#include "heap.h" #include "system.h" #include "common.h" using namespace vm; namespace { // an object must survive TenureThreshold + 2 garbage collections // before being copied to gen2 (must be at least 1): const unsigned TenureThreshold = 3; const unsigned FixieTenureThreshold = TenureThreshold + 2; const unsigned Top = ~static_cast(0); const unsigned InitialGen2CapacityInBytes = 4 * 1024 * 1024; const bool Verbose = false; const bool Verbose2 = false; const bool Debug = false; const bool DebugFixies = false; class Context; void NO_RETURN abort(Context*); #ifndef NDEBUG void assert(Context*, bool); #endif System* system(Context*); inline void* get(void* o, unsigned offsetInWords) { return mask(cast(o, offsetInWords * BytesPerWord)); } inline void** getp(void* o, unsigned offsetInWords) { return &cast(o, offsetInWords * BytesPerWord); } inline void set(void** o, void* value) { *o = reinterpret_cast (reinterpret_cast(value) | reinterpret_cast(*o) & (~PointerMask)); } inline void set(void* o, unsigned offsetInWords, void* value) { set(getp(o, offsetInWords), value); } class Segment { public: class Map { public: class Iterator { public: Map* map; unsigned index; unsigned limit; Iterator(Map* map, unsigned start, unsigned end): map(map) { assert(map->segment->context, map->bitsPerRecord == 1); assert(map->segment->context, map->segment); assert(map->segment->context, start <= map->segment->position()); if (end > map->segment->position()) end = map->segment->position(); index = map->indexOf(start); limit = map->indexOf(end); if ((end - start) % map->scale) ++ limit; } bool hasMore() { unsigned word = wordOf(index); unsigned bit = bitOf(index); unsigned wordLimit = wordOf(limit); unsigned bitLimit = bitOf(limit); for (; word <= wordLimit and (word < wordLimit or bit < bitLimit); ++word) { uintptr_t* p = map->data() + word; if (*p) { for (; bit < BitsPerWord and (word < wordLimit or bit < bitLimit); ++bit) { if (map->data()[word] & (static_cast(1) << bit)) { index = ::indexOf(word, bit); // printf("hit at index %d\n", index); return true; } else { // printf("miss at index %d\n", indexOf(word, bit)); } } } bit = 0; } index = limit; return false; } unsigned next() { assert(map->segment->context, hasMore()); assert(map->segment->context, map->segment); return (index++) * map->scale; } }; Segment* segment; Map* child; unsigned bitsPerRecord; unsigned scale; bool clearNewData; Map(Segment* segment, unsigned bitsPerRecord, unsigned scale, Map* child, bool clearNewData): segment(segment), child(child), bitsPerRecord(bitsPerRecord), scale(scale), clearNewData(clearNewData) { } void init() { assert(segment->context, bitsPerRecord); assert(segment->context, scale); assert(segment->context, powerOfTwo(scale)); if (clearNewData) { memset(data(), 0, size() * BytesPerWord); } if (child) { child->init(); } } void replaceWith(Map* m) { assert(segment->context, bitsPerRecord == m->bitsPerRecord); assert(segment->context, scale == m->scale); m->segment = 0; if (child) child->replaceWith(m->child); } unsigned offset(unsigned capacity) { unsigned n = 0; if (child) n += child->footprint(capacity); return n; } unsigned offset() { return offset(segment->capacity()); } uintptr_t* data() { return segment->data + segment->capacity() + offset(); } unsigned size(unsigned capacity) { unsigned result = ceiling(ceiling(capacity, scale) * bitsPerRecord, BitsPerWord); assert(segment->context, result); return result; } unsigned size() { return size(max(segment->capacity(), 1)); } unsigned indexOf(unsigned segmentIndex) { return (segmentIndex / scale) * bitsPerRecord; } unsigned indexOf(void* p) { assert(segment->context, segment->almostContains(p)); assert(segment->context, segment->capacity()); return indexOf(segment->indexOf(p)); } void update(uintptr_t* newData, unsigned capacity) { assert(segment->context, capacity >= segment->capacity()); uintptr_t* p = newData + offset(capacity); if (segment->position()) { memcpy(p, data(), size(segment->position()) * BytesPerWord); } if (child) { child->update(newData, capacity); } } void clearBit(unsigned i) { assert(segment->context, wordOf(i) < size()); vm::clearBit(data(), i); } void setBit(unsigned i) { assert(segment->context, wordOf(i) < size()); vm::markBit(data(), i); } void clearOnlyIndex(unsigned index) { for (unsigned i = index, limit = index + bitsPerRecord; i < limit; ++i) { clearBit(i); } } void clearOnly(unsigned segmentIndex) { clearOnlyIndex(indexOf(segmentIndex)); } void clearOnly(void* p) { clearOnlyIndex(indexOf(p)); } void clear(void* p) { clearOnly(p); if (child) child->clear(p); } void setOnlyIndex(unsigned index, unsigned v = 1) { unsigned i = index + bitsPerRecord - 1; while (true) { if (v & 1) setBit(i); else clearBit(i); v >>= 1; if (i == index) break; --i; } } void setOnly(unsigned segmentIndex, unsigned v = 1) { setOnlyIndex(indexOf(segmentIndex), v); } void setOnly(void* p, unsigned v = 1) { setOnlyIndex(indexOf(p), v); } void set(void* p, unsigned v = 1) { setOnly(p, v); assert(segment->context, get(p) == v); if (child) child->set(p, v); } unsigned get(void* p) { unsigned index = indexOf(p); unsigned v = 0; for (unsigned i = index, limit = index + bitsPerRecord; i < limit; ++i) { unsigned wi = bitOf(i); v <<= 1; v |= ((data()[wordOf(i)]) & (static_cast(1) << wi)) >> wi; } return v; } unsigned footprint(unsigned capacity) { unsigned n = size(capacity); if (child) n += child->footprint(capacity); return n; } }; Context* context; uintptr_t* data; unsigned position_; unsigned capacity_; Map* map; Segment(Context* context, Map* map, unsigned desired, unsigned minimum): context(context), data(0), position_(0), capacity_(0), map(map) { if (desired) { assert(context, desired >= minimum); capacity_ = desired; while (data == 0) { data = static_cast (system(context)->tryAllocate ((capacity_ + map->footprint(capacity_)) * BytesPerWord)); if (data == 0) { if (capacity_ > minimum) { capacity_ = avg(minimum, capacity_); if (capacity_ == 0) { break; } } else { abort(context); } } } if (map) { map->init(); } } } unsigned capacity() { return capacity_; } unsigned position() { return position_; } unsigned remaining() { return capacity() - position(); } void replaceWith(Segment* s) { system(context)->free(data); data = s->data; s->data = 0; position_ = s->position_; s->position_ = 0; capacity_ = s->capacity_; s->capacity_ = 0; if (s->map) { if (map) { map->replaceWith(s->map); s->map = 0; } else { abort(context); } } else { map = 0; } } bool contains(void* p) { return position() and p >= data and p < data + position(); } bool almostContains(void* p) { return contains(p) or p == data + position(); } void* get(unsigned offset) { assert(context, offset <= position()); return data + offset; } unsigned indexOf(void* p) { assert(context, almostContains(p)); return static_cast(p) - data; } void* allocate(unsigned size) { assert(context, size); assert(context, position() + size <= capacity()); void* p = data + position(); position_ += size; return p; } void dispose() { system(context)->free(data); data = 0; map = 0; } }; class Fixie { public: Fixie(unsigned size, bool hasMask, Fixie** handle): age(0), hasMask(hasMask), marked(false), dirty(false) { memset(mask(size), 0, maskSize(size, hasMask)); add(handle); if (DebugFixies) { fprintf(stderr, "make fixie %p\n", this); } } void add(Fixie** handle) { this->handle = handle; next = *handle; if (next) next->handle = &next; *handle = this; } void remove() { *handle = next; if (next) next->handle = handle; } void move(Fixie** handle) { remove(); add(handle); } void** body() { return static_cast(static_cast(body_)); } uintptr_t* mask(unsigned size) { return body_ + size; } static unsigned maskSize(unsigned size, bool hasMask) { return hasMask * ceiling(size, BytesPerWord) * BytesPerWord; } static unsigned totalSize(unsigned size, bool hasMask) { return sizeof(Fixie) + (size * BytesPerWord) + maskSize(size, hasMask); } unsigned totalSize(unsigned size) { return totalSize(size, hasMask); } uint8_t age; bool hasMask; bool marked; bool dirty; Fixie* next; Fixie** handle; uintptr_t body_[0]; }; Fixie* fixie(void* body) { return static_cast(body) - 1; } void free(Context* c, Fixie** fixies); class Context { public: Context(System* system, Heap::Client* client): system(system), client(client), ageMap(&gen1, log(TenureThreshold), 1, 0, false), gen1(this, &ageMap, 0, 0), nextAgeMap(&nextGen1, log(TenureThreshold), 1, 0, false), nextGen1(this, &nextAgeMap, 0, 0), pointerMap(&gen2, 1, 1, 0, true), pageMap(&gen2, 1, LikelyPageSizeInBytes / BytesPerWord, &pointerMap, true), heapMap(&gen2, 1, pageMap.scale * 1024, &pageMap, true), gen2(this, &heapMap, 0, 0), nextPointerMap(&nextGen2, 1, 1, 0, true), nextPageMap(&nextGen2, 1, LikelyPageSizeInBytes / BytesPerWord, &nextPointerMap, true), nextHeapMap(&nextGen2, 1, nextPageMap.scale * 1024, &nextPageMap, true), nextGen2(this, &nextHeapMap, 0, 0), gen2Base(0), tenureFootprint(0), fixieTenureFootprint(0), gen1padding(0), gen2padding(0), mode(Heap::MinorCollection), fixies(0), tenuredFixies(0), dirtyFixies(0), markedFixies(0), visitedFixies(0), lastCollectionTime(system->now()), totalCollectionTime(0), totalTime(0) { } void dispose() { gen1.dispose(); nextGen1.dispose(); gen2.dispose(); nextGen2.dispose(); free(this, &tenuredFixies); free(this, &dirtyFixies); free(this, &fixies); client->dispose(); } System* system; Heap::Client* client; Segment::Map ageMap; Segment gen1; Segment::Map nextAgeMap; Segment nextGen1; Segment::Map pointerMap; Segment::Map pageMap; Segment::Map heapMap; Segment gen2; Segment::Map nextPointerMap; Segment::Map nextPageMap; Segment::Map nextHeapMap; Segment nextGen2; unsigned gen2Base; unsigned tenureFootprint; unsigned fixieTenureFootprint; unsigned gen1padding; unsigned gen2padding; Heap::CollectionType mode; Fixie* fixies; Fixie* tenuredFixies; Fixie* dirtyFixies; Fixie* markedFixies; Fixie* visitedFixies; int64_t lastCollectionTime; int64_t totalCollectionTime; int64_t totalTime; }; inline System* system(Context* c) { return c->system; } const char* segment(Context* c, void* p) { if (c->gen1.contains(p)) { return "gen1"; } else if (c->nextGen1.contains(p)) { return "nextGen1"; } else if (c->gen2.contains(p)) { return "gen2"; } else if (c->nextGen2.contains(p)) { return "nextGen2"; } else { return "none"; } } inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif inline void initNextGen1(Context* c, unsigned footprint) { new (&(c->nextAgeMap)) Segment::Map (&(c->nextGen1), log(TenureThreshold), 1, 0, false); unsigned minimum = (c->gen1.position() - c->tenureFootprint) + footprint + c->gen1padding; unsigned desired = minimum; new (&(c->nextGen1)) Segment(c, &(c->nextAgeMap), desired, minimum); if (Verbose2) { fprintf(stderr, "init nextGen1 to %d bytes\n", c->nextGen1.capacity() * BytesPerWord); } } inline bool oversizedGen2(Context* c) { return c->gen2.position() < (c->gen2.capacity() / 4); } inline void initNextGen2(Context* c) { new (&(c->nextPointerMap)) Segment::Map (&(c->nextGen2), 1, 1, 0, true); new (&(c->nextPageMap)) Segment::Map (&(c->nextGen2), 1, LikelyPageSizeInBytes / BytesPerWord, &(c->nextPointerMap), true); new (&(c->nextHeapMap)) Segment::Map (&(c->nextGen2), 1, c->pageMap.scale * 1024, &(c->nextPageMap), true); unsigned minimum = c->gen2.position() + c->tenureFootprint + c->gen2padding; unsigned desired = minimum; if (not oversizedGen2(c)) { desired *= 2; } if (desired < InitialGen2CapacityInBytes / BytesPerWord) { desired = InitialGen2CapacityInBytes / BytesPerWord; } new (&(c->nextGen2)) Segment(c, &(c->nextHeapMap), desired, minimum); if (Verbose2) { fprintf(stderr, "init nextGen2 to %d bytes\n", c->nextGen2.capacity() * BytesPerWord); } } inline bool fresh(Context* c, void* o) { return c->nextGen1.contains(o) or c->nextGen2.contains(o) or (c->gen2.contains(o) and c->gen2.indexOf(o) >= c->gen2Base); } inline bool wasCollected(Context* c, void* o) { return o and (not fresh(c, o)) and fresh(c, get(o, 0)); } inline void* follow(Context* c UNUSED, void* o) { assert(c, wasCollected(c, o)); return cast(o, 0); } inline void*& parent(Context* c UNUSED, void* o) { assert(c, wasCollected(c, o)); return cast(o, BytesPerWord); } inline uintptr_t* bitset(Context* c UNUSED, void* o) { assert(c, wasCollected(c, o)); return &cast(o, BytesPerWord * 2); } void free(Context* c, Fixie** fixies) { for (Fixie** p = fixies; *p;) { Fixie* f = *p; *p = f->next; if (DebugFixies) { fprintf(stderr, "free fixie %p\n", f); } c->system->free(f); } } void sweepFixies(Context* c) { assert(c, c->markedFixies == 0); if (c->mode == Heap::MajorCollection) { free(c, &(c->tenuredFixies)); free(c, &(c->dirtyFixies)); } free(c, &(c->fixies)); for (Fixie** p = &(c->visitedFixies); *p;) { Fixie* f = *p; *p = f->next; unsigned size = c->client->sizeInWords(f->body()); ++ f->age; if (f->age > FixieTenureThreshold) { f->age = FixieTenureThreshold; } else if (static_cast(f->age + 1) == FixieTenureThreshold) { c->fixieTenureFootprint += f->totalSize(size); } if (f->age == FixieTenureThreshold) { if (DebugFixies) { fprintf(stderr, "tenure fixie %p\n", f); } f->move(&(c->tenuredFixies)); if (f->dirty) { uintptr_t* mask = f->mask(size); memset(mask, 0, ceiling(size, BytesPerWord) * BytesPerWord); f->dirty = false; } } else { f->move(&(c->fixies)); } f->marked = false; } } inline void* copyTo(Context* c, Segment* s, void* o, unsigned size) { assert(c, s->remaining() >= size); void* dst = s->allocate(size); c->client->copy(o, dst); return dst; } void* copy2(Context* c, void* o) { unsigned size = c->client->copiedSizeInWords(o); if (c->gen2.contains(o)) { assert(c, c->mode == Heap::MajorCollection); return copyTo(c, &(c->nextGen2), o, size); } else if (c->gen1.contains(o)) { unsigned age = c->ageMap.get(o); if (age == TenureThreshold) { if (c->mode == Heap::MinorCollection) { assert(c, c->gen2.remaining() >= size); if (c->gen2Base == Top) { c->gen2Base = c->gen2.position(); } return copyTo(c, &(c->gen2), o, size); } else { return copyTo(c, &(c->nextGen2), o, size); } } else { o = copyTo(c, &(c->nextGen1), o, size); c->nextAgeMap.setOnly(o, age + 1); if (age + 1 == TenureThreshold) { c->tenureFootprint += size; } return o; } } else { assert(c, not c->nextGen1.contains(o)); assert(c, not c->nextGen2.contains(o)); o = copyTo(c, &(c->nextGen1), o, size); c->nextAgeMap.clear(o); return o; } } void* copy(Context* c, void* o) { void* r = copy2(c, o); if (Debug) { fprintf(stderr, "copy %p (%s) to %p (%s)\n", o, segment(c, o), r, segment(c, r)); } // leave a pointer to the copy in the original cast(o, 0) = r; return r; } void* update3(Context* c, void* o, bool* needsVisit) { if (c->client->isFixed(o)) { Fixie* f = fixie(o); if ((not f->marked) and (c->mode == Heap::MajorCollection or f->age < FixieTenureThreshold)) { if (DebugFixies) { fprintf(stderr, "mark fixie %p\n", f); } f->marked = true; f->move(&(c->markedFixies)); } *needsVisit = false; return o; } else if (wasCollected(c, o)) { *needsVisit = false; return follow(c, o); } else { *needsVisit = true; return copy(c, o); } } void* update2(Context* c, void* o, bool* needsVisit) { if (c->mode == Heap::MinorCollection and c->gen2.contains(o)) { *needsVisit = false; return o; } return update3(c, o, needsVisit); } void* update(Context* c, void** p, bool* needsVisit) { if (mask(*p) == 0) { *needsVisit = false; return 0; } void* r = update2(c, mask(*p), needsVisit); // update heap map. if (r) { if (c->mode == Heap::MinorCollection) { if (c->gen2.contains(p) and not c->gen2.contains(r)) { if (Debug) { fprintf(stderr, "mark %p (%s) at %p (%s)\n", r, segment(c, r), p, segment(c, p)); } c->heapMap.set(p); } } else { if (c->nextGen2.contains(p) and not c->nextGen2.contains(r)) { if (Debug) { fprintf(stderr, "mark %p (%s) at %p (%s)\n", r, segment(c, r), p, segment(c, p)); } c->nextHeapMap.set(p); } } } return r; } const uintptr_t BitsetExtensionBit = (static_cast(1) << (BitsPerWord - 1)); void bitsetInit(uintptr_t* p) { memset(p, 0, BytesPerWord); } void bitsetClear(uintptr_t* p, unsigned start, unsigned end) { if (end < BitsPerWord - 1) { // do nothing } else if (start < BitsPerWord - 1) { memset(p + 1, 0, (wordOf(end + (BitsPerWord * 2) + 1)) * BytesPerWord); } else { unsigned startWord = wordOf(start + (BitsPerWord * 2) + 1); unsigned endWord = wordOf(end + (BitsPerWord * 2) + 1); if (endWord > startWord) { memset(p + startWord + 1, 0, (endWord - startWord) * BytesPerWord); } } } void bitsetSet(uintptr_t* p, unsigned i, bool v) { if (i >= BitsPerWord - 1) { i += (BitsPerWord * 2) + 1; if (v) { p[0] |= BitsetExtensionBit; if (p[2] <= wordOf(i) - 3) p[2] = wordOf(i) - 2; } } if (v) { markBit(p, i); } else { clearBit(p, i); } } bool bitsetHasMore(uintptr_t* p) { switch (*p) { case 0: return false; case BitsetExtensionBit: { uintptr_t length = p[2]; uintptr_t word = wordOf(p[1]); for (; word < length; ++word) { if (p[word + 3]) { p[1] = indexOf(word, 0); return true; } } p[1] = indexOf(word, 0); return false; } default: return true; } } unsigned bitsetNext(Context* c, uintptr_t* p) { bool more UNUSED = bitsetHasMore(p); assert(c, more); switch (*p) { case 0: abort(c); case BitsetExtensionBit: { uintptr_t i = p[1]; uintptr_t word = wordOf(i); assert(c, word < p[2]); for (uintptr_t bit = bitOf(i); bit < BitsPerWord; ++bit) { if (p[word + 3] & (static_cast(1) << bit)) { p[1] = indexOf(word, bit) + 1; bitsetSet(p, p[1] + BitsPerWord - 2, false); return p[1] + BitsPerWord - 2; } } abort(c); } default: { for (unsigned i = 0; i < BitsPerWord - 1; ++i) { if (*p & (static_cast(1) << i)) { bitsetSet(p, i, false); return i; } } abort(c); } } } void collect(Context* c, void** p) { void* original = mask(*p); void* parent = 0; if (Debug) { fprintf(stderr, "update %p (%s) at %p (%s)\n", mask(*p), segment(c, *p), p, segment(c, p)); } bool needsVisit; set(p, update(c, mask(p), &needsVisit)); if (Debug) { fprintf(stderr, " result: %p (%s) (visit? %d)\n", mask(*p), segment(c, *p), needsVisit); } if (not needsVisit) return; visit: { void* copy = follow(c, original); class Walker : public Heap::Walker { public: Walker(Context* c, void* copy, uintptr_t* bitset): c(c), copy(copy), bitset(bitset), first(0), second(0), last(0), visits(0), total(0) { } virtual bool visit(unsigned offset) { if (Debug) { fprintf(stderr, " update %p (%s) at %p - offset %d from %p (%s)\n", get(copy, offset), segment(c, get(copy, offset)), getp(copy, offset), offset, copy, segment(c, copy)); } bool needsVisit; void* childCopy = update(c, getp(copy, offset), &needsVisit); if (Debug) { fprintf(stderr, " result: %p (%s) (visit? %d)\n", childCopy, segment(c, childCopy), needsVisit); } ++ total; if (total == 3) { bitsetInit(bitset); } if (needsVisit) { ++ visits; if (visits == 1) { first = offset; } else if (visits == 2) { second = offset; } } else { set(copy, offset, childCopy); } if (visits > 1 and total > 2 and (second or needsVisit)) { bitsetClear(bitset, last, offset); last = offset; if (second) { bitsetSet(bitset, second, true); second = 0; } if (needsVisit) { bitsetSet(bitset, offset, true); } } return true; } Context* c; void* copy; uintptr_t* bitset; unsigned first; unsigned second; unsigned last; unsigned visits; unsigned total; } walker(c, copy, bitset(c, original)); if (Debug) { fprintf(stderr, "walk %p (%s)\n", copy, segment(c, copy)); } c->client->walk(copy, &walker); if (walker.visits) { // descend if (walker.visits > 1) { ::parent(c, original) = parent; parent = original; } original = get(copy, walker.first); set(copy, walker.first, follow(c, original)); goto visit; } else { // ascend original = parent; } } if (original) { void* copy = follow(c, original); class Walker : public Heap::Walker { public: Walker(Context* c, uintptr_t* bitset): c(c), bitset(bitset), next(0), total(0) { } virtual bool visit(unsigned offset) { switch (++ total) { case 1: return true; case 2: next = offset; return true; case 3: next = bitsetNext(c, bitset); return false; default: abort(c); } } Context* c; uintptr_t* bitset; unsigned next; unsigned total; } walker(c, bitset(c, original)); if (Debug) { fprintf(stderr, "scan %p\n", copy); } c->client->walk(copy, &walker); assert(c, walker.total > 1); if (walker.total == 3 and bitsetHasMore(bitset(c, original))) { parent = original; } else { parent = ::parent(c, original); } if (Debug) { fprintf(stderr, " next is %p (%s) at %p - offset %d from %p (%s)\n", get(copy, walker.next), segment(c, get(copy, walker.next)), getp(copy, walker.next), walker.next, copy, segment(c, copy)); } original = get(copy, walker.next); set(copy, walker.next, follow(c, original)); goto visit; } else { return; } } void visitDirtyFixies(Context* c) { for (Fixie** p = &(c->dirtyFixies); *p;) { Fixie* f = *p; *p = f->next; unsigned size = c->client->sizeInWords(f->body()); uintptr_t* mask = f->mask(size); for (unsigned word = 0; word < wordOf(size); ++ word) { if (mask[word]) { for (unsigned bit = 0; bit < bitOf(size); ++ bit) { unsigned index = indexOf(word, bit); if (getBit(mask, index)) { collect(c, f->body() + index); } } } } memset(mask, 0, ceiling(size, BytesPerWord) * BytesPerWord); f->dirty = false; f->move(&(c->tenuredFixies)); } } void visitMarkedFixies(Context* c) { for (Fixie** p = &(c->markedFixies); *p;) { Fixie* f = *p; *p = f->next; if (DebugFixies) { fprintf(stderr, "visit fixie %p\n", f); } class Walker: public Heap::Walker { public: Walker(Context* c, void** p): c(c), p(p) { } virtual bool visit(unsigned offset) { collect(c, p + offset); return true; } Context* c; void** p; } w(c, f->body()); c->client->walk(f->body(), &w); f->move(&(c->visitedFixies)); } } void collect(Context* c, Segment::Map* map, unsigned start, unsigned end, bool* dirty, bool expectDirty UNUSED) { bool wasDirty = false; for (Segment::Map::Iterator it(map, start, end); it.hasMore();) { wasDirty = true; if (map->child) { assert(c, map->scale > 1); unsigned s = it.next(); unsigned e = s + map->scale; map->clearOnly(s); bool childDirty = false; collect(c, map->child, s, e, &childDirty, true); if (childDirty) { map->setOnly(s); *dirty = true; } } else { assert(c, map->scale == 1); void** p = reinterpret_cast(map->segment->get(it.next())); map->clearOnly(p); if (c->nextGen1.contains(*p)) { map->setOnly(p); *dirty = true; } else { collect(c, p); if (not c->gen2.contains(*p)) { map->setOnly(p); *dirty = true; } } } } assert(c, wasDirty or not expectDirty); } void collect2(Context* c) { c->gen2Base = Top; c->tenureFootprint = 0; c->fixieTenureFootprint = 0; c->gen1padding = 0; c->gen2padding = 0; if (c->mode == Heap::MinorCollection and c->gen2.position()) { unsigned start = 0; unsigned end = start + c->gen2.position(); bool dirty; collect(c, &(c->heapMap), start, end, &dirty, false); } if (c->mode == Heap::MinorCollection) { visitDirtyFixies(c); } class Visitor : public Heap::Visitor { public: Visitor(Context* c): c(c) { } virtual void visit(void* p) { collect(c, static_cast(p)); visitMarkedFixies(c); } Context* c; } v(c); c->client->visitRoots(&v); } void collect(Context* c, unsigned footprint) { if (oversizedGen2(c) or c->tenureFootprint + c->gen2padding > c->gen2.remaining() or c->fixieTenureFootprint) { c->mode = Heap::MajorCollection; } int64_t then; if (Verbose) { if (c->mode == Heap::MajorCollection) { fprintf(stderr, "major collection\n"); } else { fprintf(stderr, "minor collection\n"); } then = c->system->now(); } initNextGen1(c, footprint); if (c->mode == Heap::MajorCollection) { initNextGen2(c); } collect2(c); c->gen1.replaceWith(&(c->nextGen1)); if (c->mode == Heap::MajorCollection) { c->gen2.replaceWith(&(c->nextGen2)); } sweepFixies(c); if (Verbose) { int64_t now = c->system->now(); int64_t collection = now - then; int64_t run = then - c->lastCollectionTime; c->totalCollectionTime += collection; c->totalTime += collection + run; c->lastCollectionTime = now; fprintf(stderr, " - collect: %4"LLD"ms; " "total: %4"LLD"ms; " "run: %4"LLD"ms; " "total: %4"LLD"ms\n", collection, c->totalCollectionTime, run, c->totalTime - c->totalCollectionTime); fprintf(stderr, " - gen1: %8d/%8d bytes; " "gen2: %8d/%8d bytes\n", c->gen1.position() * BytesPerWord, c->gen1.capacity() * BytesPerWord, c->gen2.position() * BytesPerWord, c->gen2.capacity() * BytesPerWord); } } class MyHeap: public Heap { public: MyHeap(System* system, Heap::Client* client): c(system, client) { } virtual void collect(CollectionType type, unsigned footprint) { c.mode = type; ::collect(&c, footprint); } virtual void* allocateFixed(unsigned sizeInWords, bool objectMask, unsigned* totalInBytes) { *totalInBytes = Fixie::totalSize(sizeInWords, objectMask); return (new (c.system->allocate(*totalInBytes)) Fixie(sizeInWords, objectMask, &(c.fixies)))->body(); } virtual bool needsMark(void* p) { if (c.client->isFixed(p)) { return fixie(p)->age == FixieTenureThreshold; } else { return c.gen2.contains(p); } } bool targetNeedsMark(void* target) { return target and not c.gen2.contains(target) and not (c.client->isFixed(target) and fixie(target)->age == FixieTenureThreshold); } virtual void mark(void* p, unsigned offset, unsigned count) { if (c.client->isFixed(p)) { Fixie* f = fixie(p); unsigned size = c.client->sizeInWords(p); for (unsigned i = 0; i < count; ++i) { void** target = static_cast(p) + offset + i; if (targetNeedsMark(*target)) { f->dirty = true; markBit(f->mask(size), offset + i); } } if (f->dirty) { f->move(&(c.dirtyFixies)); } } else { for (unsigned i = 0; i < count; ++i) { void** target = static_cast(p) + offset + i; if (targetNeedsMark(*target)) { c.heapMap.set(target); } } } } virtual void pad(void* p, unsigned extra) { if (c.gen1.contains(p)) { if (c.ageMap.get(p) == TenureThreshold) { c.gen2padding += extra; } else { c.gen1padding += extra; } } else if (c.gen2.contains(p)) { c.gen2padding += extra; } else { c.gen1padding += extra; } } virtual void* follow(void* p) { if (p == 0 or c.client->isFixed(p)) { return p; } else if (wasCollected(&c, p)) { if (Debug) { fprintf(stderr, "follow %p (%s) to %p (%s)\n", p, segment(&c, p), ::follow(&c, p), segment(&c, ::follow(&c, p))); } return ::follow(&c, p); } else { return p; } } virtual Status status(void* p) { p = mask(p); if (p == 0) { return Null; } else if (c.nextGen1.contains(p)) { return Reachable; } else if (c.nextGen2.contains(p) or (c.gen2.contains(p) and (c.mode == Heap::MinorCollection or c.gen2.indexOf(p) >= c.gen2Base))) { return Tenured; } else if (wasCollected(&c, p)) { return Reachable; } else { return Unreachable; } } virtual CollectionType collectionType() { return c.mode; } virtual void dispose() { c.dispose(); c.system->free(this); } Context c; }; } // namespace namespace vm { Heap* makeHeap(System* system, Heap::Client* client) { return new (system->allocate(sizeof(MyHeap))) MyHeap(system, client); } } // namespace vm