/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { const bool DebugAppend = false; const bool DebugCompile = false; const bool DebugStack = false; const bool DebugRegisters = false; class Context; class Value; class Stack; class Site; class Event; class PushEvent; class Read; void NO_RETURN abort(Context*); void apply(Context* c, UnaryOperation op, unsigned size, Site* a); void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b); class Site { public: Site(): next(0) { } virtual ~Site() { } virtual Site* readTarget(Context*, Read*) { return this; } virtual unsigned copyCost(Context*, Site*) = 0; virtual void acquire(Context*, Stack*, unsigned, Value*) { } virtual void release(Context*) { } virtual void freeze(Context*) { } virtual void thaw(Context*) { } virtual OperandType type(Context*) = 0; virtual Assembler::Operand* asAssemblerOperand(Context*) = 0; Site* next; }; class Stack { public: Stack(Value* value, unsigned size, unsigned index, Stack* next): value(value), size(size), index(index), next(next), pushEvent(0), pushSite(0), pushed(false) { } Value* value; unsigned size; unsigned index; Stack* next; PushEvent* pushEvent; Site* pushSite; bool pushed; }; class State { public: State(State* next, Stack* stack): stack(stack), next(next) { } Stack* stack; State* next; }; class LogicalInstruction { public: Event* firstEvent; Event* lastEvent; LogicalInstruction* immediatePredecessor; Stack* stack; unsigned machineOffset; bool stackSaved; }; class Register { public: Register(int number): value(0), site(0), number(number), size(0), refCount(0), freezeCount(0), reserved(false), pushed(false) { } Value* value; Site* site; int number; unsigned size; unsigned refCount; unsigned freezeCount; bool reserved; bool pushed; }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Junction { public: Junction(unsigned logicalIp, Junction* next): logicalIp(logicalIp), next(next) { } unsigned logicalIp; Junction* next; }; class Read { public: Read(unsigned size, Value* value, Site* target, Read* next, Event* event, Read* eventNext): size(size), value(value), target(target), next(next), event(event), eventNext(eventNext) { } unsigned size; Value* value; Site* target; Read* next; Event* event; Read* eventNext; }; class Value: public Compiler::Operand { public: Value(Site* site, Site* target): reads(0), lastRead(0), sites(site), source(0), target(target) { } Read* reads; Read* lastRead; Site* sites; Site* source; Site* target; }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone, void* indirection): system(system), assembler(assembler), zone(zone), indirection(indirection), logicalIp(-1), state(new (zone->allocate(sizeof(State))) State(0, 0)), logicalCode(0), logicalCodeLength(0), stackOffset(0), registers (static_cast (zone->allocate(sizeof(Register*) * assembler->registerCount()))), firstConstant(0), lastConstant(0), constantCount(0), nextSequence(0), junctions(0), machineCode(0), stackReset(false) { for (unsigned i = 0; i < assembler->registerCount(); ++i) { registers[i] = new (zone->allocate(sizeof(Register))) Register(i); } registers[assembler->base()]->reserved = true; registers[assembler->stack()]->reserved = true; registers[assembler->thread()]->reserved = true; } System* system; Assembler* assembler; Zone* zone; void* indirection; int logicalIp; State* state; LogicalInstruction* logicalCode; unsigned logicalCodeLength; unsigned stackOffset; Register** registers; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; unsigned constantCount; unsigned nextSequence; Junction* junctions; uint8_t* machineCode; bool stackReset; }; class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->assembler->length()) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(-1), next(next) { } CodePromise(Context* c, int offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset >= 0; } Context* c; int offset; CodePromise* next; }; class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + c->logicalCode[logicalIp].machineOffset); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } class Event { public: Event(Context* c): next(0), stack(c->state->stack), promises(0), reads(0), sequence(c->nextSequence++), stackReset(c->stackReset) { assert(c, c->logicalIp >= 0); LogicalInstruction* i = c->logicalCode + c->logicalIp; if (i->lastEvent) { i->lastEvent->next = this; } else { i->firstEvent = this; } i->lastEvent = this; if (c->stackReset) { // fprintf(stderr, "stack reset\n"); c->stackReset = false; } } Event(Context*, unsigned sequence, Stack* stack): next(0), stack(stack), promises(0), reads(0), sequence(sequence), stackReset(false) { } virtual ~Event() { } virtual void compile(Context* c) = 0; virtual bool skipMove(unsigned) { return false; } Event* next; Stack* stack; CodePromise* promises; Read* reads; unsigned sequence; bool stackReset; }; bool findSite(Context*, Value* v, Site* site) { for (Site* s = v->sites; s; s = s->next) { if (s == site) return true; } return false; } void addSite(Context* c, Stack* stack, unsigned size, Value* v, Site* s) { if (not findSite(c, v, s)) { // fprintf(stderr, "add site %p (%d) to %p\n", s, s->type(c), v); s->acquire(c, stack, size, v); s->next = v->sites; v->sites = s; } } void removeSite(Context* c, Value* v, Site* s) { for (Site** p = &(v->sites); *p;) { if (s == *p) { // fprintf(stderr, "remove site %p (%d) from %p\n", s, s->type(c), v); s->release(c); *p = (*p)->next; break; } else { p = &((*p)->next); } } } void removeMemorySites(Context* c, Value* v) { for (Site** p = &(v->sites); *p;) { if ((*p)->type(c) == MemoryOperand) { // fprintf(stderr, "remove site %p (%d) from %p\n", s, s->type(c), v); (*p)->release(c); *p = (*p)->next; break; } else { p = &((*p)->next); } } } void clearSites(Context* c, Value* v) { for (Site* s = v->sites; s; s = s->next) { s->release(c); } v->sites = 0; } void nextRead(Context* c, Value* v) { // fprintf(stderr, "pop read %p from %p; next: %p\n", v->reads, v, v->reads->next); v->reads = v->reads->next; if (v->reads == 0) { clearSites(c, v); } } class ConstantSite: public Site { public: ConstantSite(Promise* value): value(value) { } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 1); } virtual OperandType type(Context*) { return ConstantOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } Assembler::Constant value; }; ConstantSite* constantSite(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantSite))) ConstantSite(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantSite* constantSite(Context* c, int64_t value) { return constantSite(c, resolved(c, value)); } class AddressSite: public Site { public: AddressSite(Promise* address): address(address) { } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 3); } virtual OperandType type(Context*) { return AddressOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &address; } Assembler::Address address; }; AddressSite* addressSite(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressSite))) AddressSite(address); } Register* acquire(Context* c, uint32_t mask, Stack* stack, unsigned newSize, Value* newValue, Site* newSite); void release(Context* c, Register* r); class RegisterSite: public Site { public: RegisterSite(uint64_t mask, Register* low = 0, Register* high = 0): mask(mask), low(low), high(high), register_(NoRegister, NoRegister) { } void sync(Context* c) { assert(c, low); register_.low = low->number; register_.high = (high? high->number : NoRegister); } virtual unsigned copyCost(Context* c, Site* s) { sync(c); if (s and (this == s or (s->type(c) == RegisterOperand and (static_cast(s)->mask & (static_cast(1) << register_.low)) and (register_.high == NoRegister or (static_cast(s)->mask & (static_cast(1) << (register_.high + 32))))))) { return 0; } else { return 2; } } virtual void acquire(Context* c, Stack* stack, unsigned size, Value* v) { low = ::acquire(c, mask, stack, size, v, this); if (size > BytesPerWord) { ++ low->freezeCount; high = ::acquire(c, mask >> 32, stack, size, v, this); -- low->freezeCount; mask = (static_cast(1) << (high->number + 32)) | (static_cast(1) << low->number); } else { mask = static_cast(1) << low->number; } } virtual void release(Context* c) { assert(c, low); ::release(c, low); low = 0; if (high) { ::release(c, high); high = 0; } } virtual void freeze(Context* c) { assert(c, low); ++ low->freezeCount; if (high) { ++ high->freezeCount; } } virtual void thaw(Context* c) { assert(c, low); -- low->freezeCount; if (high) { -- high->freezeCount; } } virtual OperandType type(Context*) { return RegisterOperand; } virtual Assembler::Operand* asAssemblerOperand(Context* c) { sync(c); return ®ister_; } uint64_t mask; Register* low; Register* high; Assembler::Register register_; }; RegisterSite* registerSite(Context* c, int low, int high = NoRegister) { assert(c, low != NoRegister); assert(c, low < static_cast(c->assembler->registerCount())); assert(c, high == NoRegister or high < static_cast(c->assembler->registerCount())); uint64_t mask; Register* hr; if (high == NoRegister) { hr = 0; mask = static_cast(1) << low; } else { hr = c->registers[high]; mask = (static_cast(1) << (high + 32)) | (static_cast(1) << low); } return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(mask, c->registers[low], hr); } RegisterSite* freeRegister(Context* c, uint64_t mask = ~static_cast(0)) { return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(mask); } Register* increment(Context* c, int i) { Register* r = c->registers[i]; if (DebugRegisters) { fprintf(stderr, "increment %d to %d\n", r->number, r->refCount + 1); } ++ r->refCount; return r; } void decrement(Context* c, Register* r) { assert(c, r->refCount > 0); if (DebugRegisters) { fprintf(stderr, "decrement %d to %d\n", r->number, r->refCount - 1); } -- r->refCount; } class MemorySite: public Site { public: MemorySite(int base, int offset, int index, unsigned scale): base(0), index(0), value(base, offset, index, scale) { } void sync(Context* c) { assert(c, base); value.base = base->number; value.index = (index? index->number : NoRegister); } virtual unsigned copyCost(Context* c, Site* s) { sync(c); if (s and (this == s or (s->type(c) == MemoryOperand and static_cast(s)->value.base == value.base and static_cast(s)->value.offset == value.offset and static_cast(s)->value.index == value.index and static_cast(s)->value.scale == value.scale))) { return 0; } else { return 4; } } virtual void acquire(Context* c, Stack*, unsigned, Value*) { base = increment(c, value.base); if (value.index != NoRegister) { index = increment(c, value.index); } } virtual void release(Context* c) { decrement(c, base); if (index) { decrement(c, index); } } virtual OperandType type(Context*) { return MemoryOperand; } virtual Assembler::Operand* asAssemblerOperand(Context* c) { sync(c); return &value; } Register* base; Register* index; Assembler::Memory value; }; MemorySite* memorySite(Context* c, int base, int offset, int index, unsigned scale) { return new (c->zone->allocate(sizeof(MemorySite))) MemorySite(base, offset, index, scale); } bool matchRegister(Context* c, Site* s, uint64_t mask) { assert(c, s->type(c) == RegisterOperand); RegisterSite* r = static_cast(s); return ((static_cast(1) << r->register_.low) & mask) and (r->register_.high == NoRegister or ((static_cast(1) << (r->register_.high + 32)) & mask)); } bool match(Context* c, Site* s, uint8_t typeMask, uint64_t registerMask) { OperandType t = s->type(c); return ((1 << t) & typeMask) and (t != RegisterOperand or matchRegister(c, s, registerMask)); } Site* targetOrNull(Context* c, Read* r) { Value* v = r->value; if (v->target) { return v->target; } else if (r->target) { return r->target->readTarget(c, r); } else { return 0; } } Site* targetOrNull(Context* c, Value* v) { if (v->target) { return v->target; } else if (v->reads and v->reads->target) { return v->reads->target->readTarget(c, v->reads); } else { return 0; } } class AbstractSite: public Site { public: virtual unsigned copyCost(Context* c, Site*) { abort(c); } virtual void copyTo(Context* c, unsigned, Site*) { abort(c); } virtual OperandType type(Context* c) { abort(c); } virtual Assembler::Operand* asAssemblerOperand(Context* c) { abort(c); } }; class VirtualSite: public AbstractSite { public: VirtualSite(Value* value, uint8_t typeMask, uint64_t registerMask): value(value), registerMask(registerMask), typeMask(typeMask) { } virtual Site* readTarget(Context* c, Read* r) { if (value) { Site* s = targetOrNull(c, value); if (s and match(c, s, typeMask, registerMask)) { return s; } } Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (Site* s = r->value->sites; s; s = s->next) { if (match(c, s, typeMask, registerMask)) { unsigned v = s->copyCost(c, 0); if (v < copyCost) { site = s; copyCost = v; } } } if (site) { return site; } else { return freeRegister(c, registerMask); } } Value* value; uint64_t registerMask; uint8_t typeMask; }; VirtualSite* virtualSite(Context* c, Value* v = 0, uint8_t typeMask = ~static_cast(0), uint64_t registerMask = ~static_cast(0)) { return new (c->zone->allocate(sizeof(VirtualSite))) VirtualSite(v, typeMask, registerMask); } VirtualSite* anyRegisterSite(Context* c) { return virtualSite(c, 0, 1 << RegisterOperand, ~static_cast(0)); } Site* targetOrRegister(Context* c, Value* v) { Site* s = targetOrNull(c, v); if (s) { return s; } else { return freeRegister(c); } } Site* pick(Context* c, Site* sites, Site* target = 0, unsigned* cost = 0) { Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (Site* s = sites; s; s = s->next) { unsigned v = s->copyCost(c, target); if (v < copyCost) { site = s; copyCost = v; } } if (cost) *cost = copyCost; return site; } Site* pushSite(Context* c, unsigned index) { return memorySite (c, c->assembler->base(), - (c->stackOffset + index + 1) * BytesPerWord, NoRegister, 1); } void pushNow(Context* c, Stack* start, unsigned count) { Stack* segment[count]; unsigned index = count; for (Stack* s = start; s and index; s = s->next) { segment[--index] = s; } for (unsigned i = 0; i < count; ++i) { Stack* s = segment[i]; assert(c, not s->pushed); if (s->value and s->value->sites) { Site* source = pick(c, s->value->sites); removeMemorySites(c, s->value); s->pushSite = pushSite(c, s->index); addSite(c, 0, s->size * BytesPerWord, s->value, s->pushSite); apply(c, Push, s->size * BytesPerWord, source); } else { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, s->size * BytesPerWord)); c->assembler->apply (Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } if (DebugStack) { fprintf(stderr, "pushed %p value: %p sites: %p\n", s, s->value, s->value->sites); } s->pushed = true; } } void pushNow(Context* c, Stack* start) { unsigned count = 0; for (Stack* s = start; s and (not s->pushed); s = s->next) { ++ count; } pushNow(c, start, count); } bool trySteal(Context* c, Register* r, Stack* stack) { assert(c, r->refCount == 0); Value* v = r->value; if (DebugRegisters) { fprintf(stderr, "try steal %d from %p: next: %p\n", r->number, v, v->sites->next); } if (v->sites->next == 0) { unsigned count = 0; Stack* start = 0; for (Stack* s = stack; s and (not s->pushed); s = s->next) { if (s->value == v) { start = s; } if (start) { ++ count; } } if (start) { pushNow(c, start, count); } else { return false; } } removeSite(c, v, r->site); return true; } bool used(Context* c, Register* r) { Value* v = r->value; return v and findSite(c, v, r->site); } bool usedExclusively(Context* c, Register* r) { return used(c, r) and r->value->sites->next == 0; } unsigned registerCost(Context* c, Register* r) { if (r->reserved or r->freezeCount) { return 6; } unsigned cost = 0; if (used(c, r)) { ++ cost; if (usedExclusively(c, r)) { cost += 2; } } if (r->refCount) { cost += 2; } return cost; } Register* pickRegister(Context* c, uint32_t mask) { Register* register_ = 0; unsigned cost = 5; for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { if ((1 << i) & mask) { Register* r = c->registers[i]; if ((static_cast(1) << i) == mask) { assert(c, r->freezeCount == 0); return r; } unsigned myCost = registerCost(c, r); if (myCost < cost) { register_ = r; cost = myCost; } } } expect(c, register_); return register_; } void swap(Context* c, Register* a, Register* b) { Assembler::Register ar(a->number); Assembler::Register br(b->number); c->assembler->apply (Swap, BytesPerWord, RegisterOperand, &ar, RegisterOperand, &br); c->registers[a->number] = b; c->registers[b->number] = a; int t = a->number; a->number = b->number; b->number = t; } Register* replace(Context* c, Stack* stack, Register* r) { ++ r->freezeCount; Register* s = acquire(c, ~0, stack, r->size, r->value, r->site); -- r->freezeCount; swap(c, r, s); return s; } Register* acquire(Context* c, uint32_t mask, Stack* stack, unsigned newSize, Value* newValue, Site* newSite) { Register* r = pickRegister(c, mask); if (r->reserved) return r; if (DebugRegisters) { fprintf(stderr, "acquire %d, value %p, site %p\n", r->number, newValue, newSite); } if (r->refCount) { r = replace(c, stack, r); } else { Value* oldValue = r->value; if (oldValue and oldValue != newValue and findSite(c, oldValue, r->site)) { if (not trySteal(c, r, stack)) { r = replace(c, stack, r); } } } r->size = newSize; r->value = newValue; r->site = newSite; return r; } void release(Context*, Register* r) { if (DebugRegisters) { fprintf(stderr, "release %d\n", r->number); } r->size = 0; r->value = 0; r->site = 0; } void apply(Context* c, UnaryOperation op, unsigned size, Site* a) { OperandType type = a->type(c); Assembler::Operand* operand = a->asAssemblerOperand(c); c->assembler->apply(op, size, type, operand); } void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b) { OperandType aType = a->type(c); Assembler::Operand* aOperand = a->asAssemblerOperand(c); OperandType bType = b->type(c); Assembler::Operand* bOperand = b->asAssemblerOperand(c); c->assembler->apply(op, size, aType, aOperand, bType, bOperand); } void insertRead(Context* c, Event* thisEvent, int sequence, Value* v, unsigned size, Site* target) { Read* r = new (c->zone->allocate(sizeof(Read))) Read(size, v, target, 0, thisEvent, thisEvent->reads); thisEvent->reads = r; // fprintf(stderr, "add read %p to %p\n", r, v); if (sequence >= 0) { for (Read** p = &(v->reads); *p;) { if ((*p)->event->sequence > static_cast(sequence)) { r->next = *p; *p = r; break; } else { p = &((*p)->next); } } } if (r->next == 0) { if (v->lastRead) { v->lastRead->next = r; } else { v->reads = r; } v->lastRead = r; } } void addRead(Context* c, Value* v, unsigned size, Site* target) { insertRead(c, c->logicalCode[c->logicalIp].lastEvent, -1, v, size, target); } Site* pushSite(Context*, PushEvent*); class PushEvent: public Event { public: PushEvent(Context* c, Stack* s): Event(c), s(s), active(false) { assert(c, s->pushEvent == 0); s->pushEvent = this; addRead(c, s->value, s->size * BytesPerWord, pushSite(c, this)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "PushEvent.compile active: %d\n", active); } if (active) { pushNow(c, s); } nextRead(c, s->value); } virtual bool skipMove(unsigned size) { return active and size >= BytesPerWord; } Stack* s; bool active; }; void push(Context* c, unsigned size, Value* v); void ignore(Context* c, unsigned count) { if (count) { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, count * BytesPerWord)); c->assembler->apply (Add, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } } class CallEvent: public Event { public: CallEvent(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount): Event(c), address(address), traceHandler(traceHandler), result(result), flags(flags), resultSize(resultSize), argumentFootprint(0) { Stack* s = argumentStack; unsigned index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Site* target; if (index < c->assembler->argumentRegisterCount()) { target = registerSite (c, c->assembler->argumentRegister(index)); } else { target = 0; s->pushEvent->active = true; ++ argumentFootprint; } addRead(c, s->value, s->size * BytesPerWord, target); index += s->size; s = s->next; } for (Stack* s = stack; s; s = s->next) { addRead(c, s->value, s->size * BytesPerWord, 0); } addRead(c, address, BytesPerWord, ((flags & Compiler::Indirect) ? registerSite(c, c->assembler->returnLow()) : 0)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CallEvent.compile\n"); } pushNow(c, stack); UnaryOperation type = ((flags & Compiler::Aligned) ? AlignedCall : Call); if (flags & Compiler::Indirect) { apply(c, type, BytesPerWord, constantSite(c, reinterpret_cast(c->indirection))); } else { apply(c, type, BytesPerWord, address->source); } for (Stack* s = stack; s; s = s->next) { clearSites(c, s->value); } for (Stack* s = stack; s; s = s->next) { if (s->pushSite) { addSite(c, 0, s->size * BytesPerWord, s->value, s->pushSite); } } for (Read* r = reads; r; r = r->eventNext) { nextRead(c, r->value); } if (resultSize and result->reads) { addSite(c, 0, resultSize, result, registerSite (c, c->assembler->returnLow(), resultSize > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } if (traceHandler) { traceHandler->handleTrace (new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, c->assembler->length())); } if (argumentFootprint and ((flags & Compiler::NoReturn) == 0)) { ignore(c, argumentFootprint); } } Value* address; TraceHandler* traceHandler; Value* result; unsigned flags; unsigned resultSize; unsigned argumentFootprint; }; void appendCall(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount) { if (DebugAppend) { fprintf(stderr, "appendCall\n"); } new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, flags, traceHandler, result, resultSize, argumentStack, argumentCount); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, value, size, registerSite (c, c->assembler->returnLow(), size > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "ReturnEvent.compile\n"); } if (value) { nextRead(c, value); } Assembler::Register base(c->assembler->base()); Assembler::Register stack(c->assembler->stack()); c->assembler->apply(Move, BytesPerWord, RegisterOperand, &base, RegisterOperand, &stack); c->assembler->apply(Pop, BytesPerWord, RegisterOperand, &base); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, Value* value) { if (DebugAppend) { fprintf(stderr, "appendReturn\n"); } new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value); } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst, Site* srcTarget): Event(c), type(type), size(size), src(src), dst(dst) { addRead(c, src, size, srcTarget); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "MoveEvent.compile\n"); } Site* target; unsigned cost; if (type == Move and dst->reads and next == dst->reads->event and dst->reads->event->skipMove(size)) { target = src->source; cost = 0; } else { target = targetOrRegister(c, dst); cost = src->source->copyCost(c, target); if (cost == 0) { target = src->source; } } nextRead(c, src); if (dst->reads) { addSite(c, stack, size, dst, target); } if (cost) { apply(c, type, size, src->source, target); } if (dst->reads == 0) { removeSite(c, dst, target); } } BinaryOperation type; unsigned size; Value* src; Value* dst; }; void appendMove(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst) { if (DebugAppend) { fprintf(stderr, "appendMove\n"); } VirtualSite* srcTarget = virtualSite(c, dst); VirtualSite* dstTarget = virtualSite(c); uintptr_t procedure; c->assembler->plan(type, size, &(srcTarget->typeMask), &(srcTarget->registerMask), &(dstTarget->typeMask), &(dstTarget->registerMask), &procedure); assert(c, procedure == 0); // todo new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent(c, type, size, src, dst, srcTarget); } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second): Event(c), size(size), first(first), second(second) { addRead(c, first, size, 0); addRead(c, second, size, 0); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CompareEvent.compile\n"); } apply(c, Compare, size, first->source, second->source); nextRead(c, first); nextRead(c, second); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { if (DebugAppend) { fprintf(stderr, "appendCompare\n"); } new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent(c, size, first, second); } void maybePreserve(Context* c, Stack* stack, unsigned size, Value* v, Site* s) { if (v->reads->next and v->sites->next == 0) { assert(c, v->sites == s); Site* r = targetOrNull(c, v->reads->next); if (r == 0) r = freeRegister(c); addSite(c, stack, size, v, r); apply(c, Move, size, s, r); } } class CombineEvent: public Event { public: CombineEvent(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result, Site* firstTarget, Site* secondTarget): Event(c), type(type), size(size), first(first), second(second), result(result) { addRead(c, first, size, firstTarget); addRead(c, second, size, secondTarget); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CombineEvent.compile\n"); } maybePreserve(c, stack, size, second, second->source); apply(c, type, size, first->source, second->source); nextRead(c, first); nextRead(c, second); removeSite(c, second, second->source); if (result->reads) { addSite(c, 0, size, result, second->source); } } BinaryOperation type; unsigned size; Value* first; Value* second; Value* result; }; void appendStackSync(Context* c); Value* value(Context* c, Site* site = 0, Site* target = 0) { return new (c->zone->allocate(sizeof(Value))) Value(site, target); } void appendCombine(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result) { VirtualSite* firstTarget = virtualSite(c); VirtualSite* secondTarget = virtualSite(c, result); uintptr_t procedure; c->assembler->plan(type, size, &(firstTarget->typeMask), &(firstTarget->registerMask), &(secondTarget->typeMask), &(secondTarget->registerMask), &procedure); if (procedure) { Stack* oldStack = c->state->stack; ::push(c, size, second); ::push(c, size, first); Stack* argumentStack = c->state->stack; c->state->stack = oldStack; Value* result = value(c); appendCall(c, value(c, constantSite(c, procedure)), Compiler::Indirect, 0, result, size, argumentStack, 2); } else { if (DebugAppend) { fprintf(stderr, "appendCombine\n"); } new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent(c, type, size, first, second, result, firstTarget, secondTarget); } } class TranslateEvent: public Event { public: TranslateEvent(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result, Site* target): Event(c), type(type), size(size), value(value), result(result) { addRead(c, value, size, target); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "TranslateEvent.compile\n"); } maybePreserve(c, stack, size, value, value->source); apply(c, type, size, value->source); nextRead(c, value); removeSite(c, value, value->source); if (result->reads) { addSite(c, 0, size, result, value->source); } } UnaryOperation type; unsigned size; Value* value; Value* result; }; void appendTranslate(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result) { if (DebugAppend) { fprintf(stderr, "appendTranslate\n"); } VirtualSite* target = virtualSite(c, result); uintptr_t procedure; c->assembler->plan (type, size, &(target->typeMask), &(target->registerMask), &procedure); assert(c, procedure == 0); // todo new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent(c, type, size, value, result, target); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result): Event(c), base(base), displacement(displacement), index(index), scale(scale), result(result) { addRead(c, base, BytesPerWord, anyRegisterSite(c)); if (index) addRead(c, index, BytesPerWord, anyRegisterSite(c)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "MemoryEvent.compile\n"); } int indexRegister; if (index) { assert(c, index->source->type(c) == RegisterOperand); indexRegister = static_cast(index->source)->register_.low; } else { indexRegister = NoRegister; } assert(c, base->source->type(c) == RegisterOperand); int baseRegister = static_cast(base->source)->register_.low; nextRead(c, base); if (index) { if (BytesPerWord == 8) { apply(c, Move4To8, 0, index->source, index->source); } nextRead(c, index); } result->target = memorySite (c, baseRegister, displacement, indexRegister, scale); addSite(c, 0, 0, result, result->target); } Value* base; int displacement; Value* index; unsigned scale; Value* result; }; void appendMemory(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result) { if (DebugAppend) { fprintf(stderr, "appendMemory\n"); } new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, displacement, index, scale, result); } Stack* stack(Context* c, Value* value, unsigned size, unsigned index, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(value, size, index, next); } void resetStack(Context* c) { unsigned i = 0; Stack* p = 0; for (Stack* s = c->state->stack; s; s = s->next) { Stack* n = stack(c, value(c), s->size, s->index, 0); n->value->sites = n->pushSite = pushSite(c, s->index); n->pushed = true; if (p) { p->next = n; } else { c->state->stack = n; } p = n; i += s->size; } c->stackReset = true; } void popNow(Context* c, Stack* stack, unsigned count, bool ignore) { Stack* s = stack; unsigned ignored = 0; for (unsigned i = count; i and s;) { if (s->pushed) { removeSite(c, s->value, s->pushSite); s->pushSite = 0; s->pushed = false; if (s->value->reads and (not ignore)) { ::ignore(c, ignored); Site* target = targetOrRegister(c, s->value); if (DebugStack) { fprintf(stderr, "pop %p value: %p target: %p\n", s, s->value, target); } addSite(c, stack, s->size * BytesPerWord, s->value, target); apply(c, Pop, BytesPerWord * s->size, target); } else { if (DebugStack) { fprintf(stderr, "ignore %p value: %p\n", s, s->value); } ignored += s->size; } } else { if (DebugStack) { fprintf(stderr, "%p not pushed\n", s); } } i -= s->size; s = s->next; } ::ignore(c, ignored); } class StackSyncEvent: public Event { public: StackSyncEvent(Context* c): Event(c) { for (Stack* s = stack; s; s = s->next) { if (s->pushEvent) s->pushEvent->active = true; addRead(c, s->value, s->size * BytesPerWord, 0); } } StackSyncEvent(Context* c, unsigned sequence, Stack* stack): Event(c, sequence, stack) { for (Stack* s = stack; s; s = s->next) { if (s->pushEvent) s->pushEvent->active = true; insertRead(c, this, sequence, s->value, s->size * BytesPerWord, 0); } } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "StackSyncEvent.compile\n"); } for (Stack* s = stack; s; s = s->next) { clearSites(c, s->value); } for (Stack* s = stack; s; s = s->next) { if (s->pushSite) { addSite(c, 0, s->size * BytesPerWord, s->value, s->pushSite); } } for (Read* r = reads; r; r = r->eventNext) { nextRead(c, r->value); } } }; void appendStackSync(Context* c) { if (DebugAppend) { fprintf(stderr, "appendStackSync\n"); } new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { addRead(c, address, BytesPerWord, 0); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "BranchEvent.compile\n"); } apply(c, type, BytesPerWord, address->source); nextRead(c, address); } UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { appendStackSync(c); if (DebugAppend) { fprintf(stderr, "appendBranch\n"); } new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address); resetStack(c); } class PushSite: public AbstractSite { public: PushSite(PushEvent* event): event(event) { } virtual Site* readTarget(Context* c, Read* r) { if (r->next and (not event->active)) { return targetOrNull(c, r->next); } else { return 0; } } PushEvent* event; }; Site* pushSite(Context* c, PushEvent* e) { return new (c->zone->allocate(sizeof(PushSite))) PushSite(e); } void appendPush(Context* c, Stack* s) { if (DebugAppend) { fprintf(stderr, "appendPush\n"); } new (c->zone->allocate(sizeof(PushEvent))) PushEvent(c, s); } void appendPush(Context* c) { appendPush(c, c->state->stack); } class PopEvent: public Event { public: PopEvent(Context* c, unsigned count, bool ignore): Event(c), count(count), ignore(ignore) { } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "PopEvent.compile\n"); } popNow(c, stack, count, ignore); } unsigned count; bool ignore; }; void appendPop(Context* c, unsigned count, bool ignore) { if (DebugAppend) { fprintf(stderr, "appendPop\n"); } new (c->zone->allocate(sizeof(PopEvent))) PopEvent(c, count, ignore); } Site* readSource(Context* c, Stack* stack, Read* r) { Site* target = (r->target ? r->target->readTarget(c, r) : 0); unsigned copyCost; Site* site = pick(c, r->value->sites, target, ©Cost); if (target and copyCost) { addSite(c, stack, r->size, r->value, target); apply(c, Move, r->size, site, target); return target; } else { return site; } } void compile(Context* c) { Assembler* a = c->assembler; Assembler::Register base(a->base()); Assembler::Register stack(a->stack()); a->apply(Push, BytesPerWord, RegisterOperand, &base); a->apply(Move, BytesPerWord, RegisterOperand, &stack, RegisterOperand, &base); if (c->stackOffset) { Assembler::Constant offset(resolved(c, c->stackOffset * BytesPerWord)); a->apply(Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } for (unsigned i = 0; i < c->logicalCodeLength; ++i) { LogicalInstruction* li = c->logicalCode + i; if (li->firstEvent) { li->machineOffset = a->length(); if (DebugCompile) { fprintf(stderr, " -- ip: %d\n", i); } for (Event* e = li->firstEvent; e; e = e->next) { if (e->stackReset) { // fprintf(stderr, "stack reset\n"); for (Stack* s = e->stack; s; s = s->next) { if (s->value->sites) { assert(c, s->value->sites->next == 0); s->value->sites->acquire(c, 0, s->size * BytesPerWord, s->value); } } } for (Read* r = e->reads; r; r = r->eventNext) { r->value->source = readSource(c, e->stack, r); if (r->value->source) r->value->source->freeze(c); } for (Read* r = e->reads; r; r = r->eventNext) { if (r->value->source) r->value->source->thaw(c); } e->compile(c); for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->length(); } } } } } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void pushState(Context* c) { if (DebugAppend) { unsigned count = 0; for (State* s = c->state; s; s = s->next) ++ count; fprintf(stderr, "push at level %d\n", count); count = 0; for (Stack* s = c->state->stack; s; s = s->next) ++ count; fprintf(stderr, "stack count: %d\n", count); } c->state = new (c->zone->allocate(sizeof(State))) State(c->state, c->state->stack); } void saveStack(Context* c) { if (c->logicalIp >= 0 and not c->logicalCode[c->logicalIp].stackSaved) { c->logicalCode[c->logicalIp].stackSaved = true; c->logicalCode[c->logicalIp].stack = c->state->stack; if (DebugAppend) { unsigned count = 0; for (Stack* s = c->state->stack; s; s = s->next) ++ count; fprintf(stderr, "stack count after ip %d: %d\n", c->logicalIp, count); } } } void popState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state->next->next, c->state->next->stack); if (DebugAppend) { unsigned count = 0; for (State* s = c->state; s; s = s->next) ++ count; fprintf(stderr, "pop to level %d\n", count); count = 0; for (Stack* s = c->state->stack; s; s = s->next) ++ count; fprintf(stderr, "stack count: %d\n", count); } } Stack* stack(Context* c, Value* value, unsigned size, Stack* next) { return stack(c, value, size, (next ? next->index + next->size : 0), next); } void push(Context* c, unsigned size, Value* v) { assert(c, ceiling(size, BytesPerWord)); c->state->stack = stack(c, v, ceiling(size, BytesPerWord), c->state->stack); appendPush(c); } Value* pop(Context* c, unsigned size UNUSED) { Stack* s = c->state->stack; assert(c, ceiling(size, BytesPerWord) == s->size); appendPop(c, s->size, false); c->state->stack = s->next; return s->value; } void updateJunctions(Context* c) { for (Junction* j = c->junctions; j; j = j->next) { LogicalInstruction* i = c->logicalCode + j->logicalIp; LogicalInstruction* p = i->immediatePredecessor; p->lastEvent = p->lastEvent->next = new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c, p->lastEvent->sequence, p->stack); } } void visit(Context* c, unsigned logicalIp) { assert(c, logicalIp < c->logicalCodeLength); if (c->logicalIp >= 0 and (not c->stackReset)) { assert(c, c->logicalCode[logicalIp].immediatePredecessor == 0); c->logicalCode[logicalIp].immediatePredecessor = c->logicalCode + c->logicalIp; } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(uint32_t mask) { int r = pickRegister(c, mask)->number; save(r); increment(c, r); return r; } virtual void releaseTemporary(int r) { decrement(c, c->registers[r]); restore(r); } virtual void save(int r) { if (c->registers[r]->refCount or c->registers[r]->value) { Assembler::Register operand(r); c->assembler->apply(Push, BytesPerWord, RegisterOperand, &operand); c->registers[r]->pushed = true; } } virtual void restore(int r) { if (c->registers[r]->pushed) { Assembler::Register operand(r); c->assembler->apply(Pop, BytesPerWord, RegisterOperand, &operand); c->registers[r]->pushed = false; } } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone, void* indirection): c(s, assembler, zone, indirection), client(&c) { assembler->setClient(&client); } virtual void pushState() { ::pushState(&c); } virtual void popState() { ::popState(&c); } virtual void saveStack() { ::saveStack(&c); } virtual void resetStack() { ::resetStack(&c); } virtual void init(unsigned logicalCodeLength, unsigned stackOffset) { c.logicalCodeLength = logicalCodeLength; c.stackOffset = stackOffset; c.logicalCode = static_cast (c.zone->allocate(sizeof(LogicalInstruction) * logicalCodeLength)); memset(c.logicalCode, 0, sizeof(LogicalInstruction) * logicalCodeLength); } virtual void visitLogicalIp(unsigned logicalIp) { visit(&c, logicalIp); c.stackReset = false; if (c.logicalCode[logicalIp].immediatePredecessor) { c.junctions = new (c.zone->allocate(sizeof(Junction))) Junction(logicalIp, c.junctions); } } virtual void startLogicalIp(unsigned logicalIp) { if (DebugAppend) { fprintf(stderr, " -- ip: %d\n", logicalIp); } visit(&c, logicalIp); ::saveStack(&c); c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return ::value(&c, ::constantSite(&c, value)); } virtual Operand* address(Promise* address) { return value(&c, ::addressSite(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1) { Value* result = value(&c); appendMemory(&c, static_cast(base), displacement, static_cast(index), scale, result); return result; } virtual Operand* stack() { Site* s = registerSite(&c, c.assembler->stack()); return value(&c, s, s); } virtual Operand* base() { Site* s = registerSite(&c, c.assembler->base()); return value(&c, s, s); } virtual Operand* thread() { Site* s = registerSite(&c, c.assembler->thread()); return value(&c, s, s); } virtual bool isConstant(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) return true; } return false; } virtual int64_t constantValue(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { return static_cast(s)->value.value->value(); } } abort(&c); } virtual Operand* label() { return value(&c, ::constantSite(&c, static_cast(0))); } Promise* machineIp() { Event* e = c.logicalCode[c.logicalIp].lastEvent; return e->promises = new (c.zone->allocate(sizeof(CodePromise))) CodePromise(&c, e->promises); } virtual void mark(Operand* label) { appendStackSync(&c); ::resetStack(&c); for (Site* s = static_cast(label)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { static_cast(s)->value.value = machineIp(); return; } } abort(&c); } virtual void push(unsigned size) { assert(&c, ceiling(size, BytesPerWord)); c.state->stack = ::stack (&c, value(&c), ceiling(size, BytesPerWord), c.state->stack); } virtual void push(unsigned size, Operand* value) { ::push(&c, size, static_cast(value)); } virtual Operand* pop(unsigned size) { return ::pop(&c, size); } virtual void pushed(unsigned count) { for (unsigned i = 0; i < count; ++i) { Value* v = value(&c); c.state->stack = ::stack(&c, v, 1, c.state->stack); c.state->stack->pushed = true; // v->sites = pushSite(&c, c.state->stack->index); } } virtual void popped(unsigned count) { appendPop(&c, count, true); for (unsigned i = count; i;) { Stack* s = c.state->stack; c.state->stack = s->next; i -= s->size; } } virtual Operand* peek(unsigned size UNUSED, unsigned index) { Stack* s = c.state->stack; for (unsigned i = index; i > 0;) { i -= s->size; s = s->next; } assert(&c, s->size == ceiling(size, BytesPerWord)); return s->value; } virtual Operand* call(Operand* address, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; Value* arguments[argumentCount]; unsigned argumentSizes[argumentCount]; unsigned index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Value* o = va_arg(a, Value*); if (o) { arguments[index] = o; argumentSizes[index] = size; size = BytesPerWord; ++ index; } else { size = 8; } ++ footprint; } va_end(a); for (Stack* s = c.state->stack; s; s = s->next) { if (s->pushEvent == 0) { appendPush(&c, s); } s->pushEvent->active = true; } Stack* oldStack = c.state->stack; for (int i = index - 1; i >= 0; --i) { ::push(&c, argumentSizes[i], arguments[i]); } Stack* argumentStack = c.state->stack; c.state->stack = oldStack; Value* result = value(&c); appendCall(&c, static_cast(address), flags, traceHandler, result, resultSize, argumentStack, index); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), static_cast(dst)); } virtual Operand* load(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, Move, size, static_cast(src), dst); return dst; } virtual Operand* loadz(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, MoveZ, size, static_cast(src), dst); return dst; } virtual Operand* load4To8(Operand* src) { Value* dst = value(&c); appendMove(&c, Move4To8, 8, static_cast(src), dst); return dst; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { appendBranch(&c, Jump, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Add, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Subtract, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Multiply, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Divide, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Remainder, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftLeft, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, UnsignedShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, And, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Or, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Xor, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* neg(unsigned size, Operand* a) { Value* result = value(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { updateJunctions(&c); ::compile(&c); return c.assembler->length(); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.assembler->length()) + i) = n->promise->value(); i += BytesPerWord; } } virtual void dispose() { // ignore } Context c; Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone, void* indirection) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone, indirection); } } // namespace vm