BytesPerWord; ++ index; } else { size = 8; } ++ footprint; } va_end(a); Stack* oldStack = c.state->stack; for (int i = index - 1; i >= 0; --i) { ::push(&c, argumentSizes[i], arguments[i]); } unsigned ai = 0; Stack* s = c.state->stack; for (unsigned i = 0; i < index; ++i) { Site* target; if (ai < c.assembler->argumentRegisterCount()) { target = registerSite(&c, c.assembler->argumentRegister(index)); } else { target = 0; s->pushEvent->active = true; } addRead(&c, s->value, s->size * BytesPerWord, target); ai += s->size; s = s->next; } c.state->stack = oldStack; for (Stack* s = oldStack; s; s = s->next) { s->pushEvent->active = true; } Value* result = value(&c); appendCall(&c, static_cast(address), indirection, flags, traceHandler, result, resultSize, footprint); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), static_cast(dst)); } virtual Operand* load(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, Move, size, static_cast(src), dst); return dst; } virtual Operand* loadz(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, MoveZ, size, static_cast(src), dst); return dst; } virtual Operand* load4To8(Operand* src) { Value* dst = value(&c); appendMove(&c, Move4To8, 0, static_cast(src), dst); return dst; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { appendStackSync(&c); appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { appendStackSync(&c); appendBranch(&c, Jump, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Add, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Subtract, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Multiply, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Divide, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Remainder, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftLeft, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, UnsignedShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, And, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Or, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Xor, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* neg(unsigned size, Operand* a) { Value* result = value(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { updateJunctions(&c); ::compile(&c); return c.assembler->length(); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.assembler->length()) + (i++)) = n->promise->value(); } } virtual void dispose() { // ignore } Context c; Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone); } } // namespace vm