#include "assembler.h" #include "vector.h" using namespace vm; #define INDEX1(a, b) ((a) + (BinaryOperationCount * (b))) #define CAST1(x) reinterpret_cast(x) #define INDEX2(a, b, c) \ ((a) \ + (BinaryOperationCount * (b)) \ + (BinaryOperationCount * OperandTypeCount * (c))) #define CAST2(x) reinterpret_cast(x) namespace { enum { rax = 0, rcx = 1, rdx = 2, rbx = 3, rsp = 4, rbp = 5, rsi = 6, rdi = 7, r8 = 8, r9 = 9, r10 = 10, r11 = 11, r12 = 12, r13 = 13, r14 = 14, r15 = 15, }; inline bool isInt8(intptr_t v) { return v == static_cast(v); } inline bool isInt32(intptr_t v) { return v == static_cast(v); } class Task; class Context { public: Context(System* s, Allocator* a, Zone* zone): s(s), zone(zone), code(s, a, 1024), tasks(0), result(0) { } System* s; Zone* zone; Vector code; Task* tasks; uint8_t* result; }; inline void NO_RETURN abort(Context* c) { abort(c->s); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->s, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->s, v); } class CodePromise: public Promise { public: CodePromise(Context* c, unsigned offset): c(c), offset(offset) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->result + offset); } abort(c); } virtual bool resolved() { return c->result != 0; } Context* c; unsigned offset; }; CodePromise* codePromise(Context* c, unsigned offset) { return new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, offset); } class Task { public: Task(Task* next): next(next) { } virtual ~Task() { } virtual void run(Context* c) = 0; Task* next; }; class OffsetTask: public Task { public: OffsetTask(Task* next, Promise* promise, int instructionOffset, unsigned instructionSize): Task(next), promise(promise), instructionOffset(instructionOffset), instructionSize(instructionSize) { } virtual void run(Context* c) { uint8_t* instruction = c->result + instructionOffset; intptr_t v = reinterpret_cast(promise->value()) - instruction - instructionSize; expect(c, isInt32(v)); int32_t v4 = v; memcpy(instruction + instructionSize - 4, &v4, 4); } Promise* promise; int instructionOffset; unsigned instructionSize; }; void appendOffsetTask(Context* c, Promise* promise, int instructionOffset, unsigned instructionSize) { c->tasks = new (c->zone->allocate(sizeof(OffsetTask))) OffsetTask (c->tasks, promise, instructionOffset, instructionSize); } void encode(Context* c, uint8_t* instruction, unsigned length, int a, int b, int32_t displacement, int index, unsigned scale) { c->code.append(instruction, length); uint8_t width; if (displacement == 0 and b != rbp) { width = 0; } else if (isInt8(displacement)) { width = 0x40; } else { width = 0x80; } if (index == -1) { c->code.append(width | (a << 3) | b); if (b == rsp) { c->code.append(0x24); } } else { assert(c, b != rsp); c->code.append(width | (a << 3) | 4); c->code.append((log(scale) << 6) | (index << 3) | b); } if (displacement == 0 and b != rbp) { // do nothing } else if (isInt8(displacement)) { c->code.append(displacement); } else { c->code.append4(displacement); } } void rex(Context* c) { if (BytesPerWord == 8) { c->code.append(0x48); } } void encode(Context* c, uint8_t instruction, int a, Assembler::Memory* b, bool rex) { if (b->traceHandler) { b->traceHandler->handleTrace(codePromise(c, c->code.length())); } if (rex) { ::rex(c); } encode(c, &instruction, 1, a, b->base, b->offset, b->index, b->scale); } void encode2(Context* c, uint16_t instruction, int a, Assembler::Memory* b, bool rex) { if (b->traceHandler) { b->traceHandler->handleTrace(codePromise(c, c->code.length())); } if (rex) { ::rex(c); } uint8_t i[2] = { instruction >> 8, instruction & 0xff }; encode(c, i, 2, a, b->base, b->offset, b->index, b->scale); } typedef void (*OperationType)(Context*); OperationType Operations[OperationCount]; typedef void (*UnaryOperationType)(Context*, unsigned, Assembler::Operand*); UnaryOperationType UnaryOperations[UnaryOperationCount * OperandTypeCount]; typedef void (*BinaryOperationType) (Context*, unsigned, Assembler::Operand*, Assembler::Operand*); BinaryOperationType BinaryOperations[BinaryOperationCount * OperandTypeCount * OperandTypeCount]; void return_(Context* c) { c->code.append(0xc3); } void unconditional(Context* c, unsigned jump, Assembler::Constant* a) { appendOffsetTask(c, a->value, c->code.length(), 5); c->code.append(jump); c->code.append4(0); } void conditional(Context* c, unsigned condition, Assembler::Constant* a) { appendOffsetTask(c, a->value, c->code.length(), 6); c->code.append(0x0f); c->code.append(condition); c->code.append4(0); } void callC(Context* c, unsigned size UNUSED, Assembler::Constant* a) { assert(c, size == BytesPerWord); unconditional(c, 0xe8, a); } void jumpR(Context* c, unsigned size UNUSED, Assembler::Register* a) { assert(c, size == BytesPerWord); c->code.append(0xff); c->code.append(0xd0 | a->low); } void pushR(Context* c, unsigned size, Assembler::Register* a) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->high); pushR(c, 4, &ah); pushR(c, 4, a); } else { c->code.append(0x50 | a->low); } } void popR(Context* c, unsigned size, Assembler::Register* a) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->high); popR(c, 4, a); popR(c, 4, &ah); } else { c->code.append(0x50 | a->low); } } void moveCR(Context* c, unsigned size UNUSED, Assembler::Constant* a, Assembler::Register* b) { assert(c, BytesPerWord == 8 or size == 4); // todo rex(c); c->code.append(0xb8 | b->low); c->code.appendAddress(a->value->value()); } void moveCM(Context* c, unsigned size UNUSED, Assembler::Constant* a, Assembler::Memory* b) { assert(c, isInt32(a->value->value())); // todo assert(c, BytesPerWord == 8 or size == 4); // todo encode(c, 0xc7, 0, b, true); c->code.append4(a->value->value()); } void moveRM(Context* c, unsigned size, Assembler::Register* a, Assembler::Memory* b) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->high); Assembler::Memory bh(b->base, b->offset + 4, b->index, b->scale); moveRM(c, 4, a, b); moveRM(c, 4, &ah, &bh); } else if (BytesPerWord == 8 and size == 4) { encode(c, 0x89, a->low, b, false); } else { encode(c, 0x89, a->low, b, true); } } void moveRR(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { if (BytesPerWord == 4 and size == 8) { Assembler::Register ah(a->low); Assembler::Register bh(b->low); moveRR(c, 4, a, b); moveRR(c, 4, &ah, &bh); } else { rex(c); c->code.append(0x89); c->code.append(0xc0 | (a->low << 3) | b->low); } } void moveMR(Context* c, unsigned size, Assembler::Memory* a, Assembler::Register* b) { switch (size) { case 1: encode2(c, 0x0fbe, b->low, a, true); break; case 2: encode2(c, 0x0fbf, b->low, a, true); break; case 4: case 8: if (BytesPerWord == 4 and size == 8) { Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale); Assembler::Register bh(b->high); moveMR(c, 4, a, b); moveMR(c, 4, &ah, &bh); } else if (BytesPerWord == 8 and size == 4) { encode(c, 0x63, b->low, a, true); } else { encode(c, 0x8b, b->low, a, true); } break; default: abort(c); } } void move4To8MR(Context* c, unsigned, Assembler::Memory* a, Assembler::Register* b) { assert(c, BytesPerWord == 8); // todo encode(c, 0x63, b->low, a, true); } void addRR(Context* c, unsigned size, Assembler::Register* a, Assembler::Register* b) { assert(c, BytesPerWord == 8 or size == 4); // todo rex(c); c->code.append(0x01); c->code.append(0xc0 | (a->low << 3) | b->low); } void populateTables() { Operations[Return] = return_; UnaryOperations[INDEX1(Call, Constant)] = CAST1(callC); UnaryOperations[INDEX1(Jump, Register)] = CAST1(jumpR); UnaryOperations[INDEX1(Push, Register)] = CAST1(pushR); UnaryOperations[INDEX1(Pop, Register)] = CAST1(popR); BinaryOperations[INDEX2(Move, Constant, Register)] = CAST2(moveCR); BinaryOperations[INDEX2(Move, Constant, Memory)] = CAST2(moveCM); BinaryOperations[INDEX2(Move, Register, Memory)] = CAST2(moveRM); BinaryOperations[INDEX2(Move, Register, Register)] = CAST2(moveRR); BinaryOperations[INDEX2(Move, Memory, Register)] = CAST2(moveMR); BinaryOperations[INDEX2(Move4To8, Memory, Register)] = CAST2(move4To8MR); BinaryOperations[INDEX2(Add, Register, Register)] = CAST2(addRR); } class MyAssembler: public Assembler { public: MyAssembler(System* s, Allocator* a, Zone* zone): c(s, a, zone) { static bool populated = false; if (not populated) { populated = true; populateTables(); } } virtual unsigned registerCount() { return BytesPerWord == 4 ? 8 : 16; } virtual int base() { return rbp; } virtual int stack() { return rsp; } virtual int thread() { return rbx; } virtual int returnLow() { return rax; } virtual int returnHigh() { return (BytesPerWord == 4 ? rdx : NoRegister); } virtual unsigned argumentRegisterCount() { return (BytesPerWord == 4 ? 0 : 6); } virtual int argumentRegister(unsigned index) { assert(&c, BytesPerWord == 8); switch (index) { case 0: return rdi; case 1: return rsi; case 2: return rdx; case 3: return rcx; case 4: return r8; case 5: return r9; default: abort(&c); } } virtual int stackSyncRegister(unsigned index) { switch (index) { case 0: return rax; case 1: return rcx; case 2: return rdx; case 3: return rsi; case 4: return rdi; default: abort(&c); } } virtual void getTargets(UnaryOperation /*op*/, unsigned /*size*/, Register* r) { // todo r->low = NoRegister; r->high = NoRegister; } virtual void getTargets(BinaryOperation /*op*/, unsigned /*size*/, Register* a, Register* b) { // todo a->low = NoRegister; a->high = NoRegister; b->low = NoRegister; b->high = NoRegister; } virtual void apply(Operation op) { Operations[op](&c); } virtual void apply(UnaryOperation op, unsigned size, OperandType type, Operand* operand) { UnaryOperations[INDEX1(op, type)](&c, size, operand); } virtual void apply(BinaryOperation op, unsigned size, OperandType aType, Operand* a, OperandType bType, Operand* b) { BinaryOperations[INDEX2(op, aType, bType)](&c, size, a, b); } virtual void writeTo(uint8_t* dst) { c.result = dst; memcpy(dst, c.code.data, c.code.length()); for (Task* t = c.tasks; t; t = t->next) { t->run(&c); } } virtual unsigned length() { return c.code.length(); } virtual void updateCall(void* returnAddress, void* newTarget) { uint8_t* instruction = static_cast(returnAddress) - 5; assert(&c, *instruction == 0xE8); assert(&c, reinterpret_cast(instruction + 1) % 4 == 0); int32_t v = static_cast(newTarget) - static_cast(returnAddress); memcpy(instruction + 1, &v, 4); } virtual void dispose() { c.code.dispose(); } Context c; }; } // namespace namespace vm { Assembler* makeAssembler(System* system, Allocator* allocator, Zone* zone) { return new (zone->allocate(sizeof(MyAssembler))) MyAssembler(system, allocator, zone); } } // namespace vm