/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { const bool DebugAppend = false; const bool DebugCompile = false; const bool DebugResources = false; const bool DebugFrame = false; const bool DebugControl = false; const bool DebugReads = false; const bool DebugSites = false; const bool DebugMoves = false; const bool DebugBuddies = false; const int AnyFrameIndex = -2; const int NoFrameIndex = -1; const unsigned StealRegisterReserveCount = 1; const unsigned ResolveRegisterReserveCount = 2; class Context; class Value; class Stack; class Site; class ConstantSite; class AddressSite; class RegisterSite; class MemorySite; class Event; class PushEvent; class Read; class MultiRead; class StubRead; class Block; class Snapshot; void NO_RETURN abort(Context*); void apply(Context* c, UnaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High); void apply(Context* c, BinaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High, unsigned s2Size, Site* s2Low, Site* s2High); void apply(Context* c, TernaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High, unsigned s2Size, Site* s2Low, Site* s2High, unsigned s3Size, Site* s3Low, Site* s3High); enum ConstantCompare { CompareNone, CompareLess, CompareGreater, CompareEqual }; class Cell { public: Cell(Cell* next, void* value): next(next), value(value) { } Cell* next; void* value; }; class Local { public: Value* value; }; class SiteMask { public: SiteMask(): typeMask(~0), registerMask(~0), frameIndex(AnyFrameIndex) { } SiteMask(uint8_t typeMask, uint32_t registerMask, int frameIndex): typeMask(typeMask), registerMask(registerMask), frameIndex(frameIndex) { } uint8_t typeMask; uint32_t registerMask; int frameIndex; }; class Site { public: Site(): next(0) { } virtual Site* readTarget(Context*, Read*) { return this; } virtual unsigned toString(Context*, char*, unsigned) = 0; virtual unsigned copyCost(Context*, Site*) = 0; virtual bool match(Context*, const SiteMask&) = 0; virtual void acquire(Context*, Value*) { } virtual void release(Context*, Value*) { } virtual void freeze(Context*, Value*) { } virtual void thaw(Context*, Value*) { } virtual bool frozen(Context*) { return false; } virtual OperandType type(Context*) = 0; virtual void asAssemblerOperand(Context*, Site*, Assembler::Operand*) = 0; virtual Site* copy(Context*) = 0; virtual Site* copyLow(Context*) = 0; virtual Site* copyHigh(Context*) = 0; Site* next; }; class SitePair { public: Site* low; Site* high; }; class Stack: public Compiler::StackElement { public: Stack(unsigned index, Value* value, Stack* next): index(index), value(value), next(next) { } unsigned index; Value* value; Stack* next; }; class ForkElement { public: Value* value; MultiRead* read; bool local; }; class ForkState: public Compiler::State { public: ForkState(Stack* stack, Local* locals, Cell* saved, Event* predecessor, unsigned logicalIp): stack(stack), locals(locals), saved(saved), predecessor(predecessor), logicalIp(logicalIp), readCount(0) { } Stack* stack; Local* locals; Cell* saved; Event* predecessor; unsigned logicalIp; unsigned readCount; ForkElement elements[0]; }; class MySubroutine: public Compiler::Subroutine { public: MySubroutine(): forkState(0) { } ForkState* forkState; }; class LogicalInstruction { public: LogicalInstruction(int index, Stack* stack, Local* locals): firstEvent(0), lastEvent(0), immediatePredecessor(0), stack(stack), locals(locals), machineOffset(0), subroutine(0), index(index) { } Event* firstEvent; Event* lastEvent; LogicalInstruction* immediatePredecessor; Stack* stack; Local* locals; Promise* machineOffset; MySubroutine* subroutine; int index; }; class Resource { public: Resource(bool reserved = false): value(0), site(0), freezeCount(0), referenceCount(0), reserved(reserved) { } virtual void freeze(Context*, Value*) = 0; virtual void thaw(Context*, Value*) = 0; virtual unsigned toString(Context*, char*, unsigned) = 0; Value* value; Site* site; uint8_t freezeCount; uint8_t referenceCount; bool reserved; }; class RegisterResource: public Resource { public: RegisterResource(bool reserved): Resource(reserved) { } virtual void freeze(Context*, Value*); virtual void thaw(Context*, Value*); virtual unsigned toString(Context*, char*, unsigned); }; class FrameResource: public Resource { public: virtual void freeze(Context*, Value*); virtual void thaw(Context*, Value*); virtual unsigned toString(Context*, char*, unsigned); }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Read { public: Read(): value(0), event(0), eventNext(0) { } virtual bool intersect(SiteMask* mask) = 0; virtual bool valid() = 0; virtual void append(Context* c, Read* r) = 0; virtual Read* next(Context* c) = 0; Value* value; Event* event; Read* eventNext; }; int intersectFrameIndexes(int a, int b) { if (a == NoFrameIndex or b == NoFrameIndex) return NoFrameIndex; if (a == AnyFrameIndex) return b; if (b == AnyFrameIndex) return a; if (a == b) return a; return NoFrameIndex; } SiteMask intersect(const SiteMask& a, const SiteMask& b) { return SiteMask(a.typeMask & b.typeMask, a.registerMask & b.registerMask, intersectFrameIndexes(a.frameIndex, b.frameIndex)); } class Value: public Compiler::Operand { public: Value(Site* site, Site* target): reads(0), lastRead(0), sites(site), source(0), target(target), buddy(this), high(0), home(NoFrameIndex) { } virtual void addPredecessor(Context*, Event*) { } Read* reads; Read* lastRead; Site* sites; Site* source; Site* target; Value* buddy; Value* high; int8_t home; }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone, Compiler::Client* client): system(system), assembler(assembler), arch(assembler->arch()), zone(zone), client(client), stack(0), locals(0), saved(0), predecessor(0), logicalCode(0), registerResources (static_cast (zone->allocate(sizeof(RegisterResource) * arch->registerCount()))), frameResources(0), firstConstant(0), lastConstant(0), machineCode(0), firstEvent(0), lastEvent(0), forkState(0), subroutine(0), logicalIp(-1), constantCount(0), logicalCodeLength(0), parameterFootprint(0), localFootprint(0), machineCodeSize(0), alignedFrameSize(0), availableRegisterCount(arch->registerCount()), constantCompare(CompareNone) { for (unsigned i = 0; i < arch->registerCount(); ++i) { new (registerResources + i) RegisterResource(arch->reserved(i)); if (registerResources[i].reserved) { -- availableRegisterCount; } } } System* system; Assembler* assembler; Assembler::Architecture* arch; Zone* zone; Compiler::Client* client; Stack* stack; Local* locals; Cell* saved; Event* predecessor; LogicalInstruction** logicalCode; RegisterResource* registerResources; FrameResource* frameResources; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; uint8_t* machineCode; Event* firstEvent; Event* lastEvent; ForkState* forkState; MySubroutine* subroutine; int logicalIp; unsigned constantCount; unsigned logicalCodeLength; unsigned parameterFootprint; unsigned localFootprint; unsigned machineCodeSize; unsigned alignedFrameSize; unsigned availableRegisterCount; ConstantCompare constantCompare; }; unsigned RegisterResource::toString(Context* c, char* buffer, unsigned bufferSize) { return snprintf (buffer, bufferSize, "register %"LD, this - c->registerResources); } unsigned FrameResource::toString(Context* c, char* buffer, unsigned bufferSize) { return snprintf(buffer, bufferSize, "frame %"LD, this - c->frameResources); } class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->machineCodeSize) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(0), next(next) { } CodePromise(Context* c, Promise* offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset->value()); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset and offset->resolved(); } Context* c; Promise* offset; CodePromise* next; }; unsigned machineOffset(Context* c, int logicalIp) { return c->logicalCode[logicalIp]->machineOffset->value(); } class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + machineOffset(c, logicalIp)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } unsigned count(Cell* c) { unsigned count = 0; while (c) { ++ count; c = c->next; } return count; } Cell* cons(Context* c, void* value, Cell* next) { return new (c->zone->allocate(sizeof(Cell))) Cell(next, value); } Cell* append(Context* c, Cell* first, Cell* second) { if (first) { if (second) { Cell* start = cons(c, first->value, second); Cell* end = start; for (Cell* cell = first->next; cell; cell = cell->next) { Cell* n = cons(c, cell->value, second); end->next = n; end = n; } return start; } else { return first; } } else { return second; } } Cell* reverseDestroy(Cell* cell) { Cell* previous = 0; while (cell) { Cell* next = cell->next; cell->next = previous; previous = cell; cell = next; } return previous; } class StubReadPair { public: Value* value; StubRead* read; }; class JunctionState { public: JunctionState(unsigned frameFootprint): frameFootprint(frameFootprint) { } unsigned frameFootprint; StubReadPair reads[0]; }; class Link { public: Link(Event* predecessor, Link* nextPredecessor, Event* successor, Link* nextSuccessor, ForkState* forkState): predecessor(predecessor), nextPredecessor(nextPredecessor), successor(successor), nextSuccessor(nextSuccessor), forkState(forkState), junctionState(0) { } Event* predecessor; Link* nextPredecessor; Event* successor; Link* nextSuccessor; ForkState* forkState; JunctionState* junctionState; }; Link* link(Context* c, Event* predecessor, Link* nextPredecessor, Event* successor, Link* nextSuccessor, ForkState* forkState) { return new (c->zone->allocate(sizeof(Link))) Link (predecessor, nextPredecessor, successor, nextSuccessor, forkState); } unsigned countPredecessors(Link* link) { unsigned c = 0; for (; link; link = link->nextPredecessor) ++ c; return c; } Link* lastPredecessor(Link* link) { while (link->nextPredecessor) link = link->nextPredecessor; return link; } unsigned countSuccessors(Link* link) { unsigned c = 0; for (; link; link = link->nextSuccessor) ++ c; return c; } class Event { public: Event(Context* c): next(0), stackBefore(c->stack), localsBefore(c->locals), stackAfter(0), localsAfter(0), promises(0), reads(0), junctionSites(0), snapshots(0), predecessors(0), successors(0), visitLinks(0), block(0), logicalInstruction(c->logicalCode[c->logicalIp]), readCount(0) { } virtual const char* name() = 0; virtual void compile(Context* c) = 0; virtual bool isBranch() { return false; } Event* next; Stack* stackBefore; Local* localsBefore; Stack* stackAfter; Local* localsAfter; CodePromise* promises; Read* reads; Site** junctionSites; Snapshot* snapshots; Link* predecessors; Link* successors; Cell* visitLinks; Block* block; LogicalInstruction* logicalInstruction; unsigned readCount; }; int frameIndex(Context* c, int index) { assert(c, static_cast (c->alignedFrameSize + c->parameterFootprint - index - 1) >= 0); return c->alignedFrameSize + c->parameterFootprint - index - 1; } unsigned frameIndexToOffset(Context* c, unsigned frameIndex) { return ((frameIndex >= c->alignedFrameSize) ? (frameIndex + (c->arch->frameFooterSize() * 2) + c->arch->frameHeaderSize()) : (frameIndex + c->arch->frameFooterSize())) * BytesPerWord; } unsigned offsetToFrameIndex(Context* c, unsigned offset) { unsigned normalizedOffset = offset / BytesPerWord; return ((normalizedOffset >= c->alignedFrameSize + c->arch->frameFooterSize()) ? (normalizedOffset - (c->arch->frameFooterSize() * 2) - c->arch->frameHeaderSize()) : (normalizedOffset - c->arch->frameFooterSize())); } class FrameIterator { public: class Element { public: Element(Value* value, unsigned localIndex): value(value), localIndex(localIndex) { } Value* const value; const unsigned localIndex; }; FrameIterator(Context* c, Stack* stack, Local* locals): stack(stack), locals(locals), localIndex(c->localFootprint - 1) { } bool hasMore() { while (stack and stack->value == 0) stack = stack->next; while (localIndex >= 0 and locals[localIndex].value == 0) -- localIndex; return stack != 0 or localIndex >= 0; } Element next(Context* c) { Value* v; unsigned li; if (stack) { Stack* s = stack; v = s->value; li = s->index + c->localFootprint; stack = stack->next; } else { Local* l = locals + localIndex; v = l->value; li = localIndex; -- localIndex; } return Element(v, li); } Stack* stack; Local* locals; int localIndex; }; int frameIndex(Context* c, FrameIterator::Element* element) { return frameIndex(c, element->localIndex); } class SiteIterator { public: SiteIterator(Value* v, bool includeBuddies = true): originalValue(v), currentValue(v), includeBuddies(includeBuddies), next_(findNext(&(v->sites))), previous(0) { } Site** findNext(Site** p) { if (*p) { return p; } else { if (includeBuddies) { for (Value* v = currentValue->buddy; v != originalValue; v = v->buddy) { if (v->sites) { currentValue = v; return &(v->sites); } } } return 0; } } bool hasMore() { if (previous) { next_ = findNext(&((*previous)->next)); previous = 0; } return next_ != 0; } Site* next() { previous = next_; return *previous; } void remove(Context* c) { (*previous)->release(c, originalValue); *previous = (*previous)->next; next_ = findNext(previous); previous = 0; } Value* originalValue; Value* currentValue; bool includeBuddies; Site** next_; Site** previous; }; bool hasMoreThanOneSite(Value* v) { SiteIterator it(v); if (it.hasMore()) { it.next(); return it.hasMore(); } else { return false; } } bool hasSite(Value* v) { SiteIterator it(v); return it.hasMore(); } bool findSite(Context*, Value* v, Site* site) { for (Site* s = v->sites; s; s = s->next) { if (s == site) return true; } return false; } void addSite(Context* c, Value* v, Site* s) { if (not findSite(c, v, s)) { if (DebugSites) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "add site %s to %p\n", buffer, v); } s->acquire(c, v); s->next = v->sites; v->sites = s; } } void removeSite(Context* c, Value* v, Site* s) { for (SiteIterator it(v); it.hasMore();) { if (s == it.next()) { if (DebugSites) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "remove site %s from %p\n", buffer, v); } it.remove(c); break; } } if (DebugSites) { fprintf(stderr, "%p has more: %d\n", v, hasSite(v)); } assert(c, not findSite(c, v, s)); } void clearSites(Context* c, Value* v) { if (DebugSites) { fprintf(stderr, "clear sites for %p\n", v); } for (SiteIterator it(v); it.hasMore();) { it.next(); it.remove(c); } } bool valid(Read* r) { return r and r->valid(); } Read* live(Value* v) { Value* p = v; do { if (valid(p->reads)) { return p->reads; } p = p->buddy; } while (p != v); return 0; } Read* liveNext(Context* c, Value* v) { Read* r = v->reads->next(c); if (valid(r)) return r; for (Value* p = v->buddy; p != v; p = p->buddy) { if (valid(p->reads)) return p->reads; } return 0; } void deadBuddy(Context* c, Value* v, Read* r UNUSED) { assert(c, v->buddy != v); assert(c, r); if (DebugBuddies) { fprintf(stderr, "remove dead buddy %p from", v); for (Value* p = v->buddy; p != v; p = p->buddy) { fprintf(stderr, " %p", p); } fprintf(stderr, "\n"); } Value* next = v->buddy; v->buddy = v; Value* p = next; while (p->buddy != v) p = p->buddy; p->buddy = next; for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); it.remove(c); addSite(c, next, s); } } void popRead(Context* c, Event* e UNUSED, Value* v) { assert(c, e == v->reads->event); if (DebugReads) { fprintf(stderr, "pop read %p from %p next %p event %p (%s)\n", v->reads, v, v->reads->next(c), e, (e ? e->name() : 0)); } v->reads = v->reads->next(c); if (not valid(v->reads)) { Read* r = live(v); if (r) { deadBuddy(c, v, r); } else { clearSites(c, v); } } } bool buddies(Value* a, Value* b) { if (a == b) return true; for (Value* p = a->buddy; p != a; p = p->buddy) { if (p == b) return true; } return false; } void decrementAvailableRegisterCount(Context* c) { assert(c, c->availableRegisterCount); -- c->availableRegisterCount; if (DebugResources) { fprintf(stderr, "%d registers available\n", c->availableRegisterCount); } } void incrementAvailableRegisterCount(Context* c) { ++ c->availableRegisterCount; if (DebugResources) { fprintf(stderr, "%d registers available\n", c->availableRegisterCount); } } void increment(Context* c, RegisterResource* r) { if (not r->reserved) { if (DebugResources) { char buffer[256]; r->toString(c, buffer, 256); fprintf(stderr, "increment %s to %d\n", buffer, r->referenceCount + 1); } ++ r->referenceCount; if (r->referenceCount == 1) { decrementAvailableRegisterCount(c); } } } void decrement(Context* c, Resource* r) { if (not r->reserved) { if (DebugResources) { char buffer[256]; r->toString(c, buffer, 256); fprintf(stderr, "decrement %s to %d\n", buffer, r->referenceCount - 1); } assert(c, r->referenceCount > 0); -- r->referenceCount; if (r->referenceCount == 0) { incrementAvailableRegisterCount(c); } } } void freezeResource(Context* c, Resource* r, Value* v) { if (DebugResources) { char buffer[256]; r->toString(c, buffer, 256); fprintf(stderr, "%p freeze %s to %d\n", v, buffer, r->freezeCount + 1); } assert(c, r->value == 0 or buddies(r->value, v)); ++ r->freezeCount; } void RegisterResource::freeze(Context* c, Value* v) { if (not reserved) { freezeResource(c, this, v); if (freezeCount == 1) { decrementAvailableRegisterCount(c); } } } void FrameResource::freeze(Context* c, Value* v) { freezeResource(c, this, v); } void thawResource(Context* c, Resource* r, Value* v) { if (not r->reserved) { if (DebugResources) { char buffer[256]; r->toString(c, buffer, 256); fprintf(stderr, "%p thaw %s to %d\n", v, buffer, r->freezeCount - 1); } assert(c, r->freezeCount); assert(c, r->value == 0 or buddies(r->value, v)); -- r->freezeCount; } } void RegisterResource::thaw(Context* c, Value* v) { if (not reserved) { thawResource(c, this, v); if (freezeCount == 0) { incrementAvailableRegisterCount(c); } } } void FrameResource::thaw(Context* c, Value* v) { thawResource(c, this, v); } class Target { public: static const unsigned Penalty = 10; static const unsigned Impossible = 20; Target(): cost(Impossible) { } Target(int index, OperandType type, unsigned cost): index(index), type(type), cost(cost) { } int16_t index; OperandType type; uint8_t cost; }; Target pickTarget(Context* c, Read* r, bool intersectRead, unsigned registerReserveCount); unsigned resourceCost(Context* c UNUSED, Value* v, Resource* r) { if (r->reserved or r->freezeCount or r->referenceCount) { return Target::Impossible; } else if (r->value) { assert(c, findSite(c, r->value, r->site)); if (v and buddies(r->value, v)) { return 0; } else if (hasMoreThanOneSite(r->value)) { return 2; } else { return 4; } } else { return 0; } } int pickRegisterTarget(Context* c, Value* v, uint32_t mask, unsigned* cost) { int target = NoRegister; unsigned bestCost = Target::Impossible; for (int i = c->arch->registerCount() - 1; i >= 0; --i) { if ((1 << i) & mask) { RegisterResource* r = c->registerResources + i; unsigned myCost = resourceCost(c, v, r); if ((static_cast(1) << i) == mask) { *cost = myCost; return i; } else if (myCost < bestCost) { bestCost = myCost; target = i; } } } *cost = bestCost; return target; } Target pickRegisterTarget(Context* c, Value* v, uint32_t mask) { unsigned cost; int number = pickRegisterTarget(c, v, mask, &cost); return Target(number, RegisterOperand, cost); } unsigned frameCost(Context* c, Value* v, int frameIndex) { return resourceCost(c, v, c->frameResources + frameIndex) + 1; } Target pickFrameTarget(Context* c, Value* v) { Target best; Value* p = v; do { if (p->home >= 0) { Target mine(p->home, MemoryOperand, frameCost(c, v, p->home)); if (mine.cost == 0) { return mine; } else if (mine.cost < best.cost) { best = mine; } } p = p->buddy; } while (p != v); return best; } Target pickTarget(Context* c, Read* read, bool intersectRead, unsigned registerReserveCount) { SiteMask mask; read->intersect(&mask); unsigned registerPenalty = (c->availableRegisterCount > registerReserveCount ? 0 : Target::Penalty); Target best; if ((mask.typeMask & (1 << RegisterOperand))) { Target mine = pickRegisterTarget(c, read->value, mask.registerMask); mine.cost += registerPenalty; if (mine.cost == 0) { return mine; } else if (mine.cost < best.cost) { best = mine; } } if ((mask.typeMask & (1 << MemoryOperand)) && mask.frameIndex >= 0) { Target mine(mask.frameIndex, MemoryOperand, frameCost(c, read->value, mask.frameIndex)); if (mine.cost == 0) { return mine; } else if (mine.cost < best.cost) { best = mine; } } if (intersectRead or best.cost < Target::Penalty) { return best; } { Target mine = pickRegisterTarget(c, read->value, ~0); mine.cost += registerPenalty; if (mine.cost == 0) { return mine; } else if (mine.cost < best.cost) { best = mine; } } { Target mine = pickFrameTarget(c, read->value); if (mine.cost == 0) { return mine; } else if (mine.cost < best.cost) { best = mine; } } return best; } void acquire(Context* c, Resource* resource, Value* value, Site* site); void release(Context* c, Resource* resource, Value* value, Site* site); ConstantSite* constantSite(Context* c, Promise* value); ShiftMaskPromise* shiftMaskPromise(Context* c, Promise* base, unsigned shift, int64_t mask) { return new (c->zone->allocate(sizeof(ShiftMaskPromise))) ShiftMaskPromise(base, shift, mask); } CombinedPromise* combinedPromise(Context* c, Promise* low, Promise* high) { return new (c->zone->allocate(sizeof(CombinedPromise))) CombinedPromise(low, high); } class ConstantSite: public Site { public: ConstantSite(Promise* value): value(value) { } virtual unsigned toString(Context*, char* buffer, unsigned bufferSize) { if (value->resolved()) { return snprintf (buffer, bufferSize, "constant %"LLD, value->value()); } else { return snprintf(buffer, bufferSize, "constant unresolved"); } } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 3); } virtual bool match(Context*, const SiteMask& mask) { return mask.typeMask & (1 << ConstantOperand); } virtual OperandType type(Context*) { return ConstantOperand; } virtual void asAssemblerOperand(Context* c, Site* high, Assembler::Operand* result) { Promise* v = value; if (high) { v = combinedPromise(c, value, static_cast(high)->value); } new (result) Assembler::Constant(v); } virtual Site* copy(Context* c) { return constantSite(c, value); } virtual Site* copyLow(Context* c) { return constantSite(c, shiftMaskPromise(c, value, 0, 0xFFFFFFFF)); } virtual Site* copyHigh(Context* c) { return constantSite(c, shiftMaskPromise(c, value, 32, 0xFFFFFFFF)); } Promise* value; }; ConstantSite* constantSite(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantSite))) ConstantSite(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantSite* constantSite(Context* c, int64_t value) { return constantSite(c, resolved(c, value)); } AddressSite* addressSite(Context* c, Promise* address); class AddressSite: public Site { public: AddressSite(Promise* address): address(address) { } virtual unsigned toString(Context*, char* buffer, unsigned bufferSize) { if (address->resolved()) { return snprintf (buffer, bufferSize, "address %"LLD, address->value()); } else { return snprintf(buffer, bufferSize, "address unresolved"); } } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 2); } virtual bool match(Context*, const SiteMask& mask) { return mask.typeMask & (1 << AddressOperand); } virtual OperandType type(Context*) { return AddressOperand; } virtual void asAssemblerOperand(Context* c UNUSED, Site* high UNUSED, Assembler::Operand* result) { assert(c, high == 0); new (result) Assembler::Address(address); } virtual Site* copy(Context* c) { return addressSite(c, address); } virtual Site* copyLow(Context* c) { abort(c); } virtual Site* copyHigh(Context* c) { abort(c); } Promise* address; }; AddressSite* addressSite(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressSite))) AddressSite(address); } RegisterSite* freeRegisterSite(Context* c, uint32_t mask = ~0); class RegisterSite: public Site { public: RegisterSite(uint32_t mask, int number): mask(mask), number(number) { } virtual unsigned toString(Context*, char* buffer, unsigned bufferSize) { if (number != NoRegister) { return snprintf(buffer, bufferSize, "%p register %d", this, number); } else { return snprintf(buffer, bufferSize, "%p register unacquired", this); } } virtual unsigned copyCost(Context* c, Site* s) { assert(c, number != NoRegister); if (s and (this == s or (s->type(c) == RegisterOperand and (static_cast(s)->mask & (1 << number))))) { return 0; } else { return 1; } } virtual bool match(Context* c UNUSED, const SiteMask& mask) { assert(c, number != NoRegister); if ((mask.typeMask & (1 << RegisterOperand))) { return ((static_cast(1) << number) & mask.registerMask); } else { return false; } } virtual void acquire(Context* c, Value* v) { Target target; if (number != NoRegister) { target = Target(number, RegisterOperand, 0); } else { target = pickRegisterTarget(c, v, mask); expect(c, target.cost < Target::Impossible); } RegisterResource* resource = c->registerResources + target.index; ::acquire(c, resource, v, this); number = target.index; } virtual void release(Context* c, Value* v) { assert(c, number != NoRegister); ::release(c, c->registerResources + number, v, this); } virtual void freeze(Context* c, Value* v) { assert(c, number != NoRegister); c->registerResources[number].freeze(c, v); } virtual void thaw(Context* c, Value* v) { assert(c, number != NoRegister); c->registerResources[number].thaw(c, v); } virtual bool frozen(Context* c UNUSED) { assert(c, number != NoRegister); return c->registerResources[number].freezeCount != 0; } virtual OperandType type(Context*) { return RegisterOperand; } virtual void asAssemblerOperand(Context* c UNUSED, Site* high, Assembler::Operand* result) { assert(c, number != NoRegister); int highNumber; if (high) { highNumber = static_cast(high)->number; assert(c, highNumber != NoRegister); } else { highNumber = NoRegister; } new (result) Assembler::Register(number, highNumber); } virtual Site* copy(Context* c) { uint32_t mask; if (number != NoRegister) { mask = 1 << number; } else { mask = this->mask; } return freeRegisterSite(c, mask); } virtual Site* copyLow(Context* c) { abort(c); } virtual Site* copyHigh(Context* c) { abort(c); } uint32_t mask; int number; }; RegisterSite* registerSite(Context* c, int number) { assert(c, number >= 0); assert(c, number < static_cast(c->arch->registerCount())); return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(1 << number, number); } RegisterSite* freeRegisterSite(Context* c, uint32_t mask) { return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(mask, NoRegister); } MemorySite* memorySite(Context* c, int base, int offset = 0, int index = NoRegister, unsigned scale = 1); class MemorySite: public Site { public: MemorySite(int base, int offset, int index, unsigned scale): acquired(false), base(base), offset(offset), index(index), scale(scale) { } virtual unsigned toString(Context*, char* buffer, unsigned bufferSize) { if (acquired) { return snprintf(buffer, bufferSize, "memory %d 0x%x %d %d", base, offset, index, scale); } else { return snprintf(buffer, bufferSize, "memory unacquired"); } } virtual unsigned copyCost(Context* c, Site* s) { assert(c, acquired); if (s and (this == s or (s->type(c) == MemoryOperand and static_cast(s)->base == base and static_cast(s)->offset == offset and static_cast(s)->index == index and static_cast(s)->scale == scale))) { return 0; } else { return 4; } } virtual bool match(Context* c, const SiteMask& mask) { assert(c, acquired); if (mask.typeMask & (1 << MemoryOperand)) { if (base == c->arch->stack()) { assert(c, index == NoRegister); return mask.frameIndex == AnyFrameIndex || (mask.frameIndex != NoFrameIndex && static_cast(frameIndexToOffset(c, mask.frameIndex)) == offset); } else { return true; } } else { return false; } } virtual void acquire(Context* c, Value* v) { increment(c, c->registerResources + base); if (index != NoRegister) { increment(c, c->registerResources + index); } if (base == c->arch->stack()) { assert(c, index == NoRegister); ::acquire(c, c->frameResources + offsetToFrameIndex(c, offset), v, this); } acquired = true; } virtual void release(Context* c, Value* v) { if (base == c->arch->stack()) { assert(c, index == NoRegister); ::release(c, c->frameResources + offsetToFrameIndex(c, offset), v, this); } decrement(c, c->registerResources + base); if (index != NoRegister) { decrement(c, c->registerResources + index); } acquired = false; } virtual void freeze(Context* c, Value* v) { if (base == c->arch->stack()) { c->frameResources[offsetToFrameIndex(c, offset)].freeze(c, v); } } virtual void thaw(Context* c, Value* v) { if (base == c->arch->stack()) { c->frameResources[offsetToFrameIndex(c, offset)].thaw(c, v); } } virtual bool frozen(Context* c) { return base == c->arch->stack() and c->frameResources[offsetToFrameIndex(c, offset)].freezeCount != 0; } virtual OperandType type(Context*) { return MemoryOperand; } virtual void asAssemblerOperand(Context* c UNUSED, Site* high UNUSED, Assembler::Operand* result) { assert(c, high == 0 or (static_cast(high)->base == base and static_cast(high)->offset == static_cast(offset + BytesPerWord) and static_cast(high)->index == index and static_cast(high)->scale == scale)); assert(c, acquired); new (result) Assembler::Memory(base, offset, index, scale); } virtual Site* copy(Context* c) { return memorySite(c, base, offset, index, scale); } virtual Site* copyLow(Context* c) { return copy(c); } virtual Site* copyHigh(Context* c) { return memorySite(c, base, offset + BytesPerWord, index, scale); } bool acquired; int base; int offset; int index; unsigned scale; }; MemorySite* memorySite(Context* c, int base, int offset, int index, unsigned scale) { return new (c->zone->allocate(sizeof(MemorySite))) MemorySite(base, offset, index, scale); } MemorySite* frameSite(Context* c, int frameIndex) { assert(c, frameIndex >= 0); return memorySite (c, c->arch->stack(), frameIndexToOffset(c, frameIndex), NoRegister, 0); } void move(Context* c, Value* value, Site* src, Site* dst) { src->freeze(c, value); addSite(c, value, dst); src->thaw(c, value); if (dst->type(c) == MemoryOperand and (src->type(c) == MemoryOperand or src->type(c) == AddressOperand)) { src->freeze(c, value); Site* tmp = freeRegisterSite(c); addSite(c, value, tmp); src->thaw(c, value); if (DebugMoves) { char srcb[256]; src->toString(c, srcb, 256); char tmpb[256]; tmp->toString(c, tmpb, 256); fprintf(stderr, "move %s to %s for %p\n", srcb, tmpb, value); } apply(c, Move, BytesPerWord, src, 0, BytesPerWord, tmp, 0); src = tmp; } if (DebugMoves) { char srcb[256]; src->toString(c, srcb, 256); char dstb[256]; dst->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p\n", srcb, dstb, value); } apply(c, Move, BytesPerWord, src, 0, BytesPerWord, dst, 0); } unsigned sitesToString(Context* c, Site* sites, char* buffer, unsigned size) { unsigned total = 0; for (Site* s = sites; s; s = s->next) { total += s->toString(c, buffer + total, size - total); if (s->next) { assert(c, size > total + 2); memcpy(buffer + total, ", ", 2); total += 2; } } assert(c, size > total); buffer[total] = 0; return total; } unsigned sitesToString(Context* c, Value* v, char* buffer, unsigned size) { unsigned total = 0; Value* p = v; do { if (total) { assert(c, size > total + 2); memcpy(buffer + total, "; ", 2); total += 2; } if (p->sites) { total += snprintf(buffer + total, size - total, "%p has ", p); total += sitesToString(c, p->sites, buffer + total, size - total); } else { total += snprintf(buffer + total, size - total, "%p has nothing", p); } p = p->buddy; } while (p != v); return total; } Site* pickTargetSite(Context* c, Read* read, bool intersectRead = false, unsigned registerReserveCount = 0) { Target target(pickTarget(c, read, intersectRead, registerReserveCount)); expect(c, target.cost < Target::Impossible); if (target.type == MemoryOperand) { return frameSite(c, target.index); } else { return registerSite(c, target.index); } } void steal(Context* c, Resource* r, Value* thief) { if (DebugResources) { char resourceBuffer[256]; r->toString(c, resourceBuffer, 256); char siteBuffer[1024]; sitesToString(c, r->value, siteBuffer, 1024); fprintf(stderr, "%p steal %s from %p (%s)\n", thief, resourceBuffer, r->value, siteBuffer); } if (not ((thief and buddies(thief, r->value)) or hasMoreThanOneSite(r->value))) { r->site->freeze(c, r->value); move(c, r->value, r->site, pickTargetSite (c, live(r->value), false, StealRegisterReserveCount)); r->site->thaw(c, r->value); } removeSite(c, r->value, r->site); } void acquire(Context* c, Resource* resource, Value* value, Site* site) { assert(c, value); assert(c, site); if (not resource->reserved) { if (DebugResources) { char buffer[256]; resource->toString(c, buffer, 256); fprintf(stderr, "%p acquire %s\n", value, buffer); } if (resource->value) { assert(c, findSite(c, resource->value, resource->site)); steal(c, resource, value); } resource->value = value; resource->site = site; } } void release(Context* c, Resource* resource, Value* value UNUSED, Site* site UNUSED) { if (not resource->reserved) { if (DebugResources) { char buffer[256]; resource->toString(c, buffer, 256); fprintf(stderr, "%p release %s\n", resource->value, buffer); } assert(c, resource->value); assert(c, resource->site); assert(c, buddies(resource->value, value)); assert(c, site == resource->site); resource->value = 0; resource->site = 0; } } class SingleRead: public Read { public: SingleRead(const SiteMask& mask): next_(0), mask(mask) { } virtual bool intersect(SiteMask* mask) { *mask = ::intersect(*mask, this->mask); return true; } virtual bool valid() { return true; } virtual void append(Context* c UNUSED, Read* r) { assert(c, next_ == 0); next_ = r; } virtual Read* next(Context*) { return next_; } Read* next_; SiteMask mask; }; Read* read(Context* c, const SiteMask& mask) { assert(c, (mask.typeMask != 1 << MemoryOperand) or mask.frameIndex >= 0); return new (c->zone->allocate(sizeof(SingleRead))) SingleRead(mask); } Read* anyRegisterRead(Context* c) { return read(c, SiteMask(1 << RegisterOperand, ~0, NoFrameIndex)); } Read* registerOrConstantRead(Context* c) { return read (c, SiteMask ((1 << RegisterOperand) | (1 << ConstantOperand), ~0, NoFrameIndex)); } Read* fixedRegisterRead(Context* c, int number) { return read(c, SiteMask(1 << RegisterOperand, 1 << number, NoFrameIndex)); } class MultiRead: public Read { public: MultiRead(): reads(0), lastRead(0), firstTarget(0), lastTarget(0), visited(false) { } virtual bool intersect(SiteMask* mask) { bool result = false; if (not visited) { visited = true; for (Cell** cell = &reads; *cell;) { Read* r = static_cast((*cell)->value); bool valid = r->intersect(mask); if (valid) { result = true; cell = &((*cell)->next); } else { *cell = (*cell)->next; } } visited = false; } return result; } virtual bool valid() { bool result = false; if (not visited) { visited = true; for (Cell** cell = &reads; *cell;) { Read* r = static_cast((*cell)->value); if (r->valid()) { result = true; cell = &((*cell)->next); } else { *cell = (*cell)->next; } } visited = false; } return result; } virtual void append(Context* c, Read* r) { Cell* cell = cons(c, r, 0); if (lastRead == 0) { reads = cell; } else { lastRead->next = cell; } lastRead = cell; lastTarget->value = r; } virtual Read* next(Context* c) { abort(c); } void allocateTarget(Context* c) { Cell* cell = cons(c, 0, 0); if (lastTarget) { lastTarget->next = cell; } else { firstTarget = cell; } lastTarget = cell; } Read* nextTarget() { Read* r = static_cast(firstTarget->value); firstTarget = firstTarget->next; return r; } Cell* reads; Cell* lastRead; Cell* firstTarget; Cell* lastTarget; bool visited; }; MultiRead* multiRead(Context* c) { return new (c->zone->allocate(sizeof(MultiRead))) MultiRead; } class StubRead: public Read { public: StubRead(): next_(0), read(0), visited(false), valid_(true) { } virtual bool intersect(SiteMask* mask) { if (not visited) { visited = true; if (read) { bool valid = read->intersect(mask); if (not valid) { read = 0; } } visited = false; } return valid_; } virtual bool valid() { return valid_; } virtual void append(Context* c UNUSED, Read* r) { assert(c, next_ == 0); next_ = r; } virtual Read* next(Context*) { return next_; } Read* next_; Read* read; bool visited; bool valid_; }; StubRead* stubRead(Context* c) { return new (c->zone->allocate(sizeof(StubRead))) StubRead; } void asAssemblerOperand(Context* c, Site* low, Site* high, Assembler::Operand* result) { low->asAssemblerOperand(c, high, result); } class OperandUnion: public Assembler::Operand { // must be large enough and aligned properly to hold any operand // type (we'd use an actual union type here, except that classes // with constructors cannot be used in a union): uintptr_t padding[4]; }; void apply(Context* c, UnaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High) { assert(c, s1High == 0 or s1Low->type(c) == s1High->type(c)); OperandType s1Type = s1Low->type(c); OperandUnion s1Union; asAssemblerOperand(c, s1Low, s1High, &s1Union); c->assembler->apply(op, s1Size, s1Type, &s1Union); } void apply(Context* c, BinaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High, unsigned s2Size, Site* s2Low, Site* s2High) { assert(c, s1High == 0 or s1Low->type(c) == s1High->type(c)); assert(c, s2High == 0 or s2Low->type(c) == s2High->type(c)); OperandType s1Type = s1Low->type(c); OperandUnion s1Union; asAssemblerOperand(c, s1Low, s1High, &s1Union); OperandType s2Type = s2Low->type(c); OperandUnion s2Union; asAssemblerOperand(c, s2Low, s2High, &s2Union); c->assembler->apply(op, s1Size, s1Type, &s1Union, s2Size, s2Type, &s2Union); } void apply(Context* c, TernaryOperation op, unsigned s1Size, Site* s1Low, Site* s1High, unsigned s2Size, Site* s2Low, Site* s2High, unsigned s3Size, Site* s3Low, Site* s3High) { assert(c, s1High == 0 or s1Low->type(c) == s1High->type(c)); assert(c, s2High == 0 or s2Low->type(c) == s2High->type(c)); assert(c, s3High == 0 or s3Low->type(c) == s3High->type(c)); OperandType s1Type = s1Low->type(c); OperandUnion s1Union; asAssemblerOperand(c, s1Low, s1High, &s1Union); OperandType s2Type = s2Low->type(c); OperandUnion s2Union; asAssemblerOperand(c, s2Low, s2High, &s2Union); OperandType s3Type = s3Low->type(c); OperandUnion s3Union; asAssemblerOperand(c, s3Low, s3High, &s3Union); c->assembler->apply(op, s1Size, s1Type, &s1Union, s2Size, s2Type, &s2Union, s3Size, s3Type, &s3Union); } void addRead(Context* c, Event* e, Value* v, Read* r) { if (DebugReads) { fprintf(stderr, "add read %p to %p last %p event %p (%s)\n", r, v, v->lastRead, e, (e ? e->name() : 0)); } r->value = v; if (e) { r->event = e; r->eventNext = e->reads; e->reads = r; ++ e->readCount; } if (v->lastRead) { // if (DebugReads) { // fprintf(stderr, "append %p to %p for %p\n", r, v->lastRead, v); // } v->lastRead->append(c, r); } else { v->reads = r; } v->lastRead = r; } void clean(Context* c, Value* v, unsigned popIndex) { for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); if (not (s->match(c, SiteMask(1 << MemoryOperand, 0, AnyFrameIndex)) and offsetToFrameIndex (c, static_cast(s)->offset) >= popIndex)) { if (false) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "remove %s from %p at %d pop index %d\n", buffer, v, offsetToFrameIndex (c, static_cast(s)->offset), popIndex); } it.remove(c); } } } void clean(Context* c, Event* e, Stack* stack, Local* locals, Read* reads, unsigned popIndex) { for (FrameIterator it(c, stack, locals); it.hasMore();) { FrameIterator::Element e = it.next(c); clean(c, e.value, popIndex); } for (Read* r = reads; r; r = r->eventNext) { popRead(c, e, r->value); } } CodePromise* codePromise(Context* c, Event* e) { return e->promises = new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, e->promises); } CodePromise* codePromise(Context* c, Promise* offset) { return new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, offset); } void append(Context* c, Event* e); void saveLocals(Context* c, Event* e) { for (unsigned li = 0; li < c->localFootprint; ++li) { Local* local = e->localsBefore + li; if (local->value) { if (DebugReads) { fprintf(stderr, "local save read %p at %d of %d\n", local->value, ::frameIndex(c, li), c->alignedFrameSize + c->parameterFootprint); } addRead(c, e, local->value, read (c, SiteMask(1 << MemoryOperand, 0, ::frameIndex(c, li)))); } } } class CallEvent: public Event { public: CallEvent(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount, unsigned stackArgumentFootprint): Event(c), address(address), traceHandler(traceHandler), result(result), popIndex(0), padIndex(0), padding(0), flags(flags), resultSize(resultSize) { uint32_t registerMask = ~0; Stack* s = argumentStack; unsigned index = 0; unsigned frameIndex = 0; if (argumentCount) { while (true) { Read* target; if (index < c->arch->argumentRegisterCount()) { int number = c->arch->argumentRegister(index); if (DebugReads) { fprintf(stderr, "reg %d arg read %p\n", number, s->value); } target = fixedRegisterRead(c, number); registerMask &= ~(1 << number); } else { if (DebugReads) { fprintf(stderr, "stack %d arg read %p\n", frameIndex, s->value); } target = read(c, SiteMask(1 << MemoryOperand, 0, frameIndex)); ++ frameIndex; } addRead(c, this, s->value, target); if ((++ index) < argumentCount) { s = s->next; } else { break; } } } if (DebugReads) { fprintf(stderr, "address read %p\n", address); } addRead(c, this, address, read (c, SiteMask(~0, registerMask, AnyFrameIndex))); int footprint = stackArgumentFootprint; for (Stack* s = stackBefore; s; s = s->next) { if (s->value) { if (footprint > 0) { if (DebugReads) { fprintf(stderr, "stack arg read %p at %d of %d\n", s->value, frameIndex, c->alignedFrameSize + c->parameterFootprint); } addRead(c, this, s->value, read (c, SiteMask(1 << MemoryOperand, 0, frameIndex))); } else { unsigned logicalIndex = ::frameIndex (c, s->index + c->localFootprint); if (DebugReads) { fprintf(stderr, "stack save read %p at %d of %d\n", s->value, logicalIndex, c->alignedFrameSize + c->parameterFootprint); } addRead(c, this, s->value, read (c, SiteMask(1 << MemoryOperand, 0, logicalIndex))); } } -- footprint; if (footprint == 0) { unsigned logicalIndex = ::frameIndex(c, s->index + c->localFootprint); assert(c, logicalIndex >= frameIndex); padding = logicalIndex - frameIndex; padIndex = s->index + c->localFootprint; } ++ frameIndex; } popIndex = c->alignedFrameSize + c->parameterFootprint - (stackBefore ? stackBefore->index + 1 - stackArgumentFootprint : 0) - c->localFootprint; assert(c, static_cast(popIndex) >= 0); saveLocals(c, this); } virtual const char* name() { return "CallEvent"; } virtual void compile(Context* c) { apply(c, (flags & Compiler::Aligned) ? AlignedCall : Call, BytesPerWord, address->source, 0); if (traceHandler) { traceHandler->handleTrace(codePromise(c, c->assembler->offset()), padIndex, padding); } clean(c, this, stackBefore, localsBefore, reads, popIndex); if (resultSize and live(result)) { addSite(c, result, registerSite(c, c->arch->returnLow())); if (resultSize > BytesPerWord and live(result->high)) { addSite(c, result->high, registerSite(c, c->arch->returnHigh())); } } } Value* address; TraceHandler* traceHandler; Value* result; unsigned popIndex; unsigned padIndex; unsigned padding; unsigned flags; unsigned resultSize; }; void appendCall(Context* c, Value* address, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount, unsigned stackArgumentFootprint) { append(c, new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, flags, traceHandler, result, resultSize, argumentStack, argumentCount, stackArgumentFootprint)); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, this, value, fixedRegisterRead(c, c->arch->returnLow())); if (size > BytesPerWord) { addRead(c, this, value->high, fixedRegisterRead(c, c->arch->returnHigh())); } } } virtual const char* name() { return "ReturnEvent"; } virtual void compile(Context* c) { for (Read* r = reads; r; r = r->eventNext) { popRead(c, this, r->value); } c->assembler->popFrame(); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, Value* value) { append(c, new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value)); } void addBuddy(Value* original, Value* buddy) { buddy->buddy = original; Value* p = original; while (p->buddy != original) p = p->buddy; p->buddy = buddy; if (DebugBuddies) { fprintf(stderr, "add buddy %p to", buddy); for (Value* p = buddy->buddy; p != buddy; p = p->buddy) { fprintf(stderr, " %p", p); } fprintf(stderr, "\n"); } } void maybeMove(Context* c, BinaryOperation type, unsigned srcSize, Value* src, unsigned dstSize, Value* dst, const SiteMask& dstMask) { Read* read = live(dst); bool isStore = read == 0; Site* target; if (dst->target) { target = dst->target; } else if (isStore) { return; } else { target = pickTargetSite(c, read); } unsigned cost = src->source->copyCost(c, target); if (srcSize != dstSize) cost = 1; if (cost) { bool useTemporary = ((target->type(c) == MemoryOperand and src->source->type(c) == MemoryOperand) or (srcSize != dstSize and target->type(c) != RegisterOperand)); addSite(c, dst, target); if (target->match(c, dstMask) and not useTemporary) { if (DebugMoves) { char srcb[256]; src->source->toString(c, srcb, 256); char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, type, srcSize, src->source, 0, dstSize, target, 0); } else { target->freeze(c, dst); assert(c, dstMask.typeMask & (1 << RegisterOperand)); Site* tmpTarget = freeRegisterSite(c, dstMask.registerMask); addSite(c, dst, tmpTarget); if (DebugMoves) { char srcb[256]; src->source->toString(c, srcb, 256); char dstb[256]; tmpTarget->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, type, srcSize, src->source, 0, dstSize, tmpTarget, 0); if (useTemporary or isStore) { if (DebugMoves) { char srcb[256]; tmpTarget->toString(c, srcb, 256); char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p to %p\n", srcb, dstb, src, dst); } apply(c, Move, dstSize, tmpTarget, 0, dstSize, target, 0); if (isStore) { removeSite(c, dst, tmpTarget); } } else { removeSite(c, dst, target); } target->thaw(c, dst); } } else { target = src->source; addBuddy(src, dst); if (DebugMoves) { char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "null move in %s for %p to %p\n", dstb, src, dst); } } if (isStore) { removeSite(c, dst, target); } } Value* value(Context* c, Site* site = 0, Site* target = 0) { return new (c->zone->allocate(sizeof(Value))) Value(site, target); } void split(Context* c, Value* v) { assert(c, v->high == 0); v->high = value(c); for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); removeSite(c, v, s); addSite(c, v, s->copyLow(c)); addSite(c, v->high, s->copyHigh(c)); } } void maybeSplit(Context* c, Value* v) { if (v->high == 0) { split(c, v); } } void grow(Context* c, Value* v) { assert(c, v->high == 0); v->high = value(c); } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned srcSize, Value* src, unsigned dstSize, Value* dst, const SiteMask& srcLowMask, const SiteMask& srcHighMask, const SiteMask& dstLowMask, const SiteMask& dstHighMask): Event(c), type(type), srcSize(srcSize), src(src), dstSize(dstSize), dst(dst), dstLowMask(dstLowMask), dstHighMask(dstHighMask) { addRead(c, this, src, read(c, srcLowMask)); if (srcSize > BytesPerWord) { maybeSplit(c, src); addRead(c, this, src->high, read(c, srcHighMask)); } if (dstSize > BytesPerWord) { grow(c, dst); } } virtual const char* name() { return "MoveEvent"; } virtual void compile(Context* c) { if (srcSize <= BytesPerWord and dstSize <= BytesPerWord) { maybeMove(c, type, srcSize, src, dstSize, dst, dstLowMask); } else if (srcSize == dstSize) { maybeMove(c, Move, BytesPerWord, src, BytesPerWord, dst, dstLowMask); maybeMove(c, Move, BytesPerWord, src->high, BytesPerWord, dst->high, dstHighMask); } else if (srcSize > BytesPerWord) { assert(c, dstSize == BytesPerWord); maybeMove(c, Move, BytesPerWord, src, BytesPerWord, dst, dstLowMask); } else { assert(c, srcSize == BytesPerWord); if (dst->high->target or live(dst->high)) { assert(c, dstLowMask.typeMask & (1 << RegisterOperand)); Site* low = freeRegisterSite(c, dstLowMask.registerMask); src->source->freeze(c, src); addSite(c, dst, low); src->source->thaw(c, src); if (DebugMoves) { char srcb[256]; src->source->toString(c, srcb, 256); char dstb[256]; low->toString(c, dstb, 256); fprintf(stderr, "move %s to %s for %p\n", srcb, dstb, src); } apply(c, Move, BytesPerWord, src->source, 0, BytesPerWord, low, 0); assert(c, dstHighMask.typeMask & (1 << RegisterOperand)); Site* high = freeRegisterSite(c, dstHighMask.registerMask); low->freeze(c, dst); addSite(c, dst->high, high); low->thaw(c, dst); if (DebugMoves) { char srcb[256]; low->toString(c, srcb, 256); char dstb[256]; high->toString(c, dstb, 256); fprintf(stderr, "extend %s to %s for %p %p\n", srcb, dstb, dst, dst->high); } apply(c, Move, BytesPerWord, low, 0, dstSize, low, high); } else { maybeMove(c, Move, BytesPerWord, src, BytesPerWord, dst, dstLowMask); } } for (Read* r = reads; r; r = r->eventNext) { popRead(c, this, r->value); } } BinaryOperation type; unsigned srcSize; Value* src; unsigned dstSize; Value* dst; SiteMask dstLowMask; SiteMask dstHighMask; }; void appendMove(Context* c, BinaryOperation type, unsigned srcSize, Value* src, unsigned dstSize, Value* dst) { bool thunk; uint8_t srcTypeMask; uint64_t srcRegisterMask; uint8_t dstTypeMask; uint64_t dstRegisterMask; c->arch->plan(type, srcSize, &srcTypeMask, &srcRegisterMask, dstSize, &dstTypeMask, &dstRegisterMask, &thunk); assert(c, not thunk); append(c, new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent (c, type, srcSize, src, dstSize, dst, SiteMask(srcTypeMask, srcRegisterMask, AnyFrameIndex), SiteMask(srcTypeMask, srcRegisterMask >> 32, AnyFrameIndex), SiteMask(dstTypeMask, dstRegisterMask, AnyFrameIndex), SiteMask(dstTypeMask, dstRegisterMask >> 32, AnyFrameIndex))); } ConstantSite* findConstantSite(Context* c, Value* v) { for (SiteIterator it(v); it.hasMore();) { Site* s = it.next(); if (s->type(c) == ConstantOperand) { return static_cast(s); } } return 0; } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second, const SiteMask& firstMask, const SiteMask& secondMask): Event(c), size(size), first(first), second(second) { addRead(c, this, first, read(c, firstMask)); addRead(c, this, second, read(c, secondMask)); } virtual const char* name() { return "CompareEvent"; } virtual void compile(Context* c) { ConstantSite* firstConstant = findConstantSite(c, first); ConstantSite* secondConstant = findConstantSite(c, second); if (firstConstant and secondConstant) { int64_t d = firstConstant->value->value() - secondConstant->value->value(); if (d < 0) { c->constantCompare = CompareLess; } else if (d > 0) { c->constantCompare = CompareGreater; } else { c->constantCompare = CompareEqual; } } else { c->constantCompare = CompareNone; apply(c, Compare, size, first->source, 0, size, second->source, 0); } popRead(c, this, first); popRead(c, this, second); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t secondTypeMask; uint64_t secondRegisterMask; c->arch->plan(Compare, size, &firstTypeMask, &firstRegisterMask, size, &secondTypeMask, &secondRegisterMask, &thunk); assert(c, not thunk); // todo append(c, new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent (c, size, first, second, SiteMask(firstTypeMask, firstRegisterMask, AnyFrameIndex), SiteMask(secondTypeMask, secondRegisterMask, AnyFrameIndex))); } void preserve(Context* c, Value* v, Site* s, Read* r) { s->freeze(c, v); move(c, v, s, pickTargetSite(c, r)); s->thaw(c, v); } void maybePreserve(Context* c, Value* v, Site* s) { Read* r = liveNext(c, v); if (r and not hasMoreThanOneSite(v)) { preserve(c, v, s, r); } } Site* getTarget(Context* c, Value* value, Value* result, const SiteMask& resultMask) { if (c->arch->condensedAddressing()) { Site* s = value->source; maybePreserve(c, value, s); removeSite(c, value, s); s->freeze(c, value); return s; } else { SingleRead r(resultMask); Site* s = pickTargetSite(c, &r); addSite(c, result, s); return s; } } Site* source(Value* v) { return v ? v->source : 0; } void freezeSource(Context* c, unsigned size, Value* v) { v->source->freeze(c, v); if (size > BytesPerWord) { v->high->source->freeze(c, v->high); } } void thawSource(Context* c, unsigned size, Value* v) { v->source->thaw(c, v); if (size > BytesPerWord) { v->high->source->thaw(c, v->high); } } class CombineEvent: public Event { public: CombineEvent(Context* c, TernaryOperation type, unsigned firstSize, Value* first, unsigned secondSize, Value* second, unsigned resultSize, Value* result, const SiteMask& firstLowMask, const SiteMask& firstHighMask, const SiteMask& secondLowMask, const SiteMask& secondHighMask, const SiteMask& resultLowMask, const SiteMask& resultHighMask): Event(c), type(type), firstSize(firstSize), first(first), secondSize(secondSize), second(second), resultSize(resultSize), result(result), resultLowMask(resultLowMask), resultHighMask(resultHighMask) { addRead(c, this, first, read(c, firstLowMask)); if (firstSize > BytesPerWord) { addRead(c, this, first->high, read(c, firstHighMask)); } addRead(c, this, second, read(c, secondLowMask)); if (secondSize > BytesPerWord) { addRead(c, this, second->high, read(c, secondHighMask)); } if (resultSize > BytesPerWord) { grow(c, result); } } virtual const char* name() { return "CombineEvent"; } virtual void compile(Context* c) { freezeSource(c, firstSize, first); Site* low = getTarget(c, second, result, resultLowMask); Site* high = (resultSize > BytesPerWord ? getTarget(c, second->high, result->high, resultHighMask) : 0); // fprintf(stderr, "combine %p and %p into %p\n", first, second, result); apply(c, type, firstSize, first->source, source(first->high), secondSize, second->source, source(second->high), resultSize, low, high); thawSource(c, firstSize, first); for (Read* r = reads; r; r = r->eventNext) { popRead(c, this, r->value); } if (c->arch->condensedAddressing()) { low->thaw(c, second); if (resultSize > BytesPerWord) { high->thaw(c, second->high); } if (live(result)) { addSite(c, result, low); if (resultSize > BytesPerWord and live(result->high)) { addSite(c, result->high, high); } } } } TernaryOperation type; unsigned firstSize; Value* first; unsigned secondSize; Value* second; unsigned resultSize; Value* result; SiteMask resultLowMask; SiteMask resultHighMask; }; void removeBuddy(Context* c, Value* v) { if (v->buddy != v) { if (DebugBuddies) { fprintf(stderr, "remove buddy %p from", v); for (Value* p = v->buddy; p != v; p = p->buddy) { fprintf(stderr, " %p", p); } fprintf(stderr, "\n"); } Value* next = v->buddy; v->buddy = v; Value* p = next; while (p->buddy != v) p = p->buddy; p->buddy = next; if (not live(next)) { clearSites(c, next); } if (not live(v)) { clearSites(c, v); } } } Site* copy(Context* c, Site* s) { Site* start = 0; Site* end = 0; for (; s; s = s->next) { Site* n = s->copy(c); if (end) { end->next = n; } else { start = n; } end = n; } return start; } class Snapshot { public: Snapshot(Context* c, Value* value, Snapshot* next): value(value), buddy(value->buddy), sites(copy(c, value->sites)), next(next) { } Value* value; Value* buddy; Site* sites; Snapshot* next; }; Snapshot* snapshot(Context* c, Value* value, Snapshot* next) { if (DebugControl) { char buffer[256]; sitesToString(c, value->sites, buffer, 256); fprintf(stderr, "snapshot %p buddy %p sites %s\n", value, value->buddy, buffer); } return new (c->zone->allocate(sizeof(Snapshot))) Snapshot(c, value, next); } Snapshot* makeSnapshots(Context* c, Value* value, Snapshot* next) { next = snapshot(c, value, next); for (Value* p = value->buddy; p != value; p = p->buddy) { next = snapshot(c, p, next); } return next; } Stack* stack(Context* c, Value* value, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(next ? next->index + 1 : 0, value, next); } Value* maybeBuddy(Context* c, Value* v); Value* push(Context* c, unsigned footprint, Value* v) { assert(c, footprint); Value* high; if (footprint > 1) { assert(c, footprint == 2); if (BytesPerWord == 4 and v->high == 0) { split(c, v); } high = push(c, 1, v->high); } else if (v) { high = v->high; } else { high = 0; } if (v) { v = maybeBuddy(c, v); v->high = high; } Stack* s = stack(c, v, c->stack); if (DebugFrame) { fprintf(stderr, "push %p\n", v); } if (v) { v->home = frameIndex(c, s->index + c->localFootprint); } c->stack = s; return v; } Value* pop(Context* c, unsigned footprint) { assert(c, footprint); Stack* s = c->stack; assert(c, s->value == 0 or s->value->home >= 0); if (DebugFrame) { fprintf(stderr, "pop %p\n", s->value); } c->stack = s->next; if (footprint > 1) { assert(c, footprint == 2); assert(c, s->value->high == s->next->value and ((BytesPerWord == 8) xor (s->value->high != 0))); pop(c, 1); } return s->value; } Value* storeLocal(Context* c, unsigned footprint, Value* v, unsigned index) { assert(c, index + footprint <= c->localFootprint); Value* high; if (footprint > 1) { assert(c, footprint == 2); if (BytesPerWord == 4) { assert(c, v->high); high = storeLocal(c, 1, v->high, index); } else { high = 0; } ++ index; } else { high = v->high; } v = maybeBuddy(c, v); v->high = high; Local* local = c->locals + index; unsigned sizeInBytes = sizeof(Local) * c->localFootprint; Local* newLocals = static_cast(c->zone->allocate(sizeInBytes)); memcpy(newLocals, c->locals, sizeInBytes); c->locals = newLocals; local = c->locals + index; local->value = v; if (DebugFrame) { fprintf(stderr, "store local %p at %d\n", local->value, index); } local->value->home = frameIndex(c, index); return v; } Value* loadLocal(Context* c, unsigned footprint UNUSED, unsigned index) { assert(c, index + footprint <= c->localFootprint); if (footprint > 1) { assert(c, footprint == 2); ++ index; } assert(c, c->locals[index].value); assert(c, c->locals[index].value->home >= 0); if (DebugFrame) { fprintf(stderr, "load local %p at %d\n", c->locals[index].value, index); } return c->locals[index].value; } void appendCombine(Context* c, TernaryOperation type, unsigned firstSize, Value* first, unsigned secondSize, Value* second, unsigned resultSize, Value* result) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t secondTypeMask; uint64_t secondRegisterMask; uint8_t resultTypeMask; uint64_t resultRegisterMask; c->arch->plan(type, firstSize, &firstTypeMask, &firstRegisterMask, secondSize, &secondTypeMask, &secondRegisterMask, resultSize, &resultTypeMask, &resultRegisterMask, &thunk); if (thunk) { Stack* oldStack = c->stack; ::push(c, ceiling(secondSize, BytesPerWord), second); ::push(c, ceiling(firstSize, BytesPerWord), first); Stack* argumentStack = c->stack; c->stack = oldStack; appendCall (c, value(c, constantSite(c, c->client->getThunk(type, resultSize))), 0, 0, result, resultSize, argumentStack, ceiling(secondSize, BytesPerWord) + ceiling(firstSize, BytesPerWord), 0); } else { append (c, new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent (c, type, firstSize, first, secondSize, second, resultSize, result, SiteMask(firstTypeMask, firstRegisterMask, AnyFrameIndex), SiteMask(firstTypeMask, firstRegisterMask >> 32, AnyFrameIndex), SiteMask(secondTypeMask, secondRegisterMask, AnyFrameIndex), SiteMask(secondTypeMask, secondRegisterMask >> 32, AnyFrameIndex), SiteMask(resultTypeMask, resultRegisterMask, AnyFrameIndex), SiteMask(resultTypeMask, resultRegisterMask >> 32, AnyFrameIndex))); } } class TranslateEvent: public Event { public: TranslateEvent(Context* c, BinaryOperation type, unsigned size, Value* value, Value* result, const SiteMask& valueLowMask, const SiteMask& valueHighMask, const SiteMask& resultLowMask, const SiteMask& resultHighMask): Event(c), type(type), size(size), value(value), result(result), resultLowMask(resultLowMask), resultHighMask(resultHighMask) { addRead(c, this, value, read(c, valueLowMask)); if (size > BytesPerWord) { addRead(c, this, value->high, read(c, valueHighMask)); grow(c, result); } } virtual const char* name() { return "TranslateEvent"; } virtual void compile(Context* c) { Site* low = getTarget(c, value, result, resultLowMask); Site* high = (size > BytesPerWord ? getTarget(c, value->high, result->high, resultHighMask) : 0); apply(c, type, size, value->source, source(value->high), size, low, high); for (Read* r = reads; r; r = r->eventNext) { popRead(c, this, r->value); } if (c->arch->condensedAddressing()) { low->thaw(c, value); if (size > BytesPerWord) { high->thaw(c, value->high); } if (live(result)) { addSite(c, result, low); if (size > BytesPerWord and live(result->high)) { addSite(c, result->high, high); } } } } BinaryOperation type; unsigned size; Value* value; Value* result; Read* resultRead; SiteMask resultLowMask; SiteMask resultHighMask; }; void appendTranslate(Context* c, BinaryOperation type, unsigned size, Value* value, Value* result) { bool thunk; uint8_t firstTypeMask; uint64_t firstRegisterMask; uint8_t resultTypeMask; uint64_t resultRegisterMask; c->arch->plan(type, size, &firstTypeMask, &firstRegisterMask, size, &resultTypeMask, &resultRegisterMask, &thunk); assert(c, not thunk); // todo append(c, new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent (c, type, size, value, result, SiteMask(firstTypeMask, firstRegisterMask, AnyFrameIndex), SiteMask(firstTypeMask, firstRegisterMask >> 32, AnyFrameIndex), SiteMask(resultTypeMask, resultRegisterMask, AnyFrameIndex), SiteMask(resultTypeMask, resultRegisterMask >> 32, AnyFrameIndex))); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result): Event(c), base(base), displacement(displacement), index(index), scale(scale), result(result) { addRead(c, this, base, anyRegisterRead(c)); if (index) { addRead(c, this, index, registerOrConstantRead(c)); } } virtual const char* name() { return "MemoryEvent"; } virtual void compile(Context* c) { int indexRegister; int displacement = this->displacement; unsigned scale = this->scale; if (index) { ConstantSite* constant = findConstantSite(c, index); if (constant) { indexRegister = NoRegister; displacement += (constant->value->value() * scale); scale = 1; } else { assert(c, index->source->type(c) == RegisterOperand); indexRegister = static_cast(index->source)->number; } } else { indexRegister = NoRegister; } assert(c, base->source->type(c) == RegisterOperand); int baseRegister = static_cast(base->source)->number; popRead(c, this, base); if (index) { if (BytesPerWord == 8 and indexRegister != NoRegister) { apply(c, Move, 4, index->source, 0, 8, index->source, 0); } popRead(c, this, index); } Site* site = memorySite (c, baseRegister, displacement, indexRegister, scale); result->target = site; if (live(result)) { addSite(c, result, site); } if (result->high) { Site* high = site->copyHigh(c); result->high->target = high; if (live(result->high)) { addSite(c, result->high, high); } } } Value* base; int displacement; Value* index; unsigned scale; Value* result; }; void appendMemory(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result) { append(c, new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, displacement, index, scale, result)); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { address->addPredecessor(c, this); addRead(c, this, address, read(c, SiteMask(~0, ~0, AnyFrameIndex))); } virtual const char* name() { return "BranchEvent"; } virtual void compile(Context* c) { bool jump; UnaryOperation type = this->type; if (type != Jump) { switch (c->constantCompare) { case CompareLess: switch (type) { case JumpIfLess: case JumpIfLessOrEqual: case JumpIfNotEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareGreater: switch (type) { case JumpIfGreater: case JumpIfGreaterOrEqual: case JumpIfNotEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareEqual: switch (type) { case JumpIfEqual: case JumpIfLessOrEqual: case JumpIfGreaterOrEqual: jump = true; type = Jump; break; default: jump = false; } break; case CompareNone: jump = true; break; default: abort(c); } } else { jump = true; } if (jump) { apply(c, type, BytesPerWord, address->source, 0); } popRead(c, this, address); } virtual bool isBranch() { return true; } UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { append(c, new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address)); } class BoundsCheckEvent: public Event { public: BoundsCheckEvent(Context* c, Value* object, unsigned lengthOffset, Value* index, intptr_t handler): Event(c), object(object), lengthOffset(lengthOffset), index(index), handler(handler) { addRead(c, this, object, anyRegisterRead(c)); addRead(c, this, index, registerOrConstantRead(c)); } virtual const char* name() { return "BoundsCheckEvent"; } virtual void compile(Context* c) { Assembler* a = c->assembler; ConstantSite* constant = findConstantSite(c, index); CodePromise* nextPromise = codePromise (c, static_cast(0)); CodePromise* outOfBoundsPromise = 0; if (constant) { expect(c, constant->value->value() >= 0); } else { outOfBoundsPromise = codePromise(c, static_cast(0)); apply(c, Compare, 4, constantSite(c, resolved(c, 0)), 0, 4, index->source, 0); Assembler::Constant outOfBoundsConstant(outOfBoundsPromise); a->apply (JumpIfLess, BytesPerWord, ConstantOperand, &outOfBoundsConstant); } assert(c, object->source->type(c) == RegisterOperand); MemorySite length(static_cast(object->source)->number, lengthOffset, NoRegister, 1); length.acquired = true; apply(c, Compare, 4, index->source, 0, 4, &length, 0); Assembler::Constant nextConstant(nextPromise); a->apply(JumpIfGreater, BytesPerWord, ConstantOperand, &nextConstant); if (constant == 0) { outOfBoundsPromise->offset = a->offset(); } Assembler::Constant handlerConstant(resolved(c, handler)); a->apply(Call, BytesPerWord, ConstantOperand, &handlerConstant); nextPromise->offset = a->offset(); popRead(c, this, object); popRead(c, this, index); } Value* object; unsigned lengthOffset; Value* index; intptr_t handler; }; void appendBoundsCheck(Context* c, Value* object, unsigned lengthOffset, Value* index, intptr_t handler) { append(c, new (c->zone->allocate(sizeof(BoundsCheckEvent))) BoundsCheckEvent(c, object, lengthOffset, index, handler)); } class FrameSiteEvent: public Event { public: FrameSiteEvent(Context* c, Value* value, int index): Event(c), value(value), index(index) { } virtual const char* name() { return "FrameSiteEvent"; } virtual void compile(Context* c) { if (live(value)) { addSite(c, value, frameSite(c, index)); } } Value* value; int index; }; void appendFrameSite(Context* c, Value* value, int index) { append(c, new (c->zone->allocate(sizeof(FrameSiteEvent))) FrameSiteEvent(c, value, index)); } unsigned frameFootprint(Context* c, Stack* s) { return c->localFootprint + (s ? (s->index + 1) : 0); } void visit(Context* c, Link* link) { // fprintf(stderr, "visit link from %d to %d fork %p junction %p\n", // link->predecessor->logicalInstruction->index, // link->successor->logicalInstruction->index, // link->forkState, // link->junctionState); ForkState* forkState = link->forkState; if (forkState) { for (unsigned i = 0; i < forkState->readCount; ++i) { ForkElement* p = forkState->elements + i; Value* v = p->value; v->reads = p->read->nextTarget(); // fprintf(stderr, "next read %p for %p\n", v->reads, v); if (not live(v)) { clearSites(c, v); } } } JunctionState* junctionState = link->junctionState; if (junctionState) { for (unsigned i = 0; i < junctionState->frameFootprint; ++i) { StubReadPair* p = junctionState->reads + i; if (p->value and p->value->reads) { assert(c, p->value->reads == p->read); popRead(c, 0, p->value); } } } } class BuddyEvent: public Event { public: BuddyEvent(Context* c, Value* original, Value* buddy): Event(c), original(original), buddy(buddy) { addRead(c, this, original, read(c, SiteMask(~0, ~0, AnyFrameIndex))); } virtual const char* name() { return "BuddyEvent"; } virtual void compile(Context* c) { // fprintf(stderr, "original %p buddy %p\n", original, buddy); assert(c, hasSite(original)); addBuddy(original, buddy); popRead(c, this, original); } Value* original; Value* buddy; }; void appendBuddy(Context* c, Value* original, Value* buddy) { append(c, new (c->zone->allocate(sizeof(BuddyEvent))) BuddyEvent(c, original, buddy)); } class SaveLocalsEvent: public Event { public: SaveLocalsEvent(Context* c): Event(c) { saveLocals(c, this); } virtual const char* name() { return "SaveLocalsEvent"; } virtual void compile(Context* c) { for (Read* r = reads; r; r = r->eventNext) { popRead(c, this, r->value); } } }; void appendSaveLocals(Context* c) { append(c, new (c->zone->allocate(sizeof(SaveLocalsEvent))) SaveLocalsEvent(c)); } class DummyEvent: public Event { public: DummyEvent(Context* c): Event(c) { } virtual const char* name() { return "DummyEvent"; } virtual void compile(Context*) { } }; void appendDummy(Context* c) { Stack* stack = c->stack; Local* locals = c->locals; LogicalInstruction* i = c->logicalCode[c->logicalIp]; c->stack = i->stack; c->locals = i->locals; append(c, new (c->zone->allocate(sizeof(DummyEvent))) DummyEvent(c)); c->stack = stack; c->locals = locals; } void append(Context* c, Event* e) { LogicalInstruction* i = c->logicalCode[c->logicalIp]; if (c->stack != i->stack or c->locals != i->locals) { appendDummy(c); } if (DebugAppend) { fprintf(stderr, " -- append %s at %d with %d stack before\n", e->name(), e->logicalInstruction->index, c->stack ? c->stack->index + 1 : 0); } if (c->lastEvent) { c->lastEvent->next = e; } else { c->firstEvent = e; } c->lastEvent = e; Event* p = c->predecessor; if (p) { Link* link = ::link(c, p, e->predecessors, e, p->successors, c->forkState); e->predecessors = link; p->successors = link; } c->forkState = 0; c->predecessor = e; if (e->logicalInstruction->firstEvent == 0) { e->logicalInstruction->firstEvent = e; } e->logicalInstruction->lastEvent = e; } bool acceptMatch(Context* c, Site* s, Read*, const SiteMask& mask) { return s->match(c, mask); } bool isHome(Value* v, int frameIndex) { Value* p = v; do { if (p->home == frameIndex) { return true; } p = p->buddy; } while (p != v); return false; } bool acceptForResolve(Context* c, Site* s, Read* read, const SiteMask& mask) { if (acceptMatch(c, s, read, mask) and (not s->frozen(c))) { if (s->type(c) == RegisterOperand) { return c->availableRegisterCount > ResolveRegisterReserveCount; } else { assert(c, s->match(c, SiteMask(1 << MemoryOperand, 0, AnyFrameIndex))); return isHome(read->value, offsetToFrameIndex (c, static_cast(s)->offset)); } } else { return false; } } Site* pickSourceSite(Context* c, Read* read, Site* target = 0, unsigned* cost = 0, uint8_t typeMask = ~0, bool intersectRead = true, bool includeBuddies = true, bool (*accept)(Context*, Site*, Read*, const SiteMask&) = acceptMatch) { SiteMask mask(typeMask, ~0, AnyFrameIndex); if (intersectRead) { read->intersect(&mask); } Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (SiteIterator it(read->value, includeBuddies); it.hasMore();) { Site* s = it.next(); if (accept(c, s, read, mask)) { unsigned v = s->copyCost(c, target); if (v < copyCost) { site = s; copyCost = v; } } } if (DebugMoves and site and target) { char srcb[256]; site->toString(c, srcb, 256); char dstb[256]; target->toString(c, dstb, 256); fprintf(stderr, "pick source %s to %s for %p cost %d\n", srcb, dstb, read->value, copyCost); } if (cost) *cost = copyCost; return site; } Site* readSource(Context* c, Read* r) { if (DebugReads) { char buffer[1024]; sitesToString(c, r->value, buffer, 1024); fprintf(stderr, "read source for %p from %s\n", r->value, buffer); } if (not hasSite(r->value)) return 0; Site* site = pickSourceSite(c, r); if (site) { return site; } else { Site* target = pickTargetSite(c, r, true); unsigned copyCost; site = pickSourceSite(c, r, target, ©Cost, ~0, false); assert(c, copyCost); move(c, r->value, site, target); return target; } } void propagateJunctionSites(Context* c, Event* e, Site** sites) { for (Link* pl = e->predecessors; pl; pl = pl->nextPredecessor) { Event* p = pl->predecessor; if (p->junctionSites == 0) { p->junctionSites = sites; for (Link* sl = p->successors; sl; sl = sl->nextSuccessor) { Event* s = sl->successor; propagateJunctionSites(c, s, sites); } } } } void propagateJunctionSites(Context* c, Event* e) { for (Link* sl = e->successors; sl; sl = sl->nextSuccessor) { Event* s = sl->successor; if (s->predecessors->nextPredecessor) { unsigned size = sizeof(Site*) * frameFootprint(c, e->stackAfter); Site** junctionSites = static_cast (c->zone->allocate(size)); memset(junctionSites, 0, size); propagateJunctionSites(c, s, junctionSites); break; } } } class SiteRecord { public: SiteRecord(Site* site, Value* value): site(site), value(value) { } SiteRecord() { } Site* site; Value* value; }; class SiteRecordList { public: SiteRecordList(SiteRecord* records, unsigned capacity): records(records), index(0), capacity(capacity) { } SiteRecord* records; unsigned index; unsigned capacity; }; void freeze(Context* c, SiteRecordList* frozen, Site* s, Value* v) { assert(c, frozen->index < frozen->capacity); s->freeze(c, v); new (frozen->records + (frozen->index ++)) SiteRecord(s, v); } void thaw(Context* c, SiteRecordList* frozen) { while (frozen->index) { SiteRecord* sr = frozen->records + (-- frozen->index); sr->site->thaw(c, sr->value); } } Site* acquireSite(Context* c, SiteRecordList* frozen, Site* target, Value* v, Read* r, bool pickSource) { assert(c, hasSite(v)); unsigned copyCost; Site* source; if (pickSource) { source = pickSourceSite(c, r, target, ©Cost, ~0, false); } else { copyCost = 0; source = target; } if (copyCost) { target = target->copy(c); move(c, v, source, target); } else { target = source; } freeze(c, frozen, target, v); return target; } bool resolveOriginalSites(Context* c, Event* e, SiteRecordList* frozen, Site** sites) { bool complete = true; for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); Value* v = el.value; Read* r = live(v); if (r) { if (sites[el.localIndex]) { if (DebugControl) { char buffer[256]; sites[el.localIndex]->toString(c, buffer, 256); fprintf(stderr, "resolve original %s for %p local %d frame %d\n", buffer, el.value, el.localIndex, frameIndex(c, &el)); } acquireSite(c, frozen, sites[el.localIndex], v, r, true); } else { complete = false; } } } return complete; } bool resolveSourceSites(Context* c, Event* e, SiteRecordList* frozen, Site** sites) { bool complete = true; for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); Value* v = el.value; Read* r = live(v); if (r and sites[el.localIndex] == 0) { const uint32_t mask = (1 << RegisterOperand) | (1 << MemoryOperand); Site* s = pickSourceSite (c, r, 0, 0, mask, true, false, acceptForResolve); if (s == 0) { s = pickSourceSite(c, r, 0, 0, mask, false, false, acceptForResolve); } if (s) { if (DebugControl) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "resolve source %s from %p local %d frame %d\n", buffer, v, el.localIndex, frameIndex(c, &el)); } sites[el.localIndex] = acquireSite(c, frozen, s, v, r, false)->copy(c); } else { complete = false; } } } return complete; } void resolveTargetSites(Context* c, Event* e, SiteRecordList* frozen, Site** sites) { for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); Value* v = el.value; Read* r = live(v); if (r and sites[el.localIndex] == 0) { const uint32_t mask = (1 << RegisterOperand) | (1 << MemoryOperand); bool useTarget = false; Site* s = pickSourceSite(c, r, 0, 0, mask, true, true, acceptForResolve); if (s == 0) { s = pickSourceSite(c, r, 0, 0, mask, false, true, acceptForResolve); if (s == 0) { s = pickTargetSite(c, r, false, ResolveRegisterReserveCount); useTarget = true; } } if (DebugControl) { char buffer[256]; s->toString(c, buffer, 256); fprintf(stderr, "resolve target %s for %p local %d frame %d\n", buffer, el.value, el.localIndex, frameIndex(c, &el)); } Site* acquired = acquireSite(c, frozen, s, v, r, useTarget)->copy(c); sites[el.localIndex] = (useTarget ? s : acquired->copy(c)); } } } void resolveJunctionSites(Context* c, Event* e, SiteRecordList* frozen) { bool complete; if (e->junctionSites) { complete = resolveOriginalSites(c, e, frozen, e->junctionSites); } else { propagateJunctionSites(c, e); complete = false; } if (e->junctionSites) { if (not complete) { complete = resolveSourceSites(c, e, frozen, e->junctionSites); if (not complete) { resolveTargetSites(c, e, frozen, e->junctionSites); } } if (DebugControl) { fprintf(stderr, "resolved junction sites %p at %d\n", e->junctionSites, e->logicalInstruction->index); } } } void resolveBranchSites(Context* c, Event* e, SiteRecordList* frozen) { if (e->successors->nextSuccessor and e->junctionSites == 0) { unsigned footprint = frameFootprint(c, e->stackAfter); Site* branchSites[footprint]; memset(branchSites, 0, sizeof(Site*) * footprint); if (not resolveSourceSites(c, e, frozen, branchSites)) { resolveTargetSites(c, e, frozen, branchSites); } } } void captureBranchSnapshots(Context* c, Event* e) { if (e->successors->nextSuccessor) { for (FrameIterator it(c, e->stackAfter, e->localsAfter); it.hasMore();) { FrameIterator::Element el = it.next(c); e->snapshots = makeSnapshots(c, el.value, e->snapshots); } for (Cell* sv = e->successors->forkState->saved; sv; sv = sv->next) { e->snapshots = makeSnapshots (c, static_cast(sv->value), e->snapshots); } if (DebugControl) { fprintf(stderr, "captured snapshots %p at %d\n", e->snapshots, e->logicalInstruction->index); } } } void populateSiteTables(Context* c, Event* e, SiteRecordList* frozen) { resolveJunctionSites(c, e, frozen); resolveBranchSites(c, e, frozen); captureBranchSnapshots(c, e); } void setSites(Context* c, Value* v, Site* s) { assert(c, live(v)); for (; s; s = s->next) { addSite(c, v, s->copy(c)); } if (DebugControl) { char buffer[256]; sitesToString(c, v->sites, buffer, 256); fprintf(stderr, "set sites %s for %p\n", buffer, v); } } void resetFrame(Context* c, Event* e) { for (FrameIterator it(c, e->stackBefore, e->localsBefore); it.hasMore();) { FrameIterator::Element el = it.next(c); clearSites(c, el.value); } } void setSites(Context* c, Event* e, Site** sites) { resetFrame(c, e); for (FrameIterator it(c, e->stackBefore, e->localsBefore); it.hasMore();) { FrameIterator::Element el = it.next(c); if (sites[el.localIndex]) { if (live(el.value)) { setSites(c, el.value, sites[el.localIndex]); } } } } void removeBuddies(Context* c) { for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element el = it.next(c); removeBuddy(c, el.value); } } void restore(Context* c, Event* e, Snapshot* snapshots) { for (Snapshot* s = snapshots; s; s = s->next) { // char buffer[256]; toString(c, s->sites, buffer, 256); // fprintf(stderr, "restore %p buddy %p sites %s\n", // s->value, s->value->buddy, buffer); s->value->buddy = s->buddy; } resetFrame(c, e); for (Snapshot* s = snapshots; s; s = s->next) { if (live(s->value)) { if (live(s->value) and s->sites and s->value->sites == 0) { setSites(c, s->value, s->sites); } } } } void populateSources(Context* c, Event* e) { SiteRecord frozenRecords[e->readCount]; SiteRecordList frozen(frozenRecords, e->readCount); for (Read* r = e->reads; r; r = r->eventNext) { r->value->source = readSource(c, r); if (r->value->source) { if (DebugReads) { char buffer[256]; r->value->source->toString(c, buffer, 256); fprintf(stderr, "freeze source %s for %p\n", buffer, r->value); } freeze(c, &frozen, r->value->source, r->value); } } thaw(c, &frozen); } void setStubRead(Context* c, StubReadPair* p, Value* v) { if (v) { StubRead* r = stubRead(c); if (DebugReads) { fprintf(stderr, "add stub read %p to %p\n", r, v); } addRead(c, 0, v, r); p->value = v; p->read = r; } } void populateJunctionReads(Context* c, Link* link) { JunctionState* state = new (c->zone->allocate (sizeof(JunctionState) + (sizeof(StubReadPair) * frameFootprint(c, c->stack)))) JunctionState(frameFootprint(c, c->stack)); memset(state->reads, 0, sizeof(StubReadPair) * frameFootprint(c, c->stack)); link->junctionState = state; for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); setStubRead(c, state->reads + e.localIndex, e.value); } } void updateJunctionReads(Context* c, JunctionState* state) { for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); StubReadPair* p = state->reads + e.localIndex; if (p->value and p->read->read == 0) { Read* r = live(e.value); if (r) { if (DebugReads) { fprintf(stderr, "stub read %p for %p valid: %p\n", p->read, p->value, r); } p->read->read = r; } } } for (unsigned i = 0; i < frameFootprint(c, c->stack); ++i) { StubReadPair* p = state->reads + i; if (p->value and p->read->read == 0) { if (DebugReads) { fprintf(stderr, "stub read %p for %p invalid\n", p->read, p->value); } p->read->valid_ = false; } } } LogicalInstruction* next(Context* c, LogicalInstruction* i) { for (unsigned n = i->index + 1; n < c->logicalCodeLength; ++n) { i = c->logicalCode[n]; if (i) return i; } return 0; } class Block { public: Block(Event* head): head(head), nextBlock(0), nextInstruction(0), assemblerBlock(0), start(0) { } Event* head; Block* nextBlock; LogicalInstruction* nextInstruction; Assembler::Block* assemblerBlock; unsigned start; }; Block* block(Context* c, Event* head) { return new (c->zone->allocate(sizeof(Block))) Block(head); } unsigned compile(Context* c) { if (c->logicalCode[c->logicalIp]->lastEvent == 0) { appendDummy(c); } Assembler* a = c->assembler; Block* firstBlock = block(c, c->firstEvent); Block* block = firstBlock; a->allocateFrame(c->alignedFrameSize); for (Event* e = c->firstEvent; e; e = e->next) { if (DebugCompile) { fprintf(stderr, " -- compile %s at %d with %d preds %d succs %d stack\n", e->name(), e->logicalInstruction->index, countPredecessors(e->predecessors), countSuccessors(e->successors), e->stackBefore ? e->stackBefore->index + 1 : 0); } e->block = block; c->stack = e->stackBefore; c->locals = e->localsBefore; if (e->logicalInstruction->machineOffset == 0) { e->logicalInstruction->machineOffset = a->offset(); } if (e->predecessors) { visit(c, lastPredecessor(e->predecessors)); Event* first = e->predecessors->predecessor; if (e->predecessors->nextPredecessor) { for (Link* pl = e->predecessors; pl->nextPredecessor; pl = pl->nextPredecessor) { updateJunctionReads(c, pl->junctionState); } if (DebugControl) { fprintf(stderr, "set sites to junction sites %p at %d\n", first->junctionSites, first->logicalInstruction->index); } setSites(c, e, first->junctionSites); removeBuddies(c); } else if (first->successors->nextSuccessor) { if (DebugControl) { fprintf(stderr, "restore snapshots %p at %d\n", first->snapshots, first->logicalInstruction->index); } restore(c, e, first->snapshots); } } unsigned footprint = frameFootprint(c, e->stackAfter); SiteRecord frozenRecords[footprint]; SiteRecordList frozen(frozenRecords, footprint); bool branch = e->isBranch(); if (branch and e->successors) { populateSiteTables(c, e, &frozen); } populateSources(c, e); thaw(c, &frozen); e->compile(c); if ((not branch) and e->successors) { populateSiteTables(c, e, &frozen); thaw(c, &frozen); } if (e->visitLinks) { for (Cell* cell = reverseDestroy(e->visitLinks); cell; cell = cell->next) { visit(c, static_cast(cell->value)); } e->visitLinks = 0; } for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->offset(); } LogicalInstruction* nextInstruction = next(c, e->logicalInstruction); if (e->next == 0 or (e->next->logicalInstruction != e->logicalInstruction and (e->logicalInstruction->lastEvent == e or e->next->logicalInstruction != nextInstruction))) { Block* b = e->logicalInstruction->firstEvent->block; if (b != block) { while (b->nextBlock) b = b->nextBlock; b->nextBlock = block; } block->nextInstruction = nextInstruction; block->assemblerBlock = a->endBlock(e->next != 0); // fprintf(stderr, "end block %p at %d\n", block->assemblerBlock, e->logicalInstruction->index); if (e->next) { block = ::block(c, e->next); } } } block = firstBlock; while (block->nextBlock or block->nextInstruction) { Block* next = block->nextBlock ? block->nextBlock : block->nextInstruction->firstEvent->block; next->start = block->assemblerBlock->resolve (block->start, next->assemblerBlock); // fprintf(stderr, "resolve block %p\n", block->assemblerBlock); block = next; } return block->assemblerBlock->resolve(block->start, 0); } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void restore(Context* c, ForkState* state) { for (unsigned i = 0; i < state->readCount; ++i) { ForkElement* p = state->elements + i; p->value->lastRead = p->read; p->read->allocateTarget(c); } } void addForkElement(Context* c, Value* v, ForkState* state, unsigned index) { MultiRead* r = multiRead(c); if (DebugReads) { fprintf(stderr, "add multi read %p to %p\n", r, v); } addRead(c, 0, v, r); ForkElement* p = state->elements + index; p->value = v; p->read = r; } ForkState* saveState(Context* c) { unsigned elementCount = frameFootprint(c, c->stack) + count(c->saved); ForkState* state = new (c->zone->allocate (sizeof(ForkState) + (sizeof(ForkElement) * elementCount))) ForkState(c->stack, c->locals, c->saved, c->predecessor, c->logicalIp); if (c->predecessor) { c->forkState = state; unsigned count = 0; for (FrameIterator it(c, c->stack, c->locals); it.hasMore();) { FrameIterator::Element e = it.next(c); addForkElement(c, e.value, state, count++); } for (Cell* sv = c->saved; sv; sv = sv->next) { addForkElement(c, static_cast(sv->value), state, count++); } state->readCount = count; restore(c, state); } c->saved = 0; return state; } void restoreState(Context* c, ForkState* s) { if (c->logicalCode[c->logicalIp]->lastEvent == 0) { appendDummy(c); } c->stack = s->stack; c->locals = s->locals; c->predecessor = s->predecessor; c->logicalIp = s->logicalIp; if (c->predecessor) { c->forkState = s; restore(c, s); } } Value* maybeBuddy(Context* c, Value* v) { if (v->home >= 0) { Value* n = value(c); appendBuddy(c, v, n); return n; } else { return v; } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(uint32_t mask) { unsigned cost; int r = pickRegisterTarget(c, 0, mask, &cost); expect(c, cost < Target::Impossible); save(r); increment(c, c->registerResources + r); return r; } virtual void releaseTemporary(int r) { decrement(c, c->registerResources + r); restore(r); } virtual void save(int r) { RegisterResource* reg = c->registerResources + r; assert(c, reg->referenceCount == 0); assert(c, reg->freezeCount == 0); assert(c, not reg->reserved); if (reg->value) { steal(c, reg, 0); } } virtual void restore(int) { // todo } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone, Compiler::Client* compilerClient): c(s, assembler, zone, compilerClient), client(&c) { assembler->setClient(&client); } virtual State* saveState() { return ::saveState(&c); } virtual void restoreState(State* state) { ::restoreState(&c, static_cast(state)); } virtual Subroutine* startSubroutine() { return c.subroutine = new (c.zone->allocate(sizeof(MySubroutine))) MySubroutine; } virtual void endSubroutine(Subroutine* subroutine) { MySubroutine* sr = static_cast(subroutine); if (sr->forkState) { ::restoreState(&c, sr->forkState); } else { sr->forkState = ::saveState(&c); } } virtual void init(unsigned logicalCodeLength, unsigned parameterFootprint, unsigned localFootprint, unsigned alignedFrameSize) { c.logicalCodeLength = logicalCodeLength; c.parameterFootprint = parameterFootprint; c.localFootprint = localFootprint; c.alignedFrameSize = alignedFrameSize; unsigned frameResourceCount = alignedFrameSize + parameterFootprint; c.frameResources = static_cast (c.zone->allocate(sizeof(FrameResource) * frameResourceCount)); for (unsigned i = 0; i < frameResourceCount; ++i) { new (c.frameResources + i) FrameResource; } // leave room for logical instruction -1 unsigned codeSize = sizeof(LogicalInstruction*) * (logicalCodeLength + 1); c.logicalCode = static_cast (c.zone->allocate(codeSize)); memset(c.logicalCode, 0, codeSize); c.logicalCode++; c.locals = static_cast (c.zone->allocate(sizeof(Local) * localFootprint)); memset(c.locals, 0, sizeof(Local) * localFootprint); c.logicalCode[-1] = new (c.zone->allocate(sizeof(LogicalInstruction))) LogicalInstruction(-1, c.stack, c.locals); } virtual void visitLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); if (c.logicalCode[c.logicalIp]->lastEvent == 0) { appendDummy(&c); } Event* e = c.logicalCode[logicalIp]->firstEvent; Event* p = c.predecessor; if (p) { if (DebugAppend) { fprintf(stderr, "visit %d pred %d\n", logicalIp, p->logicalInstruction->index); } p->stackAfter = c.stack; p->localsAfter = c.locals; Link* link = ::link (&c, p, e->predecessors, e, p->successors, c.forkState); e->predecessors = link; p->successors = link; c.lastEvent->visitLinks = cons(&c, link, c.lastEvent->visitLinks); if (DebugAppend) { fprintf(stderr, "populate junction reads for %d to %d\n", p->logicalInstruction->index, logicalIp); } populateJunctionReads(&c, link); } if (c.subroutine) { c.subroutine->forkState = c.logicalCode[logicalIp]->subroutine->forkState; c.subroutine = 0; } c.forkState = 0; } virtual void startLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); assert(&c, c.logicalCode[logicalIp] == 0); if (c.logicalCode[c.logicalIp]->lastEvent == 0) { appendDummy(&c); } Event* p = c.predecessor; if (p) { p->stackAfter = c.stack; p->localsAfter = c.locals; } c.logicalCode[logicalIp] = new (c.zone->allocate(sizeof(LogicalInstruction))) LogicalInstruction(logicalIp, c.stack, c.locals); if (c.subroutine) { c.logicalCode[logicalIp]->subroutine = c.subroutine; c.subroutine = 0; } c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return ::value(&c, ::constantSite(&c, value)); } virtual Operand* address(Promise* address) { return value(&c, ::addressSite(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1) { Value* result = value(&c); appendMemory(&c, static_cast(base), displacement, static_cast(index), scale, result); return result; } virtual Operand* stack() { Site* s = registerSite(&c, c.arch->stack()); return value(&c, s, s); } virtual Operand* thread() { Site* s = registerSite(&c, c.arch->thread()); return value(&c, s, s); } Promise* machineIp() { return codePromise(&c, c.logicalCode[c.logicalIp]->lastEvent); } virtual void push(unsigned footprint UNUSED) { assert(&c, footprint == 1); Value* v = value(&c); Stack* s = ::stack(&c, v, c.stack); v->home = frameIndex(&c, s->index + c.localFootprint); c.stack = s; } virtual void push(unsigned footprint, Operand* value) { ::push(&c, footprint, static_cast(value)); } virtual void save(unsigned footprint, Operand* value) { c.saved = cons(&c, static_cast(value), c.saved); if (BytesPerWord == 4 and footprint > 1) { assert(&c, footprint == 2); assert(&c, static_cast(value)->high); save(1, static_cast(value)->high); } } virtual Operand* pop(unsigned footprint) { return ::pop(&c, footprint); } virtual void pushed() { Value* v = value(&c); appendFrameSite (&c, v, frameIndex (&c, (c.stack ? c.stack->index : 0) + c.localFootprint)); Stack* s = ::stack(&c, v, c.stack); v->home = frameIndex(&c, s->index + c.localFootprint); c.stack = s; } virtual void popped(unsigned footprint) { assert(&c, c.stack->value->home >= 0); if (footprint > 1) { assert(&c, footprint == 2); assert(&c, c.stack->value->high == c.stack->next->value and ((BytesPerWord == 8) xor (c.stack->value->high != 0))); popped(1); } if (DebugFrame) { fprintf(stderr, "popped %p\n", c.stack->value); } c.stack = c.stack->next; } virtual StackElement* top() { return c.stack; } virtual unsigned footprint(StackElement* e) { return (static_cast(e)->next and (static_cast(e)->next->value == static_cast(e)->value->high)) ? 2 : 1; } virtual unsigned index(StackElement* e) { return static_cast(e)->index; } virtual Operand* peek(unsigned footprint UNUSED, unsigned index) { Stack* s = c.stack; for (unsigned i = index; i > 0; --i) { s = s->next; } assert(&c, footprint == 1 or (c.stack->value->high == c.stack->next->value and ((BytesPerWord == 8) xor (c.stack->value->high != 0)))); return s->value; } virtual Operand* call(Operand* address, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; Value* arguments[argumentCount]; int index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Value* o = va_arg(a, Value*); if (o) { arguments[index] = o; if (size > BytesPerWord) { arguments[++index] = o->high; } size = BytesPerWord; ++ index; } else { size = 8; } ++ footprint; } va_end(a); Stack* argumentStack = c.stack; Stack* bottomArgument = 0; for (int i = index - 1; i >= 0; --i) { argumentStack = ::stack(&c, arguments[i], argumentStack); if (i == index - 1) { bottomArgument = argumentStack; } } Value* result = value(&c); appendCall(&c, static_cast(address), flags, traceHandler, result, resultSize, argumentStack, index, 0); return result; } virtual Operand* stackCall(Operand* address, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentFootprint) { Value* result = value(&c); appendCall(&c, static_cast(address), flags, traceHandler, result, resultSize, c.stack, 0, argumentFootprint); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void initLocal(unsigned footprint, unsigned index) { assert(&c, index + footprint <= c.localFootprint); Value* v = value(&c); if (footprint > 1) { assert(&c, footprint == 2); if (BytesPerWord == 4) { initLocal(1, index); v->high = c.locals[index].value; } ++ index; } if (DebugFrame) { fprintf(stderr, "init local %p at %d (%d)\n", v, index, frameIndex(&c, index)); } appendFrameSite(&c, v, frameIndex(&c, index)); Local* local = c.locals + index; local->value = v; v->home = frameIndex(&c, index); } virtual void initLocalsFromLogicalIp(unsigned logicalIp) { assert(&c, logicalIp < c.logicalCodeLength); unsigned footprint = sizeof(Local) * c.localFootprint; Local* newLocals = static_cast(c.zone->allocate(footprint)); memset(newLocals, 0, footprint); c.locals = newLocals; Event* e = c.logicalCode[logicalIp]->firstEvent; for (unsigned i = 0; i < c.localFootprint; ++i) { Local* local = e->localsBefore + i; if (local->value) { initLocal(1, i); if (i > 0 and local->value->high == local[-1].value) { c.locals[i].value->high = c.locals[i - 1].value; } } } } virtual void storeLocal(unsigned footprint, Operand* src, unsigned index) { ::storeLocal(&c, footprint, static_cast(src), index); } virtual Operand* loadLocal(unsigned footprint, unsigned index) { return ::loadLocal(&c, footprint, index); } virtual void saveLocals() { appendSaveLocals(&c); } virtual void checkBounds(Operand* object, unsigned lengthOffset, Operand* index, intptr_t handler) { appendBoundsCheck(&c, static_cast(object), lengthOffset, static_cast(index), handler); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), size, static_cast(dst)); } virtual Operand* load(unsigned srcSize, unsigned dstSize, Operand* src) { assert(&c, dstSize >= BytesPerWord); Value* dst = value(&c); appendMove(&c, Move, srcSize, static_cast(src), dstSize, dst); return dst; } virtual Operand* loadz(unsigned srcSize, unsigned dstSize, Operand* src) { assert(&c, dstSize >= BytesPerWord); Value* dst = value(&c); appendMove(&c, MoveZ, srcSize, static_cast(src), dstSize, dst); return dst; } virtual Operand* lcmp(Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, LongCompare, 8, static_cast(a), 8, static_cast(b), 8, result); return result; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { appendBranch(&c, Jump, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Add, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Subtract, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Multiply, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Divide, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Remainder, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftLeft, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftRight, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, UnsignedShiftRight, BytesPerWord, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, And, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Or, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Xor, size, static_cast(a), size, static_cast(b), size, result); return result; } virtual Operand* neg(unsigned size, Operand* a) { Value* result = value(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { return c.machineCodeSize = ::compile(&c); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.machineCodeSize) + i) = n->promise->value(); i += BytesPerWord; } } virtual void dispose() { // ignore } Context c; ::Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone, Compiler::Client* client) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone, client); } } // namespace vm