/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "machine.h" #include "util.h" #include "vector.h" #include "process.h" #include "compiler.h" #include "x86.h" using namespace vm; extern "C" uint64_t vmInvoke(void* thread, void* function, void* stack, unsigned stackSize, unsigned returnType); extern "C" void vmCall(); namespace { const bool Verbose = true; const bool DebugNatives = false; const bool DebugCallTable = false; const bool DebugMethodTree = true; const bool DebugFrameMaps = false; const bool CheckArrayBounds = true; class MyThread: public Thread { public: class CallTrace { public: CallTrace(MyThread* t): t(t), ip(t->ip), base(t->base), stack(t->stack), nativeMethod(0), next(t->trace) { t->trace = this; t->ip = 0; t->base = 0; t->stack = 0; } ~CallTrace() { t->stack = stack; t->base = base; t->ip = ip; t->trace = next; } MyThread* t; void* ip; void* base; void* stack; object nativeMethod; CallTrace* next; }; MyThread(Machine* m, object javaThread, Thread* parent): Thread(m, javaThread, parent), ip(0), base(0), stack(0), trace(0), reference(0) { } void* ip; void* base; void* stack; CallTrace* trace; Reference* reference; }; object resolveThisPointer(MyThread* t, void* stack, object method) { return reinterpret_cast(stack)[methodParameterFootprint(t, method)]; } object resolveTarget(MyThread* t, void* stack, object method) { object class_ = objectClass(t, resolveThisPointer(t, stack, method)); if (classVmFlags(t, class_) & BootstrapFlag) { PROTECT(t, method); PROTECT(t, class_); resolveClass(t, className(t, class_)); if (UNLIKELY(t->exception)) return 0; } if (classFlags(t, methodClass(t, method)) & ACC_INTERFACE) { return findInterfaceMethod(t, method, class_); } else { return findMethod(t, method, class_); } } object& methodTree(MyThread* t); object methodTreeSentinal(MyThread* t); intptr_t compareIpToMethodBounds(Thread* t, intptr_t ip, object method) { intptr_t start = reinterpret_cast (&singletonValue(t, methodCompiled(t, method), 0)); if (DebugMethodTree) { fprintf(stderr, "find 0x%lx in (0x%lx,0x%lx)\n", ip, start, start + (singletonCount(t, methodCompiled(t, method)) * BytesPerWord)); } if (ip < start) { return -1; } else if (ip < start + (singletonCount(t, methodCompiled(t, method)) * BytesPerWord)) { return 0; } else { return 1; } } object methodForIp(MyThread* t, void* ip) { if (DebugMethodTree) { fprintf(stderr, "query for method containing %p\n", ip); } return treeQuery(t, methodTree(t), reinterpret_cast(ip), methodTreeSentinal(t), compareIpToMethodBounds); } class MyStackWalker: public Processor::StackWalker { public: class MyProtector: public Thread::Protector { public: MyProtector(MyStackWalker* walker): Protector(walker->t), walker(walker) { } virtual void visit(Heap::Visitor* v) { v->visit(&(walker->method_)); v->visit(&(walker->nativeMethod)); } MyStackWalker* walker; }; MyStackWalker(MyThread* t): t(t), ip_(t->ip ? t->ip : (t->stack ? *static_cast(t->stack) : 0)), base(t->base), stack(t->stack), trace(t->trace), nativeMethod(trace->nativeMethod), method_(ip_ ? methodForIp(t, ip_) : 0), protector(this) { } MyStackWalker(MyStackWalker* w): t(w->t), ip_(w->ip_), base(w->base), stack(w->stack), trace(w->trace), nativeMethod(w->nativeMethod), method_(w->method_), protector(this) { } virtual void walk(Processor::StackVisitor* v) { fprintf(stderr, "ip: %p stack: %p method: %p\n", ip_, stack, method_); if (stack == 0) { return; } if (not v->visit(this)) { return; } for (MyStackWalker it(this); it.next();) { MyStackWalker walker(it); if (not v->visit(&walker)) { break; } } } bool next() { if (nativeMethod) { nativeMethod = 0; } else { stack = static_cast(base) + 1; base = *static_cast(base); method_ = methodForIp(t, *static_cast(stack)); if (method_ == 0) { if (trace and trace->stack) { base = trace->base; stack = static_cast(trace->stack); nativeMethod = trace->nativeMethod; trace = trace->next; } else { return false; } } } return true; } virtual object method() { if (nativeMethod) { return nativeMethod; } else { return method_; } } virtual int ip() { if (nativeMethod) { return 0; } else { return reinterpret_cast(ip_) - reinterpret_cast (&singletonValue(t, methodCompiled(t, method_), 0)); } } virtual unsigned count() { class Visitor: public Processor::StackVisitor { public: Visitor(): count(0) { } virtual bool visit(Processor::StackWalker*) { ++ count; return true; } unsigned count; } v; MyStackWalker walker(this); walker.walk(&v); return v.count; } MyThread* t; void* ip_; void* base; void* stack; MyThread::CallTrace* trace; object nativeMethod; object method_; MyProtector protector; }; int localOffset(MyThread* t, int v, object method) { int parameterFootprint = methodParameterFootprint(t, method) * BytesPerWord; v *= BytesPerWord; if (v < parameterFootprint) { return (parameterFootprint - v - BytesPerWord) + (BytesPerWord * 2); } else { return -(v + BytesPerWord - parameterFootprint); } } inline object* localObject(MyThread* t, void* base, object method, unsigned index) { return reinterpret_cast (static_cast(base) + localOffset(t, index, method)); } class PoolElement { public: PoolElement(object value, Promise* address, PoolElement* next): value(value), address(address), next(next) { } object value; Promise* address; PoolElement* next; }; class Context; class TraceElement: public Compiler::TraceHandler { public: TraceElement(Context* context, object target, bool virtualCall, TraceElement* next): context(context), address(0), target(target), virtualCall(virtualCall), next(next) { } virtual void handleTrace(Promise* address) { if (this->address == 0) { this->address = address; } } Context* context; Promise* address; intptr_t addressValue; object target; bool virtualCall; TraceElement* next; uintptr_t map[0]; }; inline Stack* push(Compiler* c, Stack* s, Operand* v) { if (BytesPerWord == 8) { return c->push8(s, v); } else { return c->push4(s, v); } } inline Stack* pop(Compiler* c, Stack* s, Operand* v) { if (BytesPerWord == 8) { return c->pop8(s, v); } else { return c->pop4(s, v); } } inline void mov(Compiler* c, Operand* src, Operand* dst) { if (BytesPerWord == 8) { c->mov8(src, dst); } else { c->mov4(src, dst); } } inline Operand* result(Compiler* c) { if (BytesPerWord == 8) { return c->result8(); } else { return c->result4(); } } inline void returnW(Compiler* c, Operand* v) { if (BytesPerWord == 8) { c->return8(v); } else { c->return4(v); } } inline void cmp(Compiler* c, Operand* src, Operand* dst) { if (BytesPerWord == 8) { c->cmp8(src, dst); } else { c->cmp4(src, dst); } } inline void and_(Compiler* c, Operand* src, Operand* dst) { if (BytesPerWord == 8) { c->and8(src, dst); } else { c->and4(src, dst); } } enum Event { PushEvent, PopEvent, IpEvent, MarkEvent, ClearEvent, TraceEvent }; unsigned localSize(MyThread* t, object method) { unsigned size = codeMaxLocals(t, methodCode(t, method)); if ((methodFlags(t, method) & (ACC_SYNCHRONIZED | ACC_STATIC)) == ACC_SYNCHRONIZED) { ++ size; } return size; } unsigned frameSize(MyThread* t, object method) { return localSize(t, method) + codeMaxStack(t, methodCode(t, method)); } unsigned stackMapSizeInWords(MyThread* t, object method) { return ceiling(codeMaxStack(t, methodCode(t, method)), BitsPerWord) * BytesPerWord; } unsigned frameMapSizeInWords(MyThread* t, object method) { return ceiling(frameSize(t, method), BitsPerWord) * BytesPerWord; } uint16_t* makeVisitTable(MyThread* t, Zone* zone, object method) { unsigned size = codeLength(t, methodCode(t, method)) * 2; uint16_t* table = static_cast(zone->allocate(size)); memset(table, 0, size); return table; } uintptr_t* makeRootTable(MyThread* t, Zone* zone, object method) { unsigned size = frameMapSizeInWords(t, method) * codeLength(t, methodCode(t, method)) * BytesPerWord; uintptr_t* table = static_cast(zone->allocate(size)); memset(table, 0xFF, size); return table; } class Context { public: class MyProtector: public Thread::Protector { public: MyProtector(Context* c): Protector(c->t), c(c) { } virtual void visit(Heap::Visitor* v) { v->visit(&(c->method)); for (PoolElement* p = c->objectPool; p; p = p->next) { v->visit(&(p->value)); } for (TraceElement* p = c->traceLog; p; p = p->next) { v->visit(&(p->target)); } } Context* c; }; Context(MyThread* t, object method, uint8_t* indirectCaller): t(t), zone(t->m->system, t->m->heap, false, 16 * 1024), c(makeCompiler(t->m->system, t->m->heap, &zone, indirectCaller)), method(method), objectPool(0), traceLog(0), traceLogCount(0), visitTable(makeVisitTable(t, &zone, method)), rootTable(makeRootTable(t, &zone, method)), eventLog(t->m->system, t->m->heap, 1024), protector(this) { } Context(MyThread* t): t(t), zone(t->m->system, t->m->heap, false, LikelyPageSizeInBytes), c(makeCompiler(t->m->system, t->m->heap, &zone, 0)), method(0), objectPool(0), traceLog(0), traceLogCount(0), visitTable(0), rootTable(0), eventLog(t->m->system, t->m->heap, 0), protector(this) { } ~Context() { c->dispose(); } MyThread* t; Zone zone; Compiler* c; object method; PoolElement* objectPool; TraceElement* traceLog; unsigned traceLogCount; uint16_t* visitTable; uintptr_t* rootTable; bool dirtyRoots; Vector eventLog; MyProtector protector; }; class Frame { public: Frame(Context* context, uintptr_t* stackMap): context(context), t(context->t), c(context->c), stack(0), stackMap(stackMap), ip(0), sp(localSize()), level(0) { memset(stackMap, 0, stackMapSizeInWords(t, context->method) * BytesPerWord); } Frame(Frame* f, uintptr_t* stackMap): context(f->context), t(context->t), c(context->c), stack(f->stack), stackMap(stackMap), ip(f->ip), sp(f->sp), level(f->level + 1) { memcpy(stackMap, f->stackMap, stackMapSizeInWords(t, context->method) * BytesPerWord); if (level > 1) { context->eventLog.append(PushEvent); } } ~Frame() { if (level > 1 and t->exception == 0) { context->eventLog.append(PopEvent); } } Operand* append(object o) { Promise* p = c->poolAppend(0); context->objectPool = new (context->zone.allocate(sizeof(PoolElement))) PoolElement(o, p, context->objectPool); return c->absolute(p); } unsigned localSize() { return ::localSize(t, context->method); } unsigned stackSize() { return codeMaxStack(t, methodCode(t, context->method)); } unsigned frameSize() { return localSize() + stackSize(); } void mark(unsigned index) { assert(t, index < frameSize()); context->eventLog.append(MarkEvent); context->eventLog.append2(index); int si = index - localSize(); if (si >= 0) { markBit(stackMap, si); } } void clear(unsigned index) { assert(t, index < frameSize()); context->eventLog.append(ClearEvent); context->eventLog.append2(index); int si = index - localSize(); if (si >= 0) { clearBit(stackMap, si); } } unsigned get(unsigned index) { assert(t, index < frameSize()); int si = index - localSize(); assert(t, si >= 0); return getBit(stackMap, si); } void pushedInt() { assert(t, sp + 1 <= frameSize()); assert(t, get(sp) == 0); ++ sp; } void pushedObject() { assert(t, sp + 1 <= frameSize()); mark(sp++); } void popped(unsigned count) { assert(t, sp >= count); assert(t, sp - count >= localSize()); while (count) { clear(-- sp); -- count; } } void poppedInt() { assert(t, sp >= 1); assert(t, sp - 1 >= localSize()); assert(t, get(sp - 1) == 0); -- sp; } void poppedObject() { assert(t, sp >= 1); assert(t, sp - 1 >= localSize()); assert(t, get(sp - 1) != 0); clear(-- sp); } void storedInt(unsigned index) { assert(t, index < localSize()); clear(index); } void storedObject(unsigned index) { assert(t, index < localSize()); mark(index); } void dupped() { assert(t, sp + 1 <= frameSize()); assert(t, sp - 1 >= localSize()); if (get(sp - 1)) { mark(sp); } ++ sp; } void duppedX1() { assert(t, sp + 1 <= frameSize()); assert(t, sp - 2 >= localSize()); unsigned b2 = get(sp - 2); unsigned b1 = get(sp - 1); if (b2) { mark(sp - 1); } else { clear(sp - 1); } if (b1) { mark(sp - 2); mark(sp); } else { clear(sp - 2); } ++ sp; } void duppedX2() { assert(t, sp + 1 <= frameSize()); assert(t, sp - 3 >= localSize()); unsigned b3 = get(sp - 3); unsigned b2 = get(sp - 2); unsigned b1 = get(sp - 1); if (b3) { mark(sp - 2); } else { clear(sp - 2); } if (b2) { mark(sp - 1); } else { clear(sp - 1); } if (b1) { mark(sp - 3); mark(sp); } else { clear(sp - 3); } ++ sp; } void dupped2() { assert(t, sp + 2 <= frameSize()); assert(t, sp - 2 >= localSize()); unsigned b2 = get(sp - 2); unsigned b1 = get(sp - 1); if (b2) { mark(sp); } if (b1) { mark(sp + 1); } sp += 2; } void dupped2X1() { assert(t, sp + 2 <= frameSize()); assert(t, sp - 3 >= localSize()); unsigned b3 = get(sp - 3); unsigned b2 = get(sp - 2); unsigned b1 = get(sp - 1); if (b3) { mark(sp - 1); } else { clear(sp - 1); } if (b2) { mark(sp - 3); mark(sp); } else { clear(sp - 3); } if (b1) { mark(sp - 2); mark(sp + 1); } else { clear(sp - 2); } sp += 2; } void dupped2X2() { assert(t, sp + 2 <= frameSize()); assert(t, sp - 4 >= localSize()); unsigned b4 = get(sp - 4); unsigned b3 = get(sp - 3); unsigned b2 = get(sp - 2); unsigned b1 = get(sp - 1); if (b4) { mark(sp - 2); } else { clear(sp - 2); } if (b3) { mark(sp - 1); } else { clear(sp - 1); } if (b2) { mark(sp - 4); mark(sp); } else { clear(sp - 4); } if (b1) { mark(sp - 3); mark(sp + 1); } else { clear(sp - 3); } sp += 2; } void swapped() { assert(t, sp - 2 >= localSize()); bool savedBit = get(sp - 1); if (get(sp - 2)) { mark(sp - 1); } else { clear(sp - 1); } if (savedBit) { mark(sp - 2); } else { clear(sp - 2); } } Operand* machineIp(unsigned logicalIp) { return c->promiseConstant(c->machineIp(logicalIp)); } void visitLogicalIp(unsigned ip) { context->eventLog.append(IpEvent); context->eventLog.append2(ip); } void startLogicalIp(unsigned ip) { c->startLogicalIp(ip); this->ip = ip; } void topIntToLong() { dup(); if (BytesPerWord == 4) { c->mov4To8(c->stack(stack, 0), c->stack(stack, 0)); } } void topLongToInt() { mov(c, c->stack(stack, 0), c->stack(stack, 1)); stack = c->pop(stack, 1); poppedInt(); } void pushInt(Operand* o) { stack = push(c, stack, o); pushedInt(); } void pushInt1(Operand* o) { stack = c->push1(stack, o); pushedInt(); } void pushInt2(Operand* o) { stack = c->push2(stack, o); pushedInt(); } void pushInt2z(Operand* o) { stack = c->push2z(stack, o); pushedInt(); } void pushInt4(Operand* o) { stack = c->push4(stack, o); pushedInt(); } void pushAddress(Operand* o) { stack = push(c, stack, o); pushedInt(); } void pushObject(Operand* o) { stack = push(c, stack, o); pushedObject(); } void pushObject() { stack = c->pushed(stack, 1); pushedObject(); } void pushLong(Operand* o) { if (BytesPerWord == 8) { stack = c->push(stack, 1); } stack = c->push8(stack, o); pushedInt(); pushedInt(); } void pop(unsigned count) { popped(count); stack = c->pop(stack, count); } Operand* topInt() { assert(t, sp >= 1); assert(t, sp - 1 >= localSize()); assert(t, get(sp - 1) == 0); return c->stack(stack, 0); } Operand* topLong() { assert(t, sp >= 2); assert(t, sp - 2 >= localSize()); assert(t, get(sp - 1) == 0); assert(t, get(sp - 2) == 0); return c->stack(stack, 0); } Operand* topObject() { assert(t, sp >= 1); assert(t, sp - 1 >= localSize()); assert(t, get(sp - 1) != 0); return c->stack(stack, 0); } Operand* popInt() { Operand* tmp = c->temporary(); popInt(tmp); return tmp; } Operand* popInt4() { Operand* tmp = c->temporary(); popInt4(tmp); return tmp; } Operand* popLong() { Operand* tmp = c->temporary(); popLong(tmp); return tmp; } Operand* popObject() { Operand* tmp = c->temporary(); popObject(tmp); return tmp; } void popInt(Operand* o) { stack = ::pop(c, stack, o); poppedInt(); } void popInt4(Operand* o) { stack = c->pop4(stack, o); poppedInt(); } void popLong(Operand* o) { stack = c->pop8(stack, o); if (BytesPerWord == 8) { stack = c->pop(stack, 1); } poppedInt(); poppedInt(); } void popObject(Operand* o) { stack = ::pop(c, stack, o); poppedObject(); } void loadInt(unsigned index) { assert(t, index < localSize()); pushInt(c->memory(c->base(), localOffset(t, index, context->method))); } void loadLong(unsigned index) { assert(t, index < static_cast (localSize() - 1)); pushLong(c->memory(c->base(), localOffset(t, index + 1, context->method))); } void loadObject(unsigned index) { assert(t, index < localSize()); pushObject(c->memory(c->base(), localOffset(t, index, context->method))); } void storeInt(unsigned index) { popInt(c->memory(c->base(), localOffset(t, index, context->method))); storedInt(index); } void storeLong(unsigned index) { popLong(c->memory(c->base(), localOffset(t, index + 1, context->method))); storedInt(index); storedInt(index + 1); } void storeObject(unsigned index) { popObject(c->memory(c->base(), localOffset(t, index, context->method))); storedObject(index); } void storeObjectOrAddress(unsigned index) { stack = ::pop (c, stack, c->memory(c->base(), localOffset(t, index, context->method))); assert(t, sp >= 1); assert(t, sp - 1 >= localSize()); if (get(sp - 1)) { storedObject(index); } else { storedInt(index); } popped(1); } void dup() { stack = push(c, stack, c->stack(stack, 0)); dupped(); } void dupX1() { stack = push(c, stack, c->stack(stack, 0)); mov(c, c->stack(stack, 2), c->stack(stack, 1)); mov(c, c->stack(stack, 0), c->stack(stack, 2)); duppedX1(); } void dupX2() { stack = push(c, stack, c->stack(stack, 0)); mov(c, c->stack(stack, 2), c->stack(stack, 1)); mov(c, c->stack(stack, 3), c->stack(stack, 2)); mov(c, c->stack(stack, 0), c->stack(stack, 3)); duppedX2(); } void dup2() { stack = push(c, stack, c->stack(stack, 1)); stack = push(c, stack, c->stack(stack, 1)); dupped2(); } void dup2X1() { stack = push(c, stack, c->stack(stack, 1)); stack = push(c, stack, c->stack(stack, 1)); mov(c, c->stack(stack, 4), c->stack(stack, 2)); mov(c, c->stack(stack, 1), c->stack(stack, 4)); mov(c, c->stack(stack, 0), c->stack(stack, 3)); dupped2X1(); } void dup2X2() { stack = push(c, stack, c->stack(stack, 1)); stack = push(c, stack, c->stack(stack, 1)); mov(c, c->stack(stack, 5), c->stack(stack, 3)); mov(c, c->stack(stack, 4), c->stack(stack, 2)); mov(c, c->stack(stack, 1), c->stack(stack, 5)); mov(c, c->stack(stack, 0), c->stack(stack, 4)); dupped2X2(); } void swap() { Operand* s0 = c->stack(stack, 0); Operand* s1 = c->stack(stack, 1); Operand* tmp = c->temporary(); mov(c, s0, tmp); mov(c, s1, s0); mov(c, tmp, s1); c->release(tmp); swapped(); } TraceElement* trace(object target, bool virtualCall) { unsigned mapSize = frameMapSizeInWords(t, context->method); TraceElement* e = context->traceLog = new (context->zone.allocate(sizeof(TraceElement) + (mapSize * BytesPerWord))) TraceElement(context, target, virtualCall, context->traceLog); ++ context->traceLogCount; context->eventLog.append(TraceEvent); context->eventLog.appendAddress(e); return e; } Context* context; MyThread* t; Compiler* c; Stack* stack; uintptr_t* stackMap; unsigned ip; unsigned sp; unsigned level; }; unsigned savedTargetIndex(MyThread* t, object method) { return codeMaxLocals(t, methodCode(t, method)); } object findCallNode(MyThread* t, void* address); void insertCallNode(MyThread* t, object node); void removeCallNode(MyThread* t, object node); void findUnwindTarget(MyThread* t, void** targetIp, void** targetBase, void** targetStack) { void* ip = t->ip; void* base = t->base; void** stack = static_cast(t->stack); if (ip) { t->ip = 0; } else { ip = *stack; } *targetIp = 0; while (*targetIp == 0) { object method = methodForIp(t, ip); if (method) { PROTECT(t, method); uint8_t* compiled = reinterpret_cast (&singletonValue(t, methodCompiled(t, method), 0)); ExceptionHandler* handler = findExceptionHandler (t, method, difference(ip, compiled)); if (handler) { unsigned parameterFootprint = methodParameterFootprint(t, method); unsigned localFootprint = localSize(t, method); stack = static_cast(base) - (localFootprint - parameterFootprint); *(--stack) = t->exception; t->exception = 0; *targetIp = compiled + exceptionHandlerIp(handler); *targetBase = base; *targetStack = stack; } else { if (methodFlags(t, method) & ACC_SYNCHRONIZED) { object lock; if (methodFlags(t, method) & ACC_STATIC) { lock = methodClass(t, method); } else { lock = *localObject(t, base, method, savedTargetIndex(t, method)); } release(t, lock); } stack = static_cast(base) + 1; ip = *stack; base = *static_cast(base); } } else { *targetIp = ip; *targetBase = base; *targetStack = stack + 1; } } } void NO_RETURN unwind(MyThread* t) { void* ip; void* base; void* stack; findUnwindTarget(t, &ip, &base, &stack); vmJump(ip, base, stack, t); } void FORCE_ALIGN tryInitClass(MyThread* t, object class_) { initClass(t, class_); if (UNLIKELY(t->exception)) unwind(t); } void* FORCE_ALIGN findInterfaceMethodFromInstance(MyThread* t, object method, object instance) { if (instance) { return &singletonValue (t, methodCompiled (t, findInterfaceMethod(t, method, objectClass(t, instance))), 0); } else { t->exception = makeNullPointerException(t); unwind(t); } } intptr_t compareDoublesG(uint64_t bi, uint64_t ai) { double a = bitsToDouble(ai); double b = bitsToDouble(bi); if (a < b) { return -1; } else if (a > b) { return 1; } else if (a == b) { return 0; } else { return 1; } } intptr_t compareDoublesL(uint64_t bi, uint64_t ai) { double a = bitsToDouble(ai); double b = bitsToDouble(bi); if (a < b) { return -1; } else if (a > b) { return 1; } else if (a == b) { return 0; } else { return -1; } } intptr_t compareFloatsG(uint32_t bi, uint32_t ai) { float a = bitsToFloat(ai); float b = bitsToFloat(bi); if (a < b) { return -1; } else if (a > b) { return 1; } else if (a == b) { return 0; } else { return 1; } } intptr_t compareFloatsL(uint32_t bi, uint32_t ai) { float a = bitsToFloat(ai); float b = bitsToFloat(bi); if (a < b) { return -1; } else if (a > b) { return 1; } else if (a == b) { return 0; } else { return -1; } } uint64_t addDouble(uint64_t b, uint64_t a) { return doubleToBits(bitsToDouble(a) + bitsToDouble(b)); } uint64_t subtractDouble(uint64_t b, uint64_t a) { return doubleToBits(bitsToDouble(a) - bitsToDouble(b)); } uint64_t multiplyDouble(uint64_t b, uint64_t a) { return doubleToBits(bitsToDouble(a) * bitsToDouble(b)); } uint64_t divideDouble(uint64_t b, uint64_t a) { return doubleToBits(bitsToDouble(a) / bitsToDouble(b)); } uint64_t moduloDouble(uint64_t b, uint64_t a) { return doubleToBits(fmod(bitsToDouble(a), bitsToDouble(b))); } uint64_t negateDouble(uint64_t a) { return doubleToBits(- bitsToDouble(a)); } uint32_t doubleToFloat(int64_t a) { return floatToBits(static_cast(bitsToDouble(a))); } int32_t doubleToInt(int64_t a) { return static_cast(bitsToDouble(a)); } int64_t doubleToLong(int64_t a) { return static_cast(bitsToDouble(a)); } uint32_t addFloat(uint32_t b, uint32_t a) { return floatToBits(bitsToFloat(a) + bitsToFloat(b)); } uint32_t subtractFloat(uint32_t b, uint32_t a) { return floatToBits(bitsToFloat(a) - bitsToFloat(b)); } uint32_t multiplyFloat(uint32_t b, uint32_t a) { return floatToBits(bitsToFloat(a) * bitsToFloat(b)); } uint32_t divideFloat(uint32_t b, uint32_t a) { return floatToBits(bitsToFloat(a) / bitsToFloat(b)); } uint32_t moduloFloat(uint32_t b, uint32_t a) { return floatToBits(fmod(bitsToFloat(a), bitsToFloat(b))); } uint32_t negateFloat(uint32_t a) { return floatToBits(- bitsToFloat(a)); } int64_t divideLong(int64_t b, int64_t a) { return a / b; } int64_t moduloLong(int64_t b, int64_t a) { return a % b; } uint64_t floatToDouble(int32_t a) { return doubleToBits(static_cast(bitsToFloat(a))); } int32_t floatToInt(int32_t a) { return static_cast(bitsToFloat(a)); } int64_t floatToLong(int32_t a) { return static_cast(bitsToFloat(a)); } uint64_t intToDouble(int32_t a) { return doubleToBits(static_cast(a)); } uint32_t intToFloat(int32_t a) { return floatToBits(static_cast(a)); } uint64_t longToDouble(int64_t a) { return doubleToBits(static_cast(a)); } uint32_t longToFloat(int64_t a) { return floatToBits(static_cast(a)); } object FORCE_ALIGN makeBlankObjectArray(Thread* t, object class_, int32_t length) { return makeObjectArray(t, class_, length, true); } object FORCE_ALIGN makeBlankArray(Thread* t, object (*constructor)(Thread*, uintptr_t, bool), int32_t length) { return constructor(t, length, true); } uintptr_t lookUpAddress(int32_t key, uintptr_t* start, int32_t count, uintptr_t default_) { int32_t bottom = 0; int32_t top = count; for (int32_t span = top - bottom; span; span = top - bottom) { int32_t middle = bottom + (span / 2); uintptr_t* p = start + (middle * 2); int32_t k = *p; if (key < k) { top = middle; } else if (key > k) { bottom = middle + 1; } else { return p[1]; } } return default_; } void FORCE_ALIGN setMaybeNull(MyThread* t, object o, unsigned offset, object value) { if (LIKELY(o)) { set(t, o, offset, value); } else { t->exception = makeNullPointerException(t); unwind(t); } } void FORCE_ALIGN acquireMonitorForObject(MyThread* t, object o) { if (LIKELY(o)) { acquire(t, o); } else { t->exception = makeNullPointerException(t); unwind(t); } } void FORCE_ALIGN releaseMonitorForObject(MyThread* t, object o) { if (LIKELY(o)) { release(t, o); } else { t->exception = makeNullPointerException(t); unwind(t); } } object makeMultidimensionalArray2(MyThread* t, object class_, uintptr_t* stack, int32_t dimensions) { PROTECT(t, class_); int32_t counts[dimensions]; for (int i = dimensions - 1; i >= 0; --i) { counts[i] = stack[dimensions - i - 1]; if (UNLIKELY(counts[i] < 0)) { object message = makeString(t, "%d", counts[i]); t->exception = makeNegativeArraySizeException(t, message); return 0; } } object array = makeArray(t, counts[0], true); setObjectClass(t, array, class_); PROTECT(t, array); populateMultiArray(t, array, counts, 0, dimensions); return array; } object FORCE_ALIGN makeMultidimensionalArray(MyThread* t, object class_, uintptr_t* stack, int32_t dimensions) { object r = makeMultidimensionalArray2(t, class_, stack, dimensions); if (UNLIKELY(t->exception)) { unwind(t); } else { return r; } } void NO_RETURN FORCE_ALIGN throwArrayIndexOutOfBounds(MyThread* t, object array, int32_t index) { object message = makeString (t, "array of length %d indexed at %d", arrayLength(t, array), index); t->exception = makeArrayIndexOutOfBoundsException(t, message); unwind(t); } void NO_RETURN FORCE_ALIGN throwNegativeArraySize(MyThread* t, int32_t length) { object message = makeString(t, "%d", length); t->exception = makeArrayIndexOutOfBoundsException(t, message); unwind(t); } void NO_RETURN FORCE_ALIGN throw_(MyThread* t, object o) { if (LIKELY(o)) { t->exception = o; } else { t->exception = makeNullPointerException(t); } unwind(t); } void FORCE_ALIGN checkCast(MyThread* t, object class_, object o) { if (UNLIKELY(o and not isAssignableFrom(t, class_, objectClass(t, o)))) { object message = makeString (t, "%s as %s", &byteArrayBody(t, className(t, objectClass(t, o)), 0), &byteArrayBody(t, className(t, class_), 0)); t->exception = makeClassCastException(t, message); unwind(t); } } void FORCE_ALIGN gcIfNecessary(MyThread* t) { if (UNLIKELY(t->backupHeap)) { collect(t, Heap::MinorCollection); } } void pushReturnValue(MyThread* t, Frame* frame, unsigned code) { Compiler* c = frame->c; switch (code) { case ByteField: case BooleanField: case CharField: case ShortField: case FloatField: case IntField: { Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case ObjectField: { Operand* result = ::result(c); frame->pushObject(result); c->release(result); } break; case LongField: case DoubleField: { Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case VoidField: break; default: abort(t); } } object defaultCompiled(MyThread* t); object nativeCompiled(MyThread* t); void compileDirectInvoke(MyThread* t, Frame* frame, object target) { Compiler* c = frame->c; if (methodFlags(t, target) & ACC_NATIVE) { c->call (c->constant (reinterpret_cast (&singletonBody(t, nativeCompiled(t), 0))), frame->trace(target, false)); } else if (methodCompiled(t, target) == defaultCompiled(t)) { c->alignedCall (c->constant (reinterpret_cast (&singletonBody(t, defaultCompiled(t), 0))), frame->trace(target, false)); } else { c->call (c->constant (reinterpret_cast (&singletonBody(t, methodCompiled(t, target), 0))), frame->trace(0, false)); } frame->pop(methodParameterFootprint(t, target)); pushReturnValue(t, frame, methodReturnCode(t, target)); } void handleMonitorEvent(MyThread* t, Frame* frame, intptr_t function) { Compiler* c = frame->c; object method = frame->context->method; if (methodFlags(t, method) & ACC_SYNCHRONIZED) { Operand* lock; if (methodFlags(t, method) & ACC_STATIC) { lock = frame->append(methodClass(t, method)); } else { lock = c->memory (c->base(), localOffset(t, savedTargetIndex(t, method), method)); } c->indirectCall (c->constant(function), frame->trace(0, false), 2, c->thread(), lock); } } void handleEntrance(MyThread* t, Frame* frame) { object method = frame->context->method; if ((methodFlags(t, method) & (ACC_SYNCHRONIZED | ACC_STATIC)) == ACC_SYNCHRONIZED) { Compiler* c = frame->c; // save 'this' pointer in case it is overwritten. unsigned index = savedTargetIndex(t, method); mov(c, c->memory(c->base(), localOffset(t, 0, method)), c->memory(c->base(), localOffset(t, index, method))); frame->mark(index); } handleMonitorEvent (t, frame, reinterpret_cast(acquireMonitorForObject)); } void handleExit(MyThread* t, Frame* frame) { handleMonitorEvent (t, frame, reinterpret_cast(releaseMonitorForObject)); } void compile(MyThread* t, Frame* initialFrame, unsigned ip, bool exceptionHandler = false) { uintptr_t stackMap[stackMapSizeInWords(t, initialFrame->context->method)]; Frame myFrame(initialFrame, stackMap); Frame* frame = &myFrame; Compiler* c = frame->c; Context* context = frame->context; object code = methodCode(t, context->method); PROTECT(t, code); while (ip < codeLength(t, code)) { frame->visitLogicalIp(ip); if (context->visitTable[ip] ++) { // we've already visited this part of the code return; } frame->startLogicalIp(ip); if (exceptionHandler) { exceptionHandler = false; c->indirectCall (c->constant(reinterpret_cast(gcIfNecessary)), frame->trace(0, false), 1, c->thread()); } // fprintf(stderr, "ip: %d map: %ld\n", ip, *(frame->map)); unsigned instruction = codeBody(t, code, ip++); switch (instruction) { case aaload: case baload: case caload: case daload: case faload: case iaload: case laload: case saload: { Operand* index = frame->popInt4(); Operand* array = frame->popObject(); if (CheckArrayBounds) { Operand* load = c->label(); Operand* throw_ = c->label(); c->cmp4(c->constant(0), index); c->jl(throw_); c->cmp4(c->memory(array, ArrayLength, 0, 1), index); c->jl(load); c->mark(throw_); c->indirectCallNoReturn (c->constant(reinterpret_cast(throwArrayIndexOutOfBounds)), frame->trace(0, false), 3, c->thread(), array, index); c->mark(load); } switch (instruction) { case aaload: frame->pushObject (c->memory(array, ArrayBody, index, BytesPerWord)); break; case faload: case iaload: frame->pushInt4(c->memory(array, ArrayBody, index, 4)); break; case baload: frame->pushInt1(c->memory(array, ArrayBody, index, 1)); break; case caload: frame->pushInt2z(c->memory(array, ArrayBody, index, 2)); break; case daload: case laload: frame->pushLong(c->memory(array, ArrayBody, index, 8)); break; case saload: frame->pushInt2(c->memory(array, ArrayBody, index, 2)); break; } c->release(index); c->release(array); } break; case aastore: case bastore: case castore: case dastore: case fastore: case iastore: case lastore: case sastore: { Operand* value; if (instruction == dastore or instruction == lastore) { value = frame->popLong(); } else if (instruction == aastore) { value = frame->popObject(); } else { value = frame->popInt(); } Operand* index = frame->popInt4(); Operand* array = frame->popObject(); if (CheckArrayBounds) { Operand* store = c->label(); Operand* throw_ = c->label(); c->cmp4(c->constant(0), index); c->jl(throw_); c->cmp4(c->memory(array, ArrayLength, 0, 1), index); c->jl(store); c->mark(throw_); c->indirectCallNoReturn (c->constant(reinterpret_cast(throwArrayIndexOutOfBounds)), frame->trace(0, false), 3, c->thread(), array, index); c->mark(store); } switch (instruction) { case aastore: { c->shl4(c->constant(log(BytesPerWord)), index); c->add4(c->constant(ArrayBody), index); c->indirectCall (c->constant(reinterpret_cast(setMaybeNull)), frame->trace(0, false), 4, c->thread(), array, index, value); } break; case fastore: case iastore: c->mov4(value, c->memory(array, ArrayBody, index, 4)); break; case bastore: c->mov1(value, c->memory(array, ArrayBody, index, 1)); break; case castore: case sastore: c->mov2(value, c->memory(array, ArrayBody, index, 2)); break; case dastore: case lastore: c->mov8(value, c->memory(array, ArrayBody, index, 8)); break; } c->release(value); c->release(index); c->release(array); } break; case aconst_null: frame->pushObject(c->constant(0)); break; case aload: frame->loadObject(codeBody(t, code, ip++)); break; case aload_0: frame->loadObject(0); break; case aload_1: frame->loadObject(1); break; case aload_2: frame->loadObject(2); break; case aload_3: frame->loadObject(3); break; case anewarray: { uint16_t index = codeReadInt16(t, code, ip); object class_ = resolveClassInPool(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; Operand* nonnegative = c->label(); Operand* length = frame->popInt4(); c->cmp4(c->constant(0), length); c->jge(nonnegative); c->indirectCallNoReturn (c->constant(reinterpret_cast(throwNegativeArraySize)), frame->trace(0, false), 2, c->thread(), length); c->mark(nonnegative); c->indirectCall (c->constant(reinterpret_cast(makeBlankObjectArray)), frame->trace(0, false), 3, c->thread(), frame->append(class_), length); Operand* result = ::result(c); c->release(length); frame->pushObject(result); c->release(result); } break; case areturn: { handleExit(t, frame); Operand* result = frame->popObject(); returnW(c, result); c->release(result); } return; case arraylength: { Operand* array = frame->popObject(); frame->pushInt4(c->memory(array, ArrayLength, 0, 1)); c->release(array); } break; case astore: frame->storeObjectOrAddress(codeBody(t, code, ip++)); break; case astore_0: frame->storeObjectOrAddress(0); break; case astore_1: frame->storeObjectOrAddress(1); break; case astore_2: frame->storeObjectOrAddress(2); break; case astore_3: frame->storeObjectOrAddress(3); break; case athrow: { Operand* e = frame->popObject(); c->indirectCallNoReturn (c->constant(reinterpret_cast(throw_)), frame->trace(0, false), 2, c->thread(), e); c->release(e); } return; case bipush: frame->pushInt (c->constant(static_cast(codeBody(t, code, ip++)))); break; case checkcast: { uint16_t index = codeReadInt16(t, code, ip); object class_ = resolveClassInPool(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; Operand* instance = frame->topObject(); Operand* classOperand = frame->append(class_); c->indirectCall (c->constant(reinterpret_cast(checkCast)), frame->trace(0, false), 3, c->thread(), classOperand, instance); } break; case d2f: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(doubleToFloat)), 2, 0, a); c->release(a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case d2i: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(doubleToInt)), 2, 0, a); c->release(a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case d2l: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(doubleToLong)), 2, 0, a); c->release(a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dadd: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(addDouble)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dcmpg: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(compareDoublesG)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case dcmpl: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(compareDoublesL)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case dconst_0: frame->pushLong(c->constant(doubleToBits(0.0))); break; case dconst_1: frame->pushLong(c->constant(doubleToBits(1.0))); break; case ddiv: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(divideDouble)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dmul: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(multiplyDouble)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dneg: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(negateDouble)), 2, 0, a); c->release(a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case vm::drem: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(moduloDouble)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dsub: { Operand* a = frame->popLong(); Operand* b = frame->popLong(); c->directCall (c->constant(reinterpret_cast(subtractDouble)), 4, 0, a, 0, b); c->release(a); c->release(b); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case dup: frame->dup(); break; case dup_x1: frame->dupX1(); break; case dup_x2: frame->dupX2(); break; case dup2: frame->dup2(); break; case dup2_x1: frame->dup2X1(); break; case dup2_x2: frame->dup2X2(); break; case f2d: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(floatToDouble)), 1, a); c->release(a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case f2i: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(floatToInt)), 1, a); c->release(a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case f2l: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(floatToLong)), 1, a); c->release(a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); } break; case fadd: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(addFloat)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fcmpg: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(compareFloatsG)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fcmpl: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(compareFloatsL)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fconst_0: frame->pushInt(c->constant(floatToBits(0.0))); break; case fconst_1: frame->pushInt(c->constant(floatToBits(1.0))); break; case fconst_2: frame->pushInt(c->constant(floatToBits(2.0))); break; case fdiv: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(divideFloat)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fmul: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(multiplyFloat)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fneg: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(negateFloat)), 1, a); c->release(a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case vm::frem: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(moduloFloat)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case fsub: { Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->directCall (c->constant(reinterpret_cast(subtractFloat)), 2, a, b); c->release(a); c->release(b); Operand* result = c->result4(); frame->pushInt(result); c->release(result); } break; case getfield: case getstatic: { uint16_t index = codeReadInt16(t, code, ip); object field = resolveField(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; Operand* table; if (instruction == getstatic) { c->indirectCall (c->constant(reinterpret_cast(tryInitClass)), frame->trace(0, false), 2, c->thread(), frame->append(fieldClass(t, field))); table = frame->append(classStaticTable(t, fieldClass(t, field))); } else { table = frame->popObject(); } switch (fieldCode(t, field)) { case ByteField: case BooleanField: frame->pushInt1(c->memory(table, fieldOffset(t, field), 0, 1)); break; case CharField: frame->pushInt2z(c->memory(table, fieldOffset(t, field), 0, 1)); break; case ShortField: frame->pushInt2(c->memory(table, fieldOffset(t, field), 0, 1)); break; case FloatField: case IntField: frame->pushInt4(c->memory(table, fieldOffset(t, field), 0, 1)); break; case DoubleField: case LongField: frame->pushLong(c->memory(table, fieldOffset(t, field), 0, 1)); break; case ObjectField: frame->pushObject(c->memory(table, fieldOffset(t, field), 0, 1)); break; default: abort(t); } if (instruction == getfield) { c->release(table); } } break; case goto_: { uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip); assert(t, newIp < codeLength(t, code)); c->jmp(frame->machineIp(newIp)); ip = newIp; } break; case goto_w: { uint32_t newIp = (ip - 5) + codeReadInt32(t, code, ip); assert(t, newIp < codeLength(t, code)); c->jmp(frame->machineIp(newIp)); ip = newIp; } break; case i2b: { Operand* top = frame->topInt(); c->mov1ToW(top, top); } break; case i2c: { Operand* top = frame->topInt(); c->mov2zToW(top, top); } break; case i2d: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(intToDouble)), 1, a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); c->release(a); } break; case i2f: { Operand* a = frame->popInt(); c->directCall (c->constant(reinterpret_cast(intToFloat)), 1, a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); c->release(a); } break; case i2l: frame->topIntToLong(); break; case i2s: { Operand* top = frame->topInt(); c->mov2ToW(top, top); } break; case iadd: { Operand* a = frame->popInt(); c->add4(a, frame->topInt()); c->release(a); } break; case iand: { Operand* a = frame->popInt(); c->and4(a, frame->topInt()); c->release(a); } break; case iconst_m1: frame->pushInt(c->constant(-1)); break; case iconst_0: frame->pushInt(c->constant(0)); break; case iconst_1: frame->pushInt(c->constant(1)); break; case iconst_2: frame->pushInt(c->constant(2)); break; case iconst_3: frame->pushInt(c->constant(3)); break; case iconst_4: frame->pushInt(c->constant(4)); break; case iconst_5: frame->pushInt(c->constant(5)); break; case idiv: { Operand* a = frame->popInt(); c->div4(a, frame->topInt()); c->release(a); } break; case if_acmpeq: case if_acmpne: { uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip); assert(t, newIp < codeLength(t, code)); Operand* a = frame->popObject(); Operand* b = frame->popObject(); cmp(c, a, b); c->release(a); c->release(b); Operand* target = frame->machineIp(newIp); if (instruction == if_acmpeq) { c->je(target); } else { c->jne(target); } compile(t, frame, newIp); if (UNLIKELY(t->exception)) return; } break; case if_icmpeq: case if_icmpne: case if_icmpgt: case if_icmpge: case if_icmplt: case if_icmple: { uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip); assert(t, newIp < codeLength(t, code)); Operand* a = frame->popInt(); Operand* b = frame->popInt(); c->cmp4(a, b); c->release(a); c->release(b); Operand* target = frame->machineIp(newIp); switch (instruction) { case if_icmpeq: c->je(target); break; case if_icmpne: c->jne(target); break; case if_icmpgt: c->jg(target); break; case if_icmpge: c->jge(target); break; case if_icmplt: c->jl(target); break; case if_icmple: c->jle(target); break; } compile(t, frame, newIp); if (UNLIKELY(t->exception)) return; } break; case ifeq: case ifne: case ifgt: case ifge: case iflt: case ifle: { uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip); assert(t, newIp < codeLength(t, code)); Operand* a = frame->popInt(); c->cmp4(c->constant(0), a); c->release(a); Operand* target = frame->machineIp(newIp); switch (instruction) { case ifeq: c->je(target); break; case ifne: c->jne(target); break; case ifgt: c->jg(target); break; case ifge: c->jge(target); break; case iflt: c->jl(target); break; case ifle: c->jle(target); break; } compile(t, frame, newIp); if (UNLIKELY(t->exception)) return; } break; case ifnull: case ifnonnull: { uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip); assert(t, newIp < codeLength(t, code)); Operand* a = frame->popObject(); cmp(c, c->constant(0), a); c->release(a); Operand* target = frame->machineIp(newIp); if (instruction == ifnull) { c->je(target); } else { c->jne(target); } compile(t, frame, newIp); if (UNLIKELY(t->exception)) return; } break; case iinc: { uint8_t index = codeBody(t, code, ip++); int8_t count = codeBody(t, code, ip++); c->add4(c->constant(count), c->memory(c->base(), localOffset(t, index, context->method))); } break; case iload: case fload: frame->loadInt(codeBody(t, code, ip++)); break; case iload_0: case fload_0: frame->loadInt(0); break; case iload_1: case fload_1: frame->loadInt(1); break; case iload_2: case fload_2: frame->loadInt(2); break; case iload_3: case fload_3: frame->loadInt(3); break; case imul: { Operand* a = frame->popInt(); c->mul4(a, frame->topInt()); c->release(a); } break; case ineg: { c->neg4(frame->topInt()); } break; case instanceof: { uint16_t index = codeReadInt16(t, code, ip); object class_ = resolveClassInPool(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; Operand* instance = frame->popObject(); Operand* classOperand = frame->append(class_); c->directCall (c->constant(reinterpret_cast(instanceOf)), 3, c->thread(), classOperand, instance); Operand* result = c->result4(); frame->pushInt(result); c->release(result); c->release(instance); } break; case invokeinterface: { uint16_t index = codeReadInt16(t, code, ip); ip += 2; object target = resolveMethod(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; unsigned parameterFootprint = methodParameterFootprint(t, target); unsigned instance = parameterFootprint - 1; c->indirectCall (c->constant (reinterpret_cast(findInterfaceMethodFromInstance)), frame->trace(0, false), 3, c->thread(), frame->append(target), c->stack(frame->stack, instance)); Operand* result = ::result(c); c->call(result, frame->trace(target, true)); c->release(result); frame->pop(parameterFootprint); pushReturnValue(t, frame, methodReturnCode(t, target)); } break; case invokespecial: { uint16_t index = codeReadInt16(t, code, ip); object target = resolveMethod(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; object class_ = methodClass(t, context->method); if (isSpecialMethod(t, target, class_)) { target = findMethod(t, target, classSuper(t, class_)); } compileDirectInvoke(t, frame, target); } break; case invokestatic: { uint16_t index = codeReadInt16(t, code, ip); object target = resolveMethod(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; compileDirectInvoke(t, frame, target); } break; case invokevirtual: { uint16_t index = codeReadInt16(t, code, ip); object target = resolveMethod(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; unsigned parameterFootprint = methodParameterFootprint(t, target); unsigned offset = ClassVtable + (methodOffset(t, target) * BytesPerWord); Operand* instance = c->stack(frame->stack, parameterFootprint - 1); Operand* class_ = c->temporary(); mov(c, c->memory(instance, 0, 0, 1), class_); and_(c, c->constant(PointerMask), class_); c->call(c->memory(class_, offset, 0, 1), frame->trace(target, true)); c->release(class_); frame->pop(parameterFootprint); pushReturnValue(t, frame, methodReturnCode(t, target)); } break; case ior: { Operand* a = frame->popInt(); c->or4(a, frame->topInt()); c->release(a); } break; case irem: { Operand* a = frame->popInt(); c->rem4(a, frame->topInt()); c->release(a); } break; case ireturn: case freturn: { handleExit(t, frame); Operand* a = frame->popInt(); c->return4(a); c->release(a); } return; case ishl: { Operand* a = frame->popInt(); c->shl4(a, frame->topInt()); c->release(a); } break; case ishr: { Operand* a = frame->popInt(); c->shr4(a, frame->topInt()); c->release(a); } break; case istore: case fstore: frame->storeInt(codeBody(t, code, ip++)); break; case istore_0: case fstore_0: frame->storeInt(0); break; case istore_1: case fstore_1: frame->storeInt(1); break; case istore_2: case fstore_2: frame->storeInt(2); break; case istore_3: case fstore_3: frame->storeInt(3); break; case isub: { Operand* a = frame->popInt(); c->sub4(a, frame->topInt()); c->release(a); } break; case iushr: { Operand* a = frame->popInt(); c->ushr4(a, frame->topInt()); c->release(a); } break; case ixor: { Operand* a = frame->popInt(); c->xor4(a, frame->topInt()); c->release(a); } break; case jsr: case jsr_w: { uint32_t newIp; if (instruction == jsr) { newIp = (ip - 3) + codeReadInt16(t, code, ip); } else { newIp = (ip - 5) + codeReadInt32(t, code, ip); } assert(t, newIp < codeLength(t, code)); frame->pushAddress(frame->machineIp(ip)); c->jmp(frame->machineIp(newIp)); // NB: we assume that the stack will look the same on return // from the subroutine as at call time. compile(t, frame, newIp); if (UNLIKELY(t->exception)) return; frame->pop(1); } break; case l2d: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(longToDouble)), 2, 0, a); Operand* result = c->result8(); frame->pushLong(result); c->release(result); c->release(a); } break; case l2f: { Operand* a = frame->popLong(); c->directCall (c->constant(reinterpret_cast(longToDouble)), 2, 0, a); Operand* result = c->result4(); frame->pushInt(result); c->release(result); c->release(a); } break; case l2i: frame->topLongToInt(); break; case ladd: { Operand* a = frame->popLong(); c->add8(a, frame->topLong()); c->release(a); } break; case land: { Operand* a = frame->popLong(); c->and8(a, frame->topLong()); c->release(a); } break; case lcmp: { Operand* next = c->label(); Operand* less = c->label(); Operand* greater = c->label(); Operand* a = frame->popLong(); Operand* b = frame->popLong(); Operand* result = c->temporary(); c->cmp8(a, b); c->release(a); c->release(b); c->jl(less); c->jg(greater); c->mov4(c->constant(0), result); c->jmp(next); c->mark(less); c->mov4(c->constant(-1), result); c->jmp(next); c->mark(greater); c->mov4(c->constant(1), result); c->mark(next); frame->pushInt(result); c->release(result); } break; case lconst_0: frame->pushLong(c->constant(0)); break; case lconst_1: frame->pushLong(c->constant(1)); break; case ldc: case ldc_w: { uint16_t index; if (instruction == ldc) { index = codeBody(t, code, ip++); } else { index = codeReadInt16(t, code, ip); } object pool = codePool(t, code); if (singletonIsObject(t, pool, index - 1)) { object v = singletonObject(t, pool, index - 1); if (objectClass(t, v) == arrayBody(t, t->m->types, Machine::ByteArrayType)) { object class_ = resolveClassInPool(t, pool, index - 1); if (UNLIKELY(t->exception)) return; frame->pushObject(frame->append(class_)); } else { frame->pushObject(frame->append(v)); } } else { frame->pushInt(c->constant(singletonValue(t, pool, index - 1))); } } break; case ldc2_w: { uint16_t index = codeReadInt16(t, code, ip); object pool = codePool(t, code); uint64_t v; memcpy(&v, &singletonValue(t, pool, index - 1), 8); frame->pushLong(c->constant(v)); } break; case ldiv_: { Operand* a = frame->popLong(); c->div8(a, frame->topLong()); c->release(a); } break; case lload: case dload: frame->loadLong(codeBody(t, code, ip++)); break; case lload_0: case dload_0: frame->loadLong(0); break; case lload_1: case dload_1: frame->loadLong(1); break; case lload_2: case dload_2: frame->loadLong(2); break; case lload_3: case dload_3: frame->loadLong(3); break; case lmul: { Operand* a = frame->popLong(); c->mul8(a, frame->topLong()); c->release(a); } break; case lneg: c->neg8(frame->topLong()); break; case lookupswitch: { int32_t base = ip - 1; ip = (ip + 3) & ~3; // pad to four byte boundary Operand* key = frame->popInt4(); uint32_t defaultIp = base + codeReadInt32(t, code, ip); assert(t, defaultIp < codeLength(t, code)); Operand* default_ = c->absolute (c->poolAppendPromise(c->machineIp(defaultIp))); int32_t pairCount = codeReadInt32(t, code, ip); Operand* start = 0; uint32_t ipTable[pairCount]; for (int32_t i = 0; i < pairCount; ++i) { unsigned index = ip + (i * 8); int32_t key = codeReadInt32(t, code, index); uint32_t newIp = base + codeReadInt32(t, code, index); assert(t, newIp < codeLength(t, code)); ipTable[i] = newIp; Promise* p = c->poolAppend(key); if (i == 0) { start = c->promiseConstant(p); } c->poolAppendPromise(c->machineIp(newIp)); } assert(t, start); c->directCall (c->constant(reinterpret_cast(lookUpAddress)), 4, key, start, c->constant(pairCount), default_); Operand* result = ::result(c); c->jmp(result); c->release(result); c->release(key); for (int32_t i = 0; i < pairCount; ++i) { compile(t, frame, ipTable[i]); if (UNLIKELY(t->exception)) return; } ip = defaultIp; } break; case lor: { Operand* a = frame->popLong(); c->or8(a, frame->topLong()); c->release(a); } break; case lrem: { Operand* a = frame->popLong(); c->rem8(a, frame->topLong()); c->release(a); } break; case lreturn: case dreturn: { handleExit(t, frame); Operand* a = frame->popLong(); c->return8(a); c->release(a); } return; case lshl: { Operand* a = frame->popInt(); c->shl8(a, frame->topLong()); c->release(a); } break; case lshr: { Operand* a = frame->popInt(); c->shr8(a, frame->topLong()); c->release(a); } break; case lstore: case dstore: frame->storeLong(codeBody(t, code, ip++)); break; case lstore_0: case dstore_0: frame->storeLong(0); break; case lstore_1: case dstore_1: frame->storeLong(1); break; case lstore_2: case dstore_2: frame->storeLong(2); break; case lstore_3: case dstore_3: frame->storeLong(3); break; case lsub: { Operand* a = frame->popLong(); c->sub8(a, frame->topLong()); c->release(a); } break; case lushr: { Operand* a = frame->popInt(); c->ushr8(a, frame->topLong()); c->release(a); } break; case lxor: { Operand* a = frame->popLong(); c->xor8(a, frame->topLong()); c->release(a); } break; case monitorenter: { Operand* a = frame->popObject(); c->indirectCall (c->constant(reinterpret_cast(acquireMonitorForObject)), frame->trace(0, false), 2, c->thread(), a); c->release(a); } break; case monitorexit: { Operand* a = frame->popObject(); c->indirectCall (c->constant(reinterpret_cast(releaseMonitorForObject)), frame->trace(0, false), 2, c->thread(), a); c->release(a); } break; case multianewarray: { uint16_t index = codeReadInt16(t, code, ip); uint8_t dimensions = codeBody(t, code, ip++); object class_ = resolveClassInPool(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; PROTECT(t, class_); Operand* stack = c->temporary(); mov(c, c->stack(), stack); c->indirectCall (c->constant(reinterpret_cast(makeMultidimensionalArray)), frame->trace(0, false), 4, c->thread(), frame->append(class_), stack, c->constant(dimensions)); c->release(stack); Operand* result = ::result(c); frame->pop(dimensions); frame->pushObject(result); c->release(result); } break; case new_: { uint16_t index = codeReadInt16(t, code, ip); object class_ = resolveClassInPool(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; if (classVmFlags(t, class_) & WeakReferenceFlag) { c->indirectCall (c->constant(reinterpret_cast(makeNewWeakReference)), frame->trace(0, false), 2, c->thread(), frame->append(class_)); } else { c->indirectCall (c->constant(reinterpret_cast(makeNew)), frame->trace(0, false), 2, c->thread(), frame->append(class_)); } Operand* result = ::result(c); frame->pushObject(result); c->release(result); } break; case newarray: { uint8_t type = codeBody(t, code, ip++); Operand* nonnegative = c->label(); Operand* length = frame->popInt4(); c->cmp4(c->constant(0), length); c->jge(nonnegative); c->indirectCallNoReturn (c->constant(reinterpret_cast(throwNegativeArraySize)), frame->trace(0, false), 2, c->thread(), length); c->mark(nonnegative); object (*constructor)(Thread*, uintptr_t, bool); switch (type) { case T_BOOLEAN: constructor = makeBooleanArray; break; case T_CHAR: constructor = makeCharArray; break; case T_FLOAT: constructor = makeFloatArray; break; case T_DOUBLE: constructor = makeDoubleArray; break; case T_BYTE: constructor = makeByteArray; break; case T_SHORT: constructor = makeShortArray; break; case T_INT: constructor = makeIntArray; break; case T_LONG: constructor = makeLongArray; break; default: abort(t); } c->indirectCall (c->constant(reinterpret_cast(makeBlankArray)), frame->trace(0, false), 3, c->thread(), c->constant(reinterpret_cast(constructor)), length); Operand* result = ::result(c); c->release(length); frame->pushObject(result); c->release(result); } break; case nop: break; case pop_: frame->pop(1); break; case pop2: frame->pop(2); break; case putfield: case putstatic: { uint16_t index = codeReadInt16(t, code, ip); object field = resolveField(t, codePool(t, code), index - 1); if (UNLIKELY(t->exception)) return; object staticTable = 0; if (instruction == putstatic) { c->indirectCall (c->constant(reinterpret_cast(tryInitClass)), frame->trace(0, false), 2, c->thread(), frame->append(fieldClass(t, field))); staticTable = classStaticTable(t, fieldClass(t, field)); } Operand* value; switch (fieldCode(t, field)) { case ByteField: case BooleanField: case CharField: case ShortField: case FloatField: case IntField: { value = frame->popInt(); } break; case DoubleField: case LongField: { value = frame->popLong(); } break; case ObjectField: { value = frame->popObject(); } break; default: abort(t); } Operand* table; if (instruction == putstatic) { table = frame->append(staticTable); } else { table = frame->popObject(); } switch (fieldCode(t, field)) { case ByteField: case BooleanField: c->mov1(value, c->memory(table, fieldOffset(t, field), 0, 1)); break; case CharField: case ShortField: c->mov2(value, c->memory(table, fieldOffset(t, field), 0, 1)); break; case FloatField: case IntField: c->mov4(value, c->memory(table, fieldOffset(t, field), 0, 1)); break; case DoubleField: case LongField: c->mov8(value, c->memory(table, fieldOffset(t, field), 0, 1)); break; case ObjectField: if (instruction == putfield) { c->indirectCall (c->constant(reinterpret_cast(setMaybeNull)), frame->trace(0, false), 4, c->thread(), table, c->constant(fieldOffset(t, field)), value); } else { c->directCall (c->constant(reinterpret_cast(set)), 4, c->thread(), table, c->constant(fieldOffset(t, field)), value); } break; default: abort(t); } if (instruction == putfield) { c->release(table); } c->release(value); } break; case ret: c->jmp (c->memory (c->base(), localOffset (t, codeBody(t, code, ip), context->method))); return; case return_: handleExit(t, frame); c->epilogue(); c->ret(); return; case sipush: frame->pushInt (c->constant(static_cast(codeReadInt16(t, code, ip)))); break; case swap: frame->swap(); break; case tableswitch: { int32_t base = ip - 1; ip = (ip + 3) & ~3; // pad to four byte boundary Operand* key = frame->popInt4(); uint32_t defaultIp = base + codeReadInt32(t, code, ip); assert(t, defaultIp < codeLength(t, code)); int32_t bottom = codeReadInt32(t, code, ip); int32_t top = codeReadInt32(t, code, ip); Operand* start = 0; uint32_t ipTable[top - bottom + 1]; for (int32_t i = 0; i < top - bottom + 1; ++i) { unsigned index = ip + (i * 4); uint32_t newIp = base + codeReadInt32(t, code, index); assert(t, newIp < codeLength(t, code)); ipTable[i] = newIp; Promise* p = c->poolAppendPromise(c->machineIp(newIp)); if (i == 0) { start = c->promiseConstant(p); } } assert(t, start); Operand* defaultCase = c->label(); c->cmp4(c->constant(bottom), key); c->jl(defaultCase); c->cmp4(c->constant(top), key); c->jg(defaultCase); c->sub4(c->constant(bottom), key); c->jmp(c->memory(start, 0, key, BytesPerWord)); c->mark(defaultCase); c->jmp(frame->machineIp(defaultIp)); c->release(key); for (int32_t i = 0; i < top - bottom + 1; ++i) { compile(t, frame, ipTable[i]); if (UNLIKELY(t->exception)) return; } ip = defaultIp; } break; case wide: { switch (codeBody(t, code, ip++)) { case aload: { frame->loadObject(codeReadInt16(t, code, ip)); } break; case astore: { frame->storeObject(codeReadInt16(t, code, ip)); } break; case iinc: { uint16_t index = codeReadInt16(t, code, ip); uint16_t count = codeReadInt16(t, code, ip); c->add4(c->constant(count), c->memory(c->base(), localOffset(t, index, context->method))); } break; case iload: { frame->loadInt(codeReadInt16(t, code, ip)); } break; case istore: { frame->storeInt(codeReadInt16(t, code, ip)); } break; case lload: { frame->loadLong(codeReadInt16(t, code, ip)); } break; case lstore: { frame->storeLong(codeReadInt16(t, code, ip)); } break; case ret: c->jmp (c->memory (c->base(), localOffset (t, codeReadInt16(t, code, ip), context->method))); return; default: abort(t); } } break; default: abort(t); } } } void logCompile(const void* code, unsigned size, const char* class_, const char* name, const char* spec) { fprintf(stderr, "%s.%s%s from %p to %p\n", class_, name, spec, code, static_cast(code) + size); } void updateExceptionHandlerTable(MyThread* t, Compiler* c, object code, intptr_t start) { object oldTable = codeExceptionHandlerTable(t, code); if (oldTable) { PROTECT(t, code); PROTECT(t, oldTable); unsigned length = exceptionHandlerTableLength(t, oldTable); object newTable = makeExceptionHandlerTable(t, length, false); for (unsigned i = 0; i < length; ++i) { ExceptionHandler* oldHandler = exceptionHandlerTableBody (t, oldTable, i); ExceptionHandler* newHandler = exceptionHandlerTableBody (t, newTable, i); exceptionHandlerStart(newHandler) = c->machineIp(exceptionHandlerStart(oldHandler))->value(c) - start; exceptionHandlerEnd(newHandler) = c->machineIp(exceptionHandlerEnd(oldHandler))->value(c) - start; exceptionHandlerIp(newHandler) = c->machineIp(exceptionHandlerIp(oldHandler))->value(c) - start; exceptionHandlerCatchType(newHandler) = exceptionHandlerCatchType(oldHandler); } set(t, code, CodeExceptionHandlerTable, newTable); } } void updateLineNumberTable(MyThread* t, Compiler* c, object code, intptr_t start) { object oldTable = codeLineNumberTable(t, code); if (oldTable) { PROTECT(t, code); PROTECT(t, oldTable); unsigned length = lineNumberTableLength(t, oldTable); object newTable = makeLineNumberTable(t, length, false); for (unsigned i = 0; i < length; ++i) { LineNumber* oldLine = lineNumberTableBody(t, oldTable, i); LineNumber* newLine = lineNumberTableBody(t, newTable, i); lineNumberIp(newLine) = c->machineIp(lineNumberIp(oldLine))->value(c) - start; lineNumberLine(newLine) = lineNumberLine(oldLine); } set(t, code, CodeLineNumberTable, newTable); } } void printSet(uintptr_t m) { for (unsigned i = 0; i < 16; ++i) { if ((m >> i) & 1) { fprintf(stderr, "1"); } else { fprintf(stderr, "_"); } } } unsigned calculateFrameMaps(MyThread* t, Context* context, uintptr_t* originalRoots, unsigned eventIndex) { // for each instruction with more than one predecessor, and for each // stack position, determine if there exists a path to that // instruction such that there is not an object pointer left at that // stack position (i.e. it is uninitialized or contains primitive // data). unsigned mapSize = frameMapSizeInWords(t, context->method); uintptr_t roots[mapSize]; if (originalRoots) { memcpy(roots, originalRoots, mapSize * BytesPerWord); } else { memset(roots, 0, mapSize * BytesPerWord); } int32_t ip = -1; // invariant: for each stack position, roots contains a zero at that // position if there exists some path to the current instruction // such that there is definitely not an object pointer at that // position. Otherwise, roots contains a one at that position, // meaning either all known paths result in an object pointer at // that position, or the contents of that position are as yet // unknown. unsigned length = context->eventLog.length(); while (eventIndex < length) { Event e = static_cast(context->eventLog.get(eventIndex++)); switch (e) { case PushEvent: { eventIndex = calculateFrameMaps(t, context, roots, eventIndex); } break; case PopEvent: return eventIndex; case IpEvent: { ip = context->eventLog.get2(eventIndex); eventIndex += 2; if (DebugFrameMaps) { fprintf(stderr, " roots at ip %3d: ", ip); printSet(*roots); fprintf(stderr, "\n"); } uintptr_t* tableRoots = context->rootTable + (ip * mapSize); if (context->visitTable[ip] > 1) { for (unsigned wi = 0; wi < mapSize; ++wi) { uintptr_t newRoots = tableRoots[wi] & roots[wi]; if ((eventIndex == length or context->eventLog.get(eventIndex) == PopEvent) and newRoots != tableRoots[wi]) { if (DebugFrameMaps) { fprintf(stderr, "dirty roots!\n"); } context->dirtyRoots = true; } tableRoots[wi] = newRoots; roots[wi] &= tableRoots[wi]; } if (DebugFrameMaps) { fprintf(stderr, "table roots at ip %3d: ", ip); printSet(*tableRoots); fprintf(stderr, "\n"); } } else { memcpy(tableRoots, roots, mapSize * BytesPerWord); } } break; case MarkEvent: { unsigned i = context->eventLog.get2(eventIndex); eventIndex += 2; markBit(roots, i); } break; case ClearEvent: { unsigned i = context->eventLog.get2(eventIndex); eventIndex += 2; clearBit(roots, i); } break; case TraceEvent: { TraceElement* te; context->eventLog.get(eventIndex, &te, BytesPerWord); memcpy(te->map, roots, mapSize * BytesPerWord); eventIndex += BytesPerWord; } break; default: abort(t); } } return eventIndex; } Allocator* codeAllocator(MyThread* t); int compareTraceElementPointers(const void* va, const void* vb) { TraceElement* a = *static_cast(va); TraceElement* b = *static_cast(vb); if (a->addressValue > b->addressValue) { return 1; } else if (a->addressValue < b->addressValue) { return -1; } else { return 0; } } intptr_t compareMethodBounds(Thread* t, object a, object b) { if (DebugMethodTree) { fprintf(stderr, "compare %p to %p\n", &singletonValue(t, methodCompiled(t, a), 0), &singletonValue(t, methodCompiled(t, b), 0)); } return reinterpret_cast (&singletonValue(t, methodCompiled(t, a), 0)) - reinterpret_cast (&singletonValue(t, methodCompiled(t, b), 0)); } object finish(MyThread* t, Context* context, const char* name) { Compiler* c = context->c; unsigned count = ceiling(c->codeSize() + c->poolSize(), BytesPerWord); unsigned size = count + singletonMaskSize(count); object result = allocate3 (t, codeAllocator(t), Machine::ImmortalAllocation, SingletonBody + (size * BytesPerWord), true, true); initSingleton(t, result, size, true); mark(t, result, 0); singletonMask(t, result)[0] = 1; uint8_t* start = reinterpret_cast(&singletonValue(t, result, 0)); c->writeTo(start); if (context->method) { PROTECT(t, result); { object code = methodCode(t, context->method); code = makeCode(t, 0, codeExceptionHandlerTable(t, code), codeLineNumberTable(t, code), codeMaxStack(t, code), codeMaxLocals(t, code), 0, false); set(t, context->method, MethodCode, code); } if (context->traceLogCount) { TraceElement* elements[context->traceLogCount]; unsigned index = 0; for (TraceElement* p = context->traceLog; p; p = p->next) { elements[index++] = p; p->addressValue = p->address->value(c); if (p->target) { insertCallNode (t, makeCallNode (t, p->address->value(c), p->target, p->virtualCall, 0)); } } qsort(elements, context->traceLogCount, sizeof(TraceElement*), compareTraceElementPointers); unsigned size = frameSize(t, context->method); object map = makeIntArray (t, context->traceLogCount + ceiling(context->traceLogCount * size, 32), false); for (unsigned i = 0; i < context->traceLogCount; ++i) { TraceElement* p = elements[i]; intArrayBody(t, map, i) = static_cast(p->addressValue) - reinterpret_cast(start); for (unsigned j = 0; j < size; ++j) { unsigned index = ((i * size) + j); int32_t* v = &intArrayBody (t, map, context->traceLogCount + (index / 32)); if (getBit(p->map, j)) { *v |= static_cast(1) << (index % 32); } else { *v &= ~(static_cast(1) << (index % 32)); } } } set(t, methodCode(t, context->method), CodePool, map); } for (PoolElement* p = context->objectPool; p; p = p->next) { intptr_t offset = p->address->value(c) - reinterpret_cast(start); singletonMarkObject(t, result, offset / BytesPerWord); set(t, result, SingletonBody + offset, p->value); } updateExceptionHandlerTable(t, c, methodCode(t, context->method), reinterpret_cast(start)); updateLineNumberTable(t, c, methodCode(t, context->method), reinterpret_cast(start)); if (Verbose) { logCompile (start, c->codeSize(), reinterpret_cast (&byteArrayBody(t, className(t, methodClass(t, context->method)), 0)), reinterpret_cast (&byteArrayBody(t, methodName(t, context->method), 0)), reinterpret_cast (&byteArrayBody(t, methodSpec(t, context->method), 0))); } // for debugging: if (false and strcmp (reinterpret_cast (&byteArrayBody(t, className(t, methodClass(t, context->method)), 0)), "java/lang/System") == 0 and strcmp (reinterpret_cast (&byteArrayBody(t, methodName(t, context->method), 0)), "getProperty") == 0) { asm("int3"); } } else { if (Verbose) { logCompile(start, c->codeSize(), 0, name, 0); } } return result; } object compile(MyThread* t, Context* context) { Compiler* c = context->c; // fprintf(stderr, "compiling %s.%s%s\n", // &byteArrayBody(t, className(t, methodClass(t, context->method)), 0), // &byteArrayBody(t, methodName(t, context->method), 0), // &byteArrayBody(t, methodSpec(t, context->method), 0)); c->prologue(); unsigned footprint = methodParameterFootprint(t, context->method); unsigned locals = localSize(t, context->method); c->reserve(locals - footprint); uintptr_t stackMap[stackMapSizeInWords(t, context->method)]; Frame frame(context, stackMap); unsigned index = 0; if ((methodFlags(t, context->method) & ACC_STATIC) == 0) { frame.mark(index++); } for (MethodSpecIterator it (t, reinterpret_cast (&byteArrayBody(t, methodSpec(t, context->method), 0))); it.hasNext();) { switch (*it.next()) { case 'L': case '[': frame.mark(index++); break; case 'J': case 'D': index += 2; break; default: ++ index; break; } } handleEntrance(t, &frame); compile(t, &frame, 0); if (UNLIKELY(t->exception)) return 0; context->dirtyRoots = false; unsigned eventIndex = calculateFrameMaps(t, context, 0, 0); object eht = codeExceptionHandlerTable(t, methodCode(t, context->method)); if (eht) { PROTECT(t, eht); unsigned visitCount = exceptionHandlerTableLength(t, eht); bool visited[visitCount]; memset(visited, 0, visitCount); while (visitCount) { bool progress = false; for (unsigned i = 0; i < exceptionHandlerTableLength(t, eht); ++i) { ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i); unsigned start = exceptionHandlerStart(eh); if (not visited[i] and context->visitTable[start]) { -- visitCount; visited[i] = true; progress = true; uintptr_t stackMap[stackMapSizeInWords(t, context->method)]; Frame frame2(&frame, stackMap); uintptr_t* roots = context->rootTable + (start * frameMapSizeInWords(t, context->method)); for (unsigned i = 0; i < localSize(t, context->method); ++ i) { if (getBit(roots, i)) { frame2.mark(i); } else { frame2.clear(i); } } frame2.pushObject(); for (unsigned i = 1; i < codeMaxStack(t, methodCode(t, context->method)); ++i) { frame2.clear(localSize(t, context->method) + i); } compile(t, &frame2, exceptionHandlerIp(eh), true); if (UNLIKELY(t->exception)) return 0; eventIndex = calculateFrameMaps(t, context, 0, eventIndex); } } assert(t, progress); } } while (context->dirtyRoots) { context->dirtyRoots = false; calculateFrameMaps(t, context, 0, 0); } return finish(t, context, 0); } void compile(MyThread* t, object method); void* compileMethod2(MyThread* t) { object node = findCallNode(t, *static_cast(t->stack)); PROTECT(t, node); object target = callNodeTarget(t, node); PROTECT(t, target); if (callNodeVirtualCall(t, node)) { target = resolveTarget(t, t->stack, target); } if (LIKELY(t->exception == 0)) { compile(t, target); } if (UNLIKELY(t->exception)) { return 0; } else { if (callNodeVirtualCall(t, node)) { classVtable (t, objectClass (t, resolveThisPointer(t, t->stack, target)), methodOffset(t, target)) = &singletonValue(t, methodCompiled(t, target), 0); } else { { ACQUIRE(t, t->m->classLock); removeCallNode(t, node); } Context context(t); context.c->updateCall (reinterpret_cast(callNodeAddress(t, node)), &singletonValue(t, methodCompiled(t, target), 0)); } return &singletonValue(t, methodCompiled(t, target), 0); } } void* FORCE_ALIGN compileMethod(MyThread* t) { void* r = compileMethod2(t); if (UNLIKELY(t->exception)) { unwind(t); } else { return r; } } uint64_t invokeNative2(MyThread* t, object method) { PROTECT(t, method); assert(t, methodFlags(t, method) & ACC_NATIVE); initClass(t, methodClass(t, method)); if (UNLIKELY(t->exception)) return 0; if (methodCode(t, method) == 0) { void* function = resolveNativeMethod(t, method); if (UNLIKELY(function == 0)) { object message = makeString (t, "%s.%s%s", &byteArrayBody(t, className(t, methodClass(t, method)), 0), &byteArrayBody(t, methodName(t, method), 0), &byteArrayBody(t, methodSpec(t, method), 0)); t->exception = makeUnsatisfiedLinkError(t, message); return 0; } object p = makePointer(t, function); set(t, method, MethodCode, p); } object class_ = methodClass(t, method); PROTECT(t, class_); unsigned footprint = methodParameterFootprint(t, method) + 1; if (methodFlags(t, method) & ACC_STATIC) { ++ footprint; } unsigned count = methodParameterCount(t, method) + 2; uintptr_t args[footprint]; unsigned argOffset = 0; uint8_t types[count]; unsigned typeOffset = 0; args[argOffset++] = reinterpret_cast(t); types[typeOffset++] = POINTER_TYPE; uintptr_t* sp = static_cast(t->stack) + methodParameterFootprint(t, method); if (methodFlags(t, method) & ACC_STATIC) { args[argOffset++] = reinterpret_cast(&class_); } else { args[argOffset++] = reinterpret_cast(sp--); } types[typeOffset++] = POINTER_TYPE; MethodSpecIterator it (t, reinterpret_cast (&byteArrayBody(t, methodSpec(t, method), 0))); while (it.hasNext()) { unsigned type = types[typeOffset++] = fieldType(t, fieldCode(t, *it.next())); switch (type) { case INT8_TYPE: case INT16_TYPE: case INT32_TYPE: case FLOAT_TYPE: args[argOffset++] = *(sp--); break; case INT64_TYPE: case DOUBLE_TYPE: { memcpy(args + argOffset, sp - 1, 8); argOffset += (8 / BytesPerWord); sp -= 2; } break; case POINTER_TYPE: { if (*sp) { args[argOffset++] = reinterpret_cast(sp); } else { args[argOffset++] = 0; } -- sp; } break; default: abort(t); } } void* function = pointerValue(t, methodCode(t, method)); unsigned returnCode = methodReturnCode(t, method); unsigned returnType = fieldType(t, returnCode); uint64_t result; if (DebugNatives) { fprintf(stderr, "invoke native method %s.%s\n", &byteArrayBody(t, className(t, methodClass(t, method)), 0), &byteArrayBody(t, methodName(t, method), 0)); } if (methodFlags(t, method) & ACC_SYNCHRONIZED) { if (methodFlags(t, method) & ACC_STATIC) { acquire(t, methodClass(t, method)); } else { acquire(t, *reinterpret_cast(args[0])); } } Reference* reference = t->reference; { ENTER(t, Thread::IdleState); result = t->m->system->call (function, args, types, count, footprint * BytesPerWord, returnType); } if (methodFlags(t, method) & ACC_SYNCHRONIZED) { if (methodFlags(t, method) & ACC_STATIC) { release(t, methodClass(t, method)); } else { release(t, *reinterpret_cast(args[0])); } } if (DebugNatives) { fprintf(stderr, "return from native method %s.%s\n", &byteArrayBody(t, className(t, methodClass(t, method)), 0), &byteArrayBody(t, methodName(t, method), 0)); } if (LIKELY(t->exception == 0)) { switch (returnCode) { case ByteField: case BooleanField: result = static_cast(result); break; case CharField: result = static_cast(result); break; case ShortField: result = static_cast(result); break; case FloatField: case IntField: result = static_cast(result); break; case LongField: case DoubleField: result = result; break; case ObjectField: result = static_cast(result) ? *reinterpret_cast (static_cast(result)) : 0; break; case VoidField: result = 0; break; default: abort(t); } } else { result = 0; } while (t->reference != reference) { dispose(t, t->reference); } return result; } uint64_t FORCE_ALIGN invokeNative(MyThread* t) { if (t->trace->nativeMethod == 0) { object node = findCallNode(t, *static_cast(t->stack)); t->trace->nativeMethod = callNodeTarget(t, node); if (callNodeVirtualCall(t, node)) { t->trace->nativeMethod = resolveTarget (t, t->stack, t->trace->nativeMethod); } } uint64_t result = 0; if (LIKELY(t->exception == 0)) { result = invokeNative2(t, t->trace->nativeMethod); } t->trace->nativeMethod = 0; if (UNLIKELY(t->exception)) { unwind(t); } else { return result; } } unsigned frameMapIndex(MyThread* t, object method, int32_t offset) { object map = codePool(t, methodCode(t, method)); unsigned mapSize = ceiling (intArrayLength(t, map), (32 / frameSize(t, method)) + 1); unsigned indexSize = intArrayLength(t, map) - mapSize; unsigned bottom = 0; unsigned top = indexSize; for (unsigned span = top - bottom; span; span = top - bottom) { unsigned middle = bottom + (span / 2); int32_t v = intArrayBody(t, map, middle); if (offset == v) { return (indexSize * 32) + (frameSize(t, method) * middle); } else if (offset < v) { top = middle; } else { bottom = middle + 1; } } abort(t); } void visitStackAndLocals(MyThread* t, Heap::Visitor* v, void* base, object method, void* ip, void* calleeBase, unsigned argumentFootprint) { unsigned count; if (calleeBase) { unsigned parameterFootprint = methodParameterFootprint(t, method); unsigned height = static_cast(base) - static_cast(calleeBase) - 2; count = parameterFootprint + height - argumentFootprint; } else { count = frameSize(t, method); } if (count) { object map = codePool(t, methodCode(t, method)); int index = frameMapIndex (t, method, difference (ip, &singletonValue(t, methodCompiled(t, method), 0))); for (unsigned i = 0; i < count; ++i) { int j = index + i; if ((intArrayBody(t, map, j / 32) & (static_cast(1) << (j % 32)))) { v->visit(localObject(t, base, method, i)); } } } } void visitStack(MyThread* t, Heap::Visitor* v) { void* ip = t->ip; void* base = t->base; void** stack = static_cast(t->stack); if (ip == 0 and stack) { ip = *stack; } MyThread::CallTrace* trace = t->trace; void* calleeBase = 0; unsigned argumentFootprint = 0; while (stack) { object method = methodForIp(t, ip); if (method) { PROTECT(t, method); visitStackAndLocals (t, v, base, method, ip, calleeBase, argumentFootprint); calleeBase = base; argumentFootprint = methodParameterFootprint(t, method); stack = static_cast(base) + 1; if (stack) { ip = *stack; } base = *static_cast(base); } else if (trace) { calleeBase = 0; argumentFootprint = 0; base = trace->base; stack = static_cast(trace->stack); if (stack) { ip = *stack; } trace = trace->next; } else { break; } } } object compileDefault(MyThread* t, Context* context) { Compiler* c = context->c; mov(c, c->base(), c->memory(c->thread(), difference(&(t->base), t))); mov(c, c->stack(), c->memory(c->thread(), difference(&(t->stack), t))); c->directCall (c->constant(reinterpret_cast(compileMethod)), 1, c->thread()); Operand* result = ::result(c); c->jmp(result); c->release(result); return finish(t, context, "default"); } object compileNative(MyThread* t, Context* context) { Compiler* c = context->c; mov(c, c->base(), c->memory(c->thread(), difference(&(t->base), t))); mov(c, c->stack(), c->memory(c->thread(), difference(&(t->stack), t))); c->directCall (c->constant(reinterpret_cast(invokeNative)), 1, c->thread()); c->ret(); return finish(t, context, "native"); } class ArgumentList { public: ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_, const char* spec, bool indirectObjects, va_list arguments): t(static_cast(t)), array(array), objectMask(objectMask), position(0), protector(this) { if (this_) { addObject(this_); } for (MethodSpecIterator it(t, spec); it.hasNext();) { switch (*it.next()) { case 'L': case '[': if (indirectObjects) { object* v = va_arg(arguments, object*); addObject(v ? *v : 0); } else { addObject(va_arg(arguments, object)); } break; case 'J': case 'D': addLong(va_arg(arguments, uint64_t)); break; default: addInt(va_arg(arguments, uint32_t)); break; } } } ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_, const char* spec, object arguments): t(static_cast(t)), array(array), objectMask(objectMask), position(0), protector(this) { if (this_) { addObject(this_); } unsigned index = 0; for (MethodSpecIterator it(t, spec); it.hasNext();) { switch (*it.next()) { case 'L': case '[': addObject(objectArrayBody(t, arguments, index++)); break; case 'J': case 'D': addLong(cast(objectArrayBody(t, arguments, index++), BytesPerWord)); break; default: addInt(cast(objectArrayBody(t, arguments, index++), BytesPerWord)); break; } } } void addObject(object v) { array[position] = reinterpret_cast(v); objectMask[position] = true; ++ position; } void addInt(uintptr_t v) { array[position] = v; objectMask[position] = false; ++ position; } void addLong(uint64_t v) { if (BytesPerWord == 8) { memcpy(array + position + 1, &v, 8); } else { // push words in reverse order, since they will be switched back // when pushed on the stack: array[position] = v >> 32; array[position + 1] = v; } objectMask[position] = false; objectMask[position + 1] = false; position += 2; } MyThread* t; uintptr_t* array; bool* objectMask; unsigned position; class MyProtector: public Thread::Protector { public: MyProtector(ArgumentList* list): Protector(list->t), list(list) { } virtual void visit(Heap::Visitor* v) { for (unsigned i = 0; i < list->position; ++i) { if (list->objectMask[i]) { v->visit(reinterpret_cast(list->array + i)); } } } ArgumentList* list; } protector; }; object invoke(Thread* thread, object method, ArgumentList* arguments) { MyThread* t = static_cast(thread); unsigned returnCode = methodReturnCode(t, method); unsigned returnType = fieldType(t, returnCode); uint64_t result; { MyThread::CallTrace trace(t); if (methodFlags(t, method) & ACC_NATIVE) { trace.nativeMethod = method; } result = vmInvoke (t, &singletonValue(t, methodCompiled(t, method), 0), arguments->array, arguments->position, returnType); } object r; switch (returnCode) { case ByteField: case BooleanField: case CharField: case ShortField: case FloatField: case IntField: r = makeInt(t, result); break; case LongField: case DoubleField: r = makeLong(t, result); break; case ObjectField: r = reinterpret_cast(result); break; case VoidField: r = 0; break; default: abort(t); }; return r; } unsigned traceSize(Thread* t) { class Counter: public Processor::StackVisitor { public: Counter(Thread* t): t(t), count(0) { } virtual bool visit(Processor::StackWalker*) { ++ count; return true; } Thread* t; unsigned count; } counter(t); t->m->processor->walkStack(t, &counter); return FixedSizeOfArray + (counter.count * ArrayElementSizeOfArray) + (counter.count * FixedSizeOfTraceElement); } class SegFaultHandler: public System::SignalHandler { public: SegFaultHandler(): m(0) { } virtual bool handleSignal(void** ip, void** base, void** stack, void** thread) { MyThread* t = static_cast(m->localThread->get()); if (t->state == Thread::ActiveState) { object node = methodForIp(t, *ip); if (node) { t->ip = *ip; t->base = *base; t->stack = *stack; ensure(t, FixedSizeOfNullPointerException + traceSize(t)); t->exception = makeNullPointerException(t); findUnwindTarget(t, ip, base, stack); *thread = t; return true; } } return false; } Machine* m; }; class MyProcessor: public Processor { public: MyProcessor(System* s, Allocator* allocator): s(s), allocator(allocator), defaultCompiled(0), nativeCompiled(0), callTable(0), callTableSize(0), methodTree(0), methodTreeSentinal(0), indirectCaller(0), indirectCallerSize(0), codeAllocator(s, allocator, true, 64 * 1024) { } virtual Thread* makeThread(Machine* m, object javaThread, Thread* parent) { MyThread* t = new (m->heap->allocate(sizeof(MyThread), false)) MyThread(m, javaThread, parent); t->init(); return t; } object getDefaultCompiled(MyThread* t) { if (defaultCompiled == 0) { Context context(t); defaultCompiled = compileDefault(t, &context); } return defaultCompiled; } object getNativeCompiled(MyThread* t) { if (nativeCompiled == 0) { Context context(t); nativeCompiled = compileNative(t, &context); } return nativeCompiled; } virtual object makeMethod(vm::Thread* t, uint8_t vmFlags, uint8_t returnCode, uint8_t parameterCount, uint8_t parameterFootprint, uint16_t flags, uint16_t offset, object name, object spec, object class_, object code) { return vm::makeMethod (t, vmFlags, returnCode, parameterCount, parameterFootprint, flags, offset, name, spec, class_, code, getDefaultCompiled(static_cast(t))); } virtual object makeClass(vm::Thread* t, uint16_t flags, uint8_t vmFlags, uint8_t arrayDimensions, uint16_t fixedSize, uint16_t arrayElementSize, object objectMask, object name, object super, object interfaceTable, object virtualTable, object fieldTable, object methodTable, object staticTable, object loader, unsigned vtableLength) { return vm::makeClass (t, flags, vmFlags, arrayDimensions, fixedSize, arrayElementSize, objectMask, name, super, interfaceTable, virtualTable, fieldTable, methodTable, staticTable, loader, vtableLength, false); } virtual void initVtable(Thread* t, object c) { void* compiled = &singletonBody (t, getDefaultCompiled(static_cast(t)), 0); for (unsigned i = 0; i < classLength(t, c); ++i) { classVtable(t, c, i) = compiled; } } virtual void initClass(Thread* t, object c) { PROTECT(t, c); ACQUIRE(t, t->m->classLock); if (classVmFlags(t, c) & NeedInitFlag and (classVmFlags(t, c) & InitFlag) == 0) { classVmFlags(t, c) |= InitFlag; invoke(t, classInitializer(t, c), 0); if (t->exception) { t->exception = makeExceptionInInitializerError(t, t->exception); } classVmFlags(t, c) &= ~(NeedInitFlag | InitFlag); } } virtual void visitObjects(Thread* vmt, Heap::Visitor* v) { MyThread* t = static_cast(vmt); if (t == t->m->rootThread) { v->visit(&defaultCompiled); v->visit(&nativeCompiled); v->visit(&callTable); v->visit(&methodTree); v->visit(&methodTreeSentinal); } for (MyThread::CallTrace* trace = t->trace; trace; trace = trace->next) { v->visit(&(trace->nativeMethod)); } for (Reference* r = t->reference; r; r = r->next) { v->visit(&(r->target)); } visitStack(t, v); } virtual void walkStack(Thread* vmt, StackVisitor* v) { MyThread* t = static_cast(vmt); MyStackWalker walker(t); walker.walk(v); } virtual int lineNumber(Thread* vmt, object method, int ip) { return findLineNumber(static_cast(vmt), method, ip); } virtual object* makeLocalReference(Thread* vmt, object o) { if (o) { MyThread* t = static_cast(vmt); PROTECT(t, o); Reference* r = new (t->m->heap->allocate(sizeof(Reference), false)) Reference(o, &(t->reference)); return &(r->target); } else { return 0; } } virtual void disposeLocalReference(Thread* t, object* r) { if (r) { vm::dispose(t, reinterpret_cast(r)); } } virtual object invokeArray(Thread* t, object method, object this_, object arguments) { if (UNLIKELY(t->exception)) return 0; assert(t, t->state == Thread::ActiveState or t->state == Thread::ExclusiveState); assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0)); const char* spec = reinterpret_cast (&byteArrayBody(t, methodSpec(t, method), 0)); unsigned size = methodParameterFootprint(t, method); uintptr_t array[size]; bool objectMask[size]; ArgumentList list(t, array, objectMask, this_, spec, arguments); PROTECT(t, method); compile(static_cast(t), method); if (LIKELY(t->exception == 0)) { return ::invoke(t, method, &list); } return 0; } virtual object invokeList(Thread* t, object method, object this_, bool indirectObjects, va_list arguments) { if (UNLIKELY(t->exception)) return 0; assert(t, t->state == Thread::ActiveState or t->state == Thread::ExclusiveState); assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0)); const char* spec = reinterpret_cast (&byteArrayBody(t, methodSpec(t, method), 0)); unsigned size = methodParameterFootprint(t, method); uintptr_t array[size]; bool objectMask[size]; ArgumentList list (t, array, objectMask, this_, spec, indirectObjects, arguments); PROTECT(t, method); compile(static_cast(t), method); if (LIKELY(t->exception == 0)) { return ::invoke(t, method, &list); } return 0; } virtual object invokeList(Thread* t, const char* className, const char* methodName, const char* methodSpec, object this_, va_list arguments) { if (UNLIKELY(t->exception)) return 0; assert(t, t->state == Thread::ActiveState or t->state == Thread::ExclusiveState); unsigned size = parameterFootprint(t, methodSpec, false); uintptr_t array[size]; bool objectMask[size]; ArgumentList list (t, array, objectMask, this_, methodSpec, false, arguments); object method = resolveMethod(t, className, methodName, methodSpec); if (LIKELY(t->exception == 0)) { assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0)); PROTECT(t, method); compile(static_cast(t), method); if (LIKELY(t->exception == 0)) { return ::invoke(t, method, &list); } } return 0; } virtual void dispose(Thread* vmt) { MyThread* t = static_cast(vmt); while (t->reference) { vm::dispose(t, t->reference); } t->m->heap->free(t, sizeof(*t), false); } virtual void dispose() { codeAllocator.dispose(); s->handleSegFault(0); allocator->free(this, sizeof(*this), false); } virtual object getStackTrace(Thread* vmt, Thread* vmTarget) { MyThread* t = static_cast(vmt); MyThread* target = static_cast(vmTarget); class Visitor: public System::ThreadVisitor { public: Visitor(MyThread* t, MyThread* target): t(t), target(target) { } virtual void visit(void* ip, void* base, void* stack) { ensure(t, traceSize(t)); void* oldIp = target->ip; void* oldBase = target->ip; void* oldStack = target->stack; target->ip = ip; target->base = base; target->stack = stack; trace = makeTrace(t, target); target->ip = oldIp; target->base = oldBase; target->stack = oldStack; } MyThread* t; MyThread* target; object trace; } visitor(t, target); if (t->backupHeap) { PROTECT(t, visitor.trace); collect(t, Heap::MinorCollection); } return visitor.trace; } System* s; Allocator* allocator; object defaultCompiled; object nativeCompiled; object callTable; unsigned callTableSize; object methodTree; object methodTreeSentinal; uint8_t* indirectCaller; unsigned indirectCallerSize; SegFaultHandler segFaultHandler; Zone codeAllocator; }; MyProcessor* processor(MyThread* t) { MyProcessor* p = static_cast(t->m->processor); if (p->callTable == 0) { ACQUIRE(t, t->m->classLock); if (p->callTable == 0) { p->callTable = makeArray(t, 128, true); p->methodTree = p->methodTreeSentinal = makeTreeNode(t, 0, 0, 0); set(t, p->methodTree, TreeNodeLeft, p->methodTreeSentinal); set(t, p->methodTree, TreeNodeRight, p->methodTreeSentinal); Context context(t); Compiler* c = context.c; mov(c, c->base(), c->memory(c->thread(), difference(&(t->base), t))); mov(c, c->stack(), c->memory(c->thread(), difference(&(t->stack), t))); c->jmp(c->indirectTarget()); p->indirectCallerSize = c->codeSize(); p->indirectCaller = static_cast (p->codeAllocator.allocate(p->indirectCallerSize)); c->writeTo(p->indirectCaller); if (Verbose) { logCompile(p->indirectCaller, c->codeSize(), 0, "indirect caller", 0); } p->segFaultHandler.m = t->m; expect(t, t->m->system->success (t->m->system->handleSegFault(&(p->segFaultHandler)))); } } return p; } object defaultCompiled(MyThread* t) { return processor(t)->getDefaultCompiled(t); } object nativeCompiled(MyThread* t) { return processor(t)->getNativeCompiled(t); } void compile(MyThread* t, object method) { MyProcessor* p = processor(t); if (methodCompiled(t, method) == p->getDefaultCompiled(t)) { PROTECT(t, method); ACQUIRE(t, t->m->classLock); if (methodCompiled(t, method) == p->getDefaultCompiled(t)) { initClass(t, methodClass(t, method)); if (UNLIKELY(t->exception)) return; if (methodCompiled(t, method) == p->getDefaultCompiled(t)) { object compiled; if (methodFlags(t, method) & ACC_NATIVE) { compiled = p->getNativeCompiled(t); } else { Context context(t, method, p->indirectCaller); compiled = compile(t, &context); if (UNLIKELY(t->exception)) return; } set(t, method, MethodCompiled, compiled); if (methodVirtual(t, method)) { classVtable(t, methodClass(t, method), methodOffset(t, method)) = &singletonValue(t, compiled, 0); } if ((methodFlags(t, method) & ACC_NATIVE) == 0) { if (DebugMethodTree) { fprintf(stderr, "insert method at %p\n", &singletonValue(t, methodCompiled(t, method), 0)); } methodTree(t) = treeInsert (t, methodTree(t), method, methodTreeSentinal(t), compareMethodBounds); } } } } } object findCallNode(MyThread* t, void* address) { if (DebugCallTable) { fprintf(stderr, "find trace node %p\n", address); } MyProcessor* p = processor(t); object table = p->callTable; intptr_t key = reinterpret_cast(address); unsigned index = static_cast(key) & (arrayLength(t, table) - 1); for (object n = arrayBody(t, table, index); n; n = callNodeNext(t, n)) { intptr_t k = callNodeAddress(t, n); if (k == key) { return n; } } return 0; } object resizeTable(MyThread* t, object oldTable, unsigned newLength) { PROTECT(t, oldTable); object oldNode = 0; PROTECT(t, oldNode); object newTable = makeArray(t, newLength, true); PROTECT(t, newTable); for (unsigned i = 0; i < arrayLength(t, oldTable); ++i) { for (oldNode = arrayBody(t, oldTable, i); oldNode; oldNode = callNodeNext(t, oldNode)) { intptr_t k = callNodeAddress(t, oldNode); unsigned index = k & (newLength - 1); object newNode = makeCallNode (t, callNodeAddress(t, oldNode), callNodeTarget(t, oldNode), callNodeVirtualCall(t, oldNode), arrayBody(t, newTable, index)); set(t, newTable, ArrayBody + (index * BytesPerWord), newNode); } } return newTable; } void insertCallNode(MyThread* t, object node) { if (DebugCallTable) { fprintf(stderr, "insert trace node %p\n", reinterpret_cast(callNodeAddress(t, node))); } MyProcessor* p = processor(t); PROTECT(t, node); ++ p->callTableSize; if (p->callTableSize >= arrayLength(t, p->callTable) * 2) { p->callTable = resizeTable (t, p->callTable, arrayLength(t, p->callTable) * 2); } intptr_t key = callNodeAddress(t, node); unsigned index = static_cast(key) & (arrayLength(t, p->callTable) - 1); set(t, node, CallNodeNext, arrayBody(t, p->callTable, index)); set(t, p->callTable, ArrayBody + (index * BytesPerWord), node); } void removeCallNode(MyThread* t, object node) { if (DebugCallTable) { fprintf(stderr, "remove call node %p\n", reinterpret_cast(callNodeAddress(t, node))); } MyProcessor* p = processor(t); PROTECT(t, node); object oldNode = 0; PROTECT(t, oldNode); object newNode = 0; PROTECT(t, newNode); intptr_t key = callNodeAddress(t, node); unsigned index = static_cast(key) & (arrayLength(t, p->callTable) - 1); for (oldNode = arrayBody(t, p->callTable, index); oldNode; oldNode = callNodeNext(t, oldNode)) { if (oldNode != node) { newNode = makeCallNode (t, callNodeAddress(t, oldNode), callNodeTarget(t, oldNode), callNodeVirtualCall(t, oldNode), newNode); } } set(t, p->callTable, ArrayBody + (index * BytesPerWord), newNode); -- p->callTableSize; if (p->callTableSize <= arrayLength(t, p->callTable) / 3) { p->callTable = resizeTable (t, p->callTable, arrayLength(t, p->callTable) / 2); } } object& methodTree(MyThread* t) { return processor(t)->methodTree; } object methodTreeSentinal(MyThread* t) { return processor(t)->methodTreeSentinal; } Allocator* codeAllocator(MyThread* t) { return &(processor(t)->codeAllocator); } } // namespace namespace vm { Processor* makeProcessor(System* system, Allocator* allocator) { return new (allocator->allocate(sizeof(MyProcessor), false)) MyProcessor(system, allocator); } } // namespace vm