/* Copyright (c) 2008, Avian Contributors Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. There is NO WARRANTY for this software. See license.txt for details. */ #include "compiler.h" #include "assembler.h" using namespace vm; namespace { const bool DebugAppend = false; const bool DebugCompile = false; const bool DebugStack = false; const bool DebugRegisters = false; class Context; class Value; class Stack; class Site; class Event; class PushEvent; class Read; void NO_RETURN abort(Context*); void apply(Context* c, UnaryOperation op, unsigned size, Site* a); void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b); class Site { public: Site(): next(0) { } virtual ~Site() { } virtual Site* readTarget(Context*, Read*, Event*) { return this; } virtual unsigned copyCost(Context*, Site*) = 0; virtual void acquire(Context*, Stack*, unsigned, Value*) { } virtual void release(Context*) { } virtual OperandType type(Context*) = 0; virtual Assembler::Operand* asAssemblerOperand(Context*) = 0; Site* next; }; class Stack { public: Stack(Value* value, unsigned size, unsigned index, Stack* next): value(value), size(size), index(index), next(next), pushEvent(0), pushSite(0), syncSite(0), pushed(false) { } Value* value; unsigned size; unsigned index; Stack* next; PushEvent* pushEvent; Site* pushSite; Site* syncSite; bool pushed; }; class State { public: State(State* s): stack(s ? s->stack : 0), next(s) { } Stack* stack; State* next; }; class LogicalInstruction { public: Event* firstEvent; Event* lastEvent; LogicalInstruction* immediatePredecessor; Stack* stack; unsigned machineOffset; bool stackSaved; }; class Register { public: Value* value; Site* site; unsigned size; unsigned refCount; bool reserved; }; class ConstantPoolNode { public: ConstantPoolNode(Promise* promise): promise(promise), next(0) { } Promise* promise; ConstantPoolNode* next; }; class Junction { public: Junction(unsigned logicalIp, Junction* next): logicalIp(logicalIp), next(next) { } unsigned logicalIp; Junction* next; }; class Read { public: Read(unsigned size, Value* value, Site* target, Read* next, Event* event, Read* eventNext): size(size), value(value), target(target), next(next), event(event), eventNext(eventNext) { } unsigned size; Value* value; Site* target; Read* next; Event* event; Read* eventNext; }; class Value: public Compiler::Operand { public: Value(Site* site): reads(0), lastRead(0), sites(site), source(0), target(site) { } Read* reads; Read* lastRead; Site* sites; Site* source; Site* target; }; class Context { public: Context(System* system, Assembler* assembler, Zone* zone): system(system), assembler(assembler), zone(zone), logicalIp(-1), state(new (zone->allocate(sizeof(State))) State(0)), logicalCode(0), logicalCodeLength(0), stackOffset(0), registers(static_cast (zone->allocate(sizeof(Register) * assembler->registerCount()))), freeRegisterCount(assembler->registerCount() - 3), freeRegisters(static_cast (zone->allocate(sizeof(int) * freeRegisterCount))), firstConstant(0), lastConstant(0), constantCount(0), nextSequence(0), junctions(0), machineCode(0), stackReset(false) { memset(registers, 0, sizeof(Register) * assembler->registerCount()); registers[assembler->base()].refCount = 1; registers[assembler->base()].reserved = true; registers[assembler->stack()].refCount = 1; registers[assembler->stack()].reserved = true; registers[assembler->thread()].refCount = 1; registers[assembler->thread()].reserved = true; unsigned fri = 0; for (int i = assembler->registerCount() - 1; i >= 0; --i) { if (not registers[i].reserved) { freeRegisters[fri++] = i; } } } System* system; Assembler* assembler; Zone* zone; int logicalIp; State* state; LogicalInstruction* logicalCode; unsigned logicalCodeLength; unsigned stackOffset; Register* registers; unsigned freeRegisterCount; int* freeRegisters; ConstantPoolNode* firstConstant; ConstantPoolNode* lastConstant; unsigned constantCount; unsigned nextSequence; Junction* junctions; uint8_t* machineCode; bool stackReset; }; class PoolPromise: public Promise { public: PoolPromise(Context* c, int key): c(c), key(key) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + pad(c->assembler->length()) + (key * BytesPerWord)); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int key; }; class CodePromise: public Promise { public: CodePromise(Context* c, CodePromise* next): c(c), offset(-1), next(next) { } CodePromise(Context* c, int offset): c(c), offset(offset), next(0) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast(c->machineCode + offset); } abort(c); } virtual bool resolved() { return c->machineCode != 0 and offset >= 0; } Context* c; int offset; CodePromise* next; }; class IpPromise: public Promise { public: IpPromise(Context* c, int logicalIp): c(c), logicalIp(logicalIp) { } virtual int64_t value() { if (resolved()) { return reinterpret_cast (c->machineCode + c->logicalCode[logicalIp].machineOffset); } abort(c); } virtual bool resolved() { return c->machineCode != 0; } Context* c; int logicalIp; }; inline void NO_RETURN abort(Context* c) { abort(c->system); } #ifndef NDEBUG inline void assert(Context* c, bool v) { assert(c->system, v); } #endif // not NDEBUG inline void expect(Context* c, bool v) { expect(c->system, v); } class Event { public: Event(Context* c): next(0), stack(c->state->stack), promises(0), reads(0), sequence(c->nextSequence++), stackReset(c->stackReset) { assert(c, c->logicalIp >= 0); LogicalInstruction* i = c->logicalCode + c->logicalIp; if (i->lastEvent) { i->lastEvent->next = this; } else { i->firstEvent = this; } i->lastEvent = this; if (c->stackReset) { // fprintf(stderr, "stack reset\n"); c->stackReset = false; } } Event(Context*, unsigned sequence, Stack* stack): next(0), stack(stack), promises(0), reads(0), sequence(sequence), stackReset(false) { } virtual ~Event() { } virtual void prepare(Context*) { } virtual void compile(Context* c) = 0; virtual bool isBranch() { return false; }; Event* next; Stack* stack; CodePromise* promises; Read* reads; unsigned sequence; bool stackReset; }; bool findSite(Context*, Value* v, Site* site) { for (Site* s = v->sites; s; s = s->next) { if (s == site) return true; } return false; } void addSite(Context* c, Stack* stack, unsigned size, Value* v, Site* s) { if (not findSite(c, v, s)) { // fprintf(stderr, "add site %p to %p\n", s, v); s->acquire(c, stack, size, v); s->next = v->sites; v->sites = s; } } void removeSite(Context* c, Value* v, Site* s) { for (Site** p = &(v->sites); *p;) { if (s == *p) { // fprintf(stderr, "remove site %p from %p\n", s, v); s->release(c); *p = (*p)->next; break; } else { p = &((*p)->next); } } } void clearSites(Context* c, Value* v) { for (Site* s = v->sites; s; s = s->next) { s->release(c); } v->sites = 0; } void nextRead(Context* c, Value* v) { // fprintf(stderr, "pop read %p from %p; next: %p\n", v->reads, v, v->reads->next); v->reads = v->reads->next; if (v->reads == 0) { clearSites(c, v); } } class ConstantSite: public Site { public: ConstantSite(Promise* value): value(value) { } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 1); } virtual OperandType type(Context*) { return ConstantOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } Assembler::Constant value; }; ConstantSite* constantSite(Context* c, Promise* value) { return new (c->zone->allocate(sizeof(ConstantSite))) ConstantSite(value); } ResolvedPromise* resolved(Context* c, int64_t value) { return new (c->zone->allocate(sizeof(ResolvedPromise))) ResolvedPromise(value); } ConstantSite* constantSite(Context* c, int64_t value) { return constantSite(c, resolved(c, value)); } class AddressSite: public Site { public: AddressSite(Promise* address): address(address) { } virtual unsigned copyCost(Context*, Site* s) { return (s == this ? 0 : 3); } virtual OperandType type(Context*) { return AddressOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &address; } Assembler::Address address; }; AddressSite* addressSite(Context* c, Promise* address) { return new (c->zone->allocate(sizeof(AddressSite))) AddressSite(address); } void acquire(Context* c, int r, Stack* stack, unsigned newSize, Value* newValue, Site* newSite); void release(Context* c, int r); class RegisterSite: public Site { public: RegisterSite(int low, int high): register_(low, high) { } virtual unsigned copyCost(Context* c, Site* s) { if (s and (this == s or (s->type(c) == RegisterOperand and static_cast(s)->register_.low == register_.low and static_cast(s)->register_.high == register_.high))) { return 0; } else { return 2; } } virtual void acquire(Context* c, Stack* stack, unsigned size, Value* v) { ::acquire(c, register_.low, stack, size, v, this); if (register_.high >= 0) { ::acquire(c, register_.high, stack, size, v, this); } } virtual void release(Context* c) { ::release(c, register_.low); if (register_.high >= 0) { ::release(c, register_.high); } } virtual OperandType type(Context*) { return RegisterOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return ®ister_; } Assembler::Register register_; }; RegisterSite* registerSite(Context* c, int low, int high = NoRegister) { assert(c, low != NoRegister); assert(c, low < static_cast(c->assembler->registerCount())); assert(c, high == NoRegister or high < static_cast(c->assembler->registerCount())); return new (c->zone->allocate(sizeof(RegisterSite))) RegisterSite(low, high); } RegisterSite* freeRegister(Context* c, unsigned size, bool allowAcquired); void increment(Context* c, int r) { if (DebugRegisters) { fprintf(stderr, "increment %d to %d\n", r, c->registers[r].refCount + 1); } ++ c->registers[r].refCount; } void decrement(Context* c, int r) { assert(c, c->registers[r].refCount > 0); assert(c, c->registers[r].refCount > 1 or (not c->registers[r].reserved)); if (DebugRegisters) { fprintf(stderr, "decrement %d to %d\n", r, c->registers[r].refCount - 1); } -- c->registers[r].refCount; } class MemorySite: public Site { public: MemorySite(int base, int offset, int index, unsigned scale): value(base, offset, index, scale) { } virtual unsigned copyCost(Context* c, Site* s) { if (s and (this == s or (s->type(c) == MemoryOperand and static_cast(s)->value.base == value.base and static_cast(s)->value.offset == value.offset and static_cast(s)->value.index == value.index and static_cast(s)->value.scale == value.scale))) { return 0; } else { return 4; } } virtual void acquire(Context* c, Stack*, unsigned, Value*) { increment(c, value.base); if (value.index != NoRegister) { increment(c, value.index); } } virtual void release(Context* c) { decrement(c, value.base); if (value.index != NoRegister) { decrement(c, value.index); } } virtual OperandType type(Context*) { return MemoryOperand; } virtual Assembler::Operand* asAssemblerOperand(Context*) { return &value; } Assembler::Memory value; }; MemorySite* memorySite(Context* c, int base, int offset, int index, unsigned scale) { return new (c->zone->allocate(sizeof(MemorySite))) MemorySite(base, offset, index, scale); } class AbstractSite: public Site { public: virtual unsigned copyCost(Context* c, Site*) { abort(c); } virtual void copyTo(Context* c, unsigned, Site*) { abort(c); } virtual OperandType type(Context* c) { abort(c); } virtual Assembler::Operand* asAssemblerOperand(Context* c) { abort(c); } }; Site* targetOrNull(Context* c, Read* r, Event* event) { Value* v = r->value; if (v->target) { return v->target; } else if (r->target) { return r->target->readTarget(c, r, event); } else { return 0; } } Site* targetOrNull(Context* c, Value* v, Event* event) { if (v->target) { return v->target; } else if (v->reads and v->reads->target) { return v->reads->target->readTarget(c, v->reads, event); } else { return 0; } } Site* targetOrRegister(Context* c, unsigned size, Value* v, Event* event) { Site* s = targetOrNull(c, v, event); if (s) { return s; } else { return freeRegister(c, size, true); } } class ValueSite: public AbstractSite { public: ValueSite(Value* value): value(value) { } virtual Site* readTarget(Context* c, Read* r, Event* event) { Site* s = targetOrNull(c, value, event); if (s and s->type(c) == RegisterOperand) { return s; } else { return freeRegister(c, r->size, true); } } Value* value; }; ValueSite* valueSite(Context* c, Value* v) { return new (c->zone->allocate(sizeof(ValueSite))) ValueSite(v); } class MoveSite: public AbstractSite { public: MoveSite(Value* value): value(value) { } virtual Site* readTarget(Context* c, Read* read, Event* event) { if (event->next == read->event) { return targetOrNull(c, value, event); } else { return 0; } } Value* value; }; MoveSite* moveSite(Context* c, Value* v) { return new (c->zone->allocate(sizeof(MoveSite))) MoveSite(v); } class AnyRegisterSite: public AbstractSite { public: virtual Site* readTarget(Context* c, Read* r, Event*) { for (Site* s = r->value->sites; s; s = s->next) { if (s->type(c) == RegisterOperand) { return s; } } return freeRegister(c, r->size, true); } }; AnyRegisterSite* anyRegisterSite(Context* c) { return new (c->zone->allocate(sizeof(AnyRegisterSite))) AnyRegisterSite(); } class ConstantOrRegisterSite: public AbstractSite { public: virtual Site* readTarget(Context* c, Read* r, Event*) { for (Site* s = r->value->sites; s; s = s->next) { OperandType t = s->type(c); if (t == ConstantOperand or t == RegisterOperand) { return s; } } return freeRegister(c, r->size, true); } }; ConstantOrRegisterSite* constantOrRegisterSite(Context* c) { return new (c->zone->allocate(sizeof(ConstantOrRegisterSite))) ConstantOrRegisterSite(); } Site* pick(Context* c, Site* sites, Site* target = 0, unsigned* cost = 0) { Site* site = 0; unsigned copyCost = 0xFFFFFFFF; for (Site* s = sites; s; s = s->next) { unsigned v = s->copyCost(c, target); if (v < copyCost) { site = s; copyCost = v; } } if (cost) *cost = copyCost; return site; } void pushNow(Context* c, Stack* start, unsigned count) { Stack* segment[count]; unsigned index = count; for (Stack* s = start; s and index; s = s->next) { segment[--index] = s; } for (unsigned i = 0; i < count; ++i) { Stack* s = segment[i]; assert(c, not s->pushed); if (s->value and s->value->sites) { apply(c, Push, s->size * BytesPerWord, pick(c, s->value->sites)); s->pushSite = memorySite (c, c->assembler->base(), - (c->stackOffset + s->index + 1) * BytesPerWord, NoRegister, 1); addSite(c, 0, 0, s->value, s->pushSite); } else { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, s->size * BytesPerWord)); c->assembler->apply (Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } if (DebugStack) { fprintf(stderr, "pushed %p value: %p sites: %p\n", s, s->value, s->value->sites); } s->pushed = true; } } void pushNow(Context* c, Stack* start) { unsigned count = 0; for (Stack* s = start; s and (not s->pushed); s = s->next) { ++ count; } pushNow(c, start, count); } void acquire(Context* c, int r, Stack* stack, unsigned newSize, Value* newValue, Site* newSite) { if (c->registers[r].reserved) return; if (DebugRegisters) { fprintf(stderr, "acquire %d, value %p, site %p\n", r, newValue, newSite); } Value* oldValue = c->registers[r].value; if (oldValue and oldValue != newValue and findSite(c, oldValue, c->registers[r].site)) { assert(c, c->registers[r].refCount == 0); if (DebugRegisters) { fprintf(stderr, "steal %d from %p: next: %p\n", r, oldValue, oldValue->sites->next); } if (oldValue->sites->next == 0) { unsigned count = 0; Stack* start = 0; for (Stack* s = stack; s and (not s->pushed); s = s->next) { if (s->value == oldValue) { start = s; } if (start) { ++ count; } } assert(c, start); pushNow(c, start, count); } removeSite(c, oldValue, c->registers[r].site); } c->registers[r].size = newSize; c->registers[r].value = newValue; c->registers[r].site = newSite; } void release(Context* c, int r) { if (DebugRegisters) { fprintf(stderr, "release %d\n", r); } c->registers[r].size = 0; c->registers[r].value = 0; c->registers[r].site = 0; } void apply(Context* c, UnaryOperation op, unsigned size, Site* a) { OperandType type = a->type(c); Assembler::Operand* operand = a->asAssemblerOperand(c); c->assembler->apply(op, size, type, operand); } void apply(Context* c, BinaryOperation op, unsigned size, Site* a, Site* b) { OperandType aType = a->type(c); Assembler::Operand* aOperand = a->asAssemblerOperand(c); OperandType bType = b->type(c); Assembler::Operand* bOperand = b->asAssemblerOperand(c); c->assembler->apply(op, size, aType, aOperand, bType, bOperand); } void insertRead(Context* c, Event* thisEvent, int sequence, Value* v, unsigned size, Site* target) { Read* r = new (c->zone->allocate(sizeof(Read))) Read(size, v, target, 0, thisEvent, thisEvent->reads); thisEvent->reads = r; // fprintf(stderr, "add read %p to %p\n", r, v); if (sequence >= 0) { for (Read** p = &(v->reads); *p;) { if ((*p)->event->sequence > static_cast(sequence)) { r->next = *p; *p = r; break; } else { p = &((*p)->next); } } } if (r->next == 0) { if (v->lastRead) { v->lastRead->next = r; } else { v->reads = r; } v->lastRead = r; } } void addRead(Context* c, Value* v, unsigned size, Site* target) { insertRead(c, c->logicalCode[c->logicalIp].lastEvent, -1, v, size, target); } Site* pushSite(Context*, PushEvent*); class PushEvent: public Event { public: PushEvent(Context* c, Stack* s): Event(c), s(s), active(false) { assert(c, s->pushEvent == 0); s->pushEvent = this; addRead(c, s->value, s->size * BytesPerWord, pushSite(c, this)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "PushEvent.compile\n"); } if (active) { pushNow(c, s); } nextRead(c, s->value); } Stack* s; bool active; }; void push(Context* c, unsigned size, Value* v); void ignore(Context* c, unsigned count) { if (count) { Assembler::Register stack(c->assembler->stack()); Assembler::Constant offset(resolved(c, count * BytesPerWord)); c->assembler->apply (Add, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } } class CallEvent: public Event { public: CallEvent(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount): Event(c), address(address), indirection(indirection), traceHandler(traceHandler), result(result), flags(flags), resultSize(resultSize), argumentFootprint(0) { Stack* s = argumentStack; for (unsigned i = 0; i < argumentCount; ++i) { Site* target; if (argumentFootprint < c->assembler->argumentRegisterCount()) { target = registerSite (c, c->assembler->argumentRegister(argumentFootprint)); } else { target = 0; s->pushEvent->active = true; } addRead(c, s->value, s->size * BytesPerWord, target); argumentFootprint += s->size; s = s->next; } for (Stack* s = stack; s; s = s->next) { addRead(c, s->value, s->size * BytesPerWord, 0); } addRead(c, address, BytesPerWord, (indirection ? registerSite(c, c->assembler->returnLow()) : 0)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CallEvent.compile\n"); } pushNow(c, stack); UnaryOperation type = ((flags & Compiler::Aligned) ? AlignedCall : Call); if (indirection) { apply(c, type, BytesPerWord, constantSite(c, reinterpret_cast(indirection))); } else { apply(c, type, BytesPerWord, address->source); } for (Stack* s = stack; s; s = s->next) { clearSites(c, s->value); } for (Stack* s = stack; s; s = s->next) { if (s->pushSite) addSite(c, 0, 0, s->value, s->pushSite); } for (Read* r = reads; r; r = r->eventNext) { nextRead(c, r->value); } if (resultSize and result->reads) { addSite(c, 0, 0, result, registerSite (c, c->assembler->returnLow(), resultSize > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } if (traceHandler) { traceHandler->handleTrace (new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, c->assembler->length())); } if (argumentFootprint and ((flags & Compiler::NoReturn) == 0)) { ignore(c, argumentFootprint); } } Value* address; void* indirection; TraceHandler* traceHandler; Value* result; unsigned flags; unsigned resultSize; unsigned argumentFootprint; }; void appendCall(Context* c, Value* address, void* indirection, unsigned flags, TraceHandler* traceHandler, Value* result, unsigned resultSize, Stack* argumentStack, unsigned argumentCount) { if (DebugAppend) { fprintf(stderr, "appendCall\n"); } new (c->zone->allocate(sizeof(CallEvent))) CallEvent(c, address, indirection, flags, traceHandler, result, resultSize, argumentStack, argumentCount); } class ReturnEvent: public Event { public: ReturnEvent(Context* c, unsigned size, Value* value): Event(c), value(value) { if (value) { addRead(c, value, size, registerSite (c, c->assembler->returnLow(), size > BytesPerWord ? c->assembler->returnHigh() : NoRegister)); } } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "ReturnEvent.compile\n"); } if (value) { nextRead(c, value); } Assembler::Register base(c->assembler->base()); Assembler::Register stack(c->assembler->stack()); c->assembler->apply(Move, BytesPerWord, RegisterOperand, &base, RegisterOperand, &stack); c->assembler->apply(Pop, BytesPerWord, RegisterOperand, &base); c->assembler->apply(Return); } Value* value; }; void appendReturn(Context* c, unsigned size, Value* value) { if (DebugAppend) { fprintf(stderr, "appendReturn\n"); } new (c->zone->allocate(sizeof(ReturnEvent))) ReturnEvent(c, size, value); } class MoveEvent: public Event { public: MoveEvent(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst): Event(c), type(type), size(size), src(src), dst(dst) { Site* target; if (type == Move and size >= BytesPerWord) { target = moveSite(c, dst); } else { target = 0; } addRead(c, src, size, target); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "MoveEvent.compile\n"); } Site* target; if (type == Move and size >= BytesPerWord and dst->reads and next == dst->reads->event) { target = src->source; } else { target = targetOrRegister(c, size, dst, this); if (src->source->copyCost(c, target)) { apply(c, type, size, src->source, target); } } nextRead(c, src); if (dst->reads) { addSite(c, stack, size, dst, target); } else { removeSite(c, dst, target); } } BinaryOperation type; unsigned size; Value* src; Value* dst; }; void appendMove(Context* c, BinaryOperation type, unsigned size, Value* src, Value* dst) { if (DebugAppend) { fprintf(stderr, "appendMove\n"); } new (c->zone->allocate(sizeof(MoveEvent))) MoveEvent(c, type, size, src, dst); } class CompareEvent: public Event { public: CompareEvent(Context* c, unsigned size, Value* first, Value* second): Event(c), size(size), first(first), second(second) { addRead(c, first, size, 0); addRead(c, second, size, 0); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CompareEvent.compile\n"); } apply(c, Compare, size, first->source, second->source); nextRead(c, first); nextRead(c, second); } unsigned size; Value* first; Value* second; }; void appendCompare(Context* c, unsigned size, Value* first, Value* second) { if (DebugAppend) { fprintf(stderr, "appendCompare\n"); } new (c->zone->allocate(sizeof(CompareEvent))) CompareEvent(c, size, first, second); } class CombineEvent: public Event { public: CombineEvent(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result): Event(c), type(type), size(size), first(first), second(second), result(result) { Assembler::Register r1(NoRegister); Assembler::Register r2(NoRegister); c->assembler->getTargets(type, size, &r1, &r2); addRead(c, first, size, r1.low == NoRegister ? constantOrRegisterSite(c) : static_cast(registerSite(c, r1.low, r1.high))); addRead(c, second, size, r2.low == NoRegister ? valueSite(c, result) : static_cast(registerSite(c, r2.low, r2.high))); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "CombineEvent.compile\n"); } apply(c, type, size, first->source, second->source); nextRead(c, first); nextRead(c, second); removeSite(c, second, second->source); if (result->reads) addSite(c, 0, 0, result, second->source); } BinaryOperation type; unsigned size; Value* first; Value* second; Value* result; }; void appendCombine(Context* c, BinaryOperation type, unsigned size, Value* first, Value* second, Value* result) { if (DebugAppend) { fprintf(stderr, "appendCombine\n"); } new (c->zone->allocate(sizeof(CombineEvent))) CombineEvent(c, type, size, first, second, result); } class TranslateEvent: public Event { public: TranslateEvent(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result): Event(c), type(type), size(size), value(value), result(result) { addRead(c, value, size, valueSite(c, result)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "TranslateEvent.compile\n"); } apply(c, type, size, value->source); nextRead(c, value); removeSite(c, value, value->source); if (result->reads) addSite(c, 0, 0, result, value->source); } UnaryOperation type; unsigned size; Value* value; Value* result; }; void appendTranslate(Context* c, UnaryOperation type, unsigned size, Value* value, Value* result) { if (DebugAppend) { fprintf(stderr, "appendTranslate\n"); } new (c->zone->allocate(sizeof(TranslateEvent))) TranslateEvent(c, type, size, value, result); } class MemoryEvent: public Event { public: MemoryEvent(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result): Event(c), base(base), displacement(displacement), index(index), scale(scale), result(result) { addRead(c, base, BytesPerWord, anyRegisterSite(c)); if (index) addRead(c, index, BytesPerWord, anyRegisterSite(c)); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "MemoryEvent.compile\n"); } int indexRegister; if (index) { assert(c, index->source->type(c) == RegisterOperand); indexRegister = static_cast(index->source)->register_.low; } else { indexRegister = NoRegister; } assert(c, base->source->type(c) == RegisterOperand); int baseRegister = static_cast(base->source)->register_.low; nextRead(c, base); if (index) { nextRead(c, index); } result->target = memorySite (c, baseRegister, displacement, indexRegister, scale); addSite(c, 0, 0, result, result->target); } Value* base; int displacement; Value* index; unsigned scale; Value* result; }; void appendMemory(Context* c, Value* base, int displacement, Value* index, unsigned scale, Value* result) { if (DebugAppend) { fprintf(stderr, "appendMemory\n"); } new (c->zone->allocate(sizeof(MemoryEvent))) MemoryEvent(c, base, displacement, index, scale, result); } Site* stackSyncSite(Context* c, unsigned index, unsigned size) { assert(c, index + size <= c->freeRegisterCount); return registerSite (c, c->freeRegisters[index], size == 2 ? c->freeRegisters[index + 1] : NoRegister); } Stack* stack(Context* c, Value* value, unsigned size, unsigned index, Stack* next) { return new (c->zone->allocate(sizeof(Stack))) Stack(value, size, index, next); } Value* value(Context* c, Site* site = 0) { return new (c->zone->allocate(sizeof(Value))) Value(site); } void resetStack(Context* c) { unsigned i = 0; Stack* p = 0; for (Stack* s = c->state->stack; s; s = s->next) { Stack* n = stack (c, value(c, stackSyncSite(c, i, s->size)), s->size, s->index, 0); if (p) { p->next = n; } else { c->state->stack = n; } p = n; i += s->size; } c->stackReset = true; } void popNow(Context* c, Event* event, Stack* stack, unsigned count, bool ignore) { Stack* s = stack; unsigned ignored = 0; for (unsigned i = count; i and s;) { if (s->pushed) { if (s->value->reads and (not ignore)) { ::ignore(c, ignored); Site* target = targetOrRegister (c, s->size * BytesPerWord, s->value, event); if (DebugStack) { fprintf(stderr, "pop %p value: %p target: %p\n", s, s->value, target); } apply(c, Pop, BytesPerWord * s->size, target); addSite(c, stack, s->size * BytesPerWord, s->value, target); } else { if (DebugStack) { fprintf(stderr, "ignore %p value: %p\n", s, s->value); } ignored += s->size; } removeSite(c, s->value, s->pushSite); s->pushSite = 0; s->pushed = false; } else { if (DebugStack) { fprintf(stderr, "%p not pushed\n", s); } } i -= s->size; s = s->next; } ::ignore(c, ignored); } class StackSyncEvent: public Event { public: StackSyncEvent(Context* c): Event(c) { unsigned i = 0; for (Stack* s = stack; s; s = s->next) { s->syncSite = stackSyncSite(c, i, s->size); addRead(c, s->value, s->size * BytesPerWord, s->syncSite); i += s->size; } } StackSyncEvent(Context* c, unsigned sequence, Stack* stack): Event(c, sequence, stack) { unsigned i = 0; for (Stack* s = stack; s; s = s->next) { s->syncSite = stackSyncSite(c, i, s->size); insertRead(c, this, sequence, s->value, s->size * BytesPerWord, s->syncSite); if (s->pushEvent) s->pushEvent->active = false; i += s->size; } } virtual void prepare(Context* c) { popNow(c, this, stack, 0xFFFFFFFF, false); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "StackSyncEvent.compile\n"); } for (Stack* s = stack; s; s = s->next) { clearSites(c, s->value); } for (Stack* s = stack; s; s = s->next) { addSite(c, 0, 0, s->value, s->syncSite); } for (Read* r = reads; r; r = r->eventNext) { nextRead(c, r->value); } } }; void appendStackSync(Context* c) { if (DebugAppend) { fprintf(stderr, "appendStackSync\n"); } new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c); } class BranchEvent: public Event { public: BranchEvent(Context* c, UnaryOperation type, Value* address): Event(c), type(type), address(address) { addRead(c, address, BytesPerWord, 0); } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "BranchEvent.compile\n"); } apply(c, type, BytesPerWord, address->source); nextRead(c, address); } virtual bool isBranch() { return true; }; UnaryOperation type; Value* address; }; void appendBranch(Context* c, UnaryOperation type, Value* address) { appendStackSync(c); if (DebugAppend) { fprintf(stderr, "appendBranch\n"); } new (c->zone->allocate(sizeof(BranchEvent))) BranchEvent(c, type, address); resetStack(c); } class PushSite: public AbstractSite { public: PushSite(PushEvent* event): event(event) { } virtual Site* readTarget(Context* c, Read* r, Event* e) { if (r->next and (not event->active)) { return targetOrNull(c, r->next, e); } else { return 0; } } PushEvent* event; }; Site* pushSite(Context* c, PushEvent* e) { return new (c->zone->allocate(sizeof(PushSite))) PushSite(e); } void appendPush(Context* c, Stack* s) { if (DebugAppend) { fprintf(stderr, "appendPush\n"); } new (c->zone->allocate(sizeof(PushEvent))) PushEvent(c, s); } void appendPush(Context* c) { appendPush(c, c->state->stack); } class PopEvent: public Event { public: PopEvent(Context* c, unsigned count, bool ignore): Event(c), count(count), ignore(ignore) { } virtual void compile(Context* c) { if (DebugCompile) { fprintf(stderr, "PopEvent.compile\n"); } popNow(c, this, stack, count, ignore); } unsigned count; bool ignore; }; void appendPop(Context* c, unsigned count, bool ignore) { if (DebugAppend) { fprintf(stderr, "appendPop\n"); } new (c->zone->allocate(sizeof(PopEvent))) PopEvent(c, count, ignore); } Site* readSource(Context* c, Stack* stack, Read* r, Event* e) { Site* target = (r->target ? r->target->readTarget(c, r, e) : 0); unsigned copyCost; Site* site = pick(c, r->value->sites, target, ©Cost); if (target) { if (copyCost) { addSite(c, stack, r->size, r->value, target); apply(c, Move, r->size, site, target); } return target; } else { return site; } } void compile(Context* c) { Assembler* a = c->assembler; Assembler::Register base(a->base()); Assembler::Register stack(a->stack()); a->apply(Push, BytesPerWord, RegisterOperand, &base); a->apply(Move, BytesPerWord, RegisterOperand, &stack, RegisterOperand, &base); if (c->stackOffset) { Assembler::Constant offset(resolved(c, c->stackOffset * BytesPerWord)); a->apply(Subtract, BytesPerWord, ConstantOperand, &offset, RegisterOperand, &stack); } for (unsigned i = 0; i < c->logicalCodeLength; ++i) { LogicalInstruction* li = c->logicalCode + i; if (li->firstEvent) { li->machineOffset = a->length(); if (DebugCompile) { fprintf(stderr, " -- ip: %d\n", i); } for (Event* e = li->firstEvent; e; e = e->next) { if (e->stackReset) { // fprintf(stderr, "stack reset\n"); for (Stack* s = e->stack; s; s = s->next) { if (s->value->sites) { assert(c, s->value->sites->next == 0); if (s->value->reads) { s->value->sites->acquire(c, 0, 0, s->value); } } } } e->prepare(c); for (Read* r = e->reads; r; r = r->eventNext) { r->value->source = readSource(c, e->stack, r, e); } e->compile(c); for (CodePromise* p = e->promises; p; p = p->next) { p->offset = a->length(); } } } } } unsigned count(Stack* s) { unsigned c = 0; while (s) { ++ c; s = s->next; } return c; } void pushState(Context* c) { c->state = new (c->zone->allocate(sizeof(State))) State(c->state); } void saveStack(Context* c) { if (c->logicalIp >= 0 and not c->logicalCode[c->logicalIp].stackSaved) { c->logicalCode[c->logicalIp].stackSaved = true; c->logicalCode[c->logicalIp].stack = c->state->stack; } } void popState(Context* c) { saveStack(c); c->state = new (c->zone->allocate(sizeof(State))) State(c->state->next); resetStack(c); } Stack* stack(Context* c, Value* value, unsigned size, Stack* next) { return stack(c, value, size, (next ? next->index + size : 0), next); } void push(Context* c, unsigned size, Value* v) { assert(c, ceiling(size, BytesPerWord)); c->state->stack = stack(c, v, ceiling(size, BytesPerWord), c->state->stack); appendPush(c); } Value* pop(Context* c, unsigned size UNUSED) { Stack* s = c->state->stack; assert(c, ceiling(size, BytesPerWord) == s->size); appendPop(c, s->size, false); c->state->stack = s->next; return s->value; } void updateJunctions(Context* c) { for (Junction* j = c->junctions; j; j = j->next) { LogicalInstruction* i = c->logicalCode + j->logicalIp; LogicalInstruction* p = i->immediatePredecessor; p->lastEvent = p->lastEvent->next = new (c->zone->allocate(sizeof(StackSyncEvent))) StackSyncEvent(c, p->lastEvent->sequence, p->stack); } } bool used(Context* c, int r) { Value* v = c->registers[r].value; // fprintf(stderr, "v: %p found: %d\n", // v, v and findSite(c, v, c->registers[r].site)); return v and findSite(c, v, c->registers[r].site); } // bool // usedExclusively(Context* c, int r) // { // Value* v = c->registers[r].value; // return used(c, r) // and v->pushCount == 0 // and v->sites->next == 0; // } int freeRegisterExcept(Context* c, int except, bool allowAcquired) { for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { if (i != except and c->registers[i].refCount == 0 and (not used(c, i))) { return i; } } // for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { // if (i != except // and c->registers[i].refCount == 0 // and (not usedExclusively(c, i))) // { // return i; // } // } if (allowAcquired) { for (int i = c->assembler->registerCount() - 1; i >= 0; --i) { if (i != except and c->registers[i].refCount == 0) { return i; } } } abort(c); } void visit(Context* c, unsigned logicalIp) { assert(c, logicalIp < c->logicalCodeLength); if (c->logicalIp >= 0 and (not c->stackReset)) { assert(c, c->logicalCode[logicalIp].immediatePredecessor == 0); c->logicalCode[logicalIp].immediatePredecessor = c->logicalCode + c->logicalIp; } } int freeRegister(Context* c, bool allowAcquired) { int r = freeRegisterExcept(c, NoRegister, allowAcquired); // fprintf(stderr, "free reg: %d\n", r); return r; } RegisterSite* freeRegister(Context* c, unsigned size, bool allowAcquired) { if (BytesPerWord == 4 and size == 8) { int low = freeRegister(c, allowAcquired); return registerSite(c, low, freeRegisterExcept(c, low, allowAcquired)); } else { return registerSite(c, freeRegister(c, allowAcquired)); } } class Client: public Assembler::Client { public: Client(Context* c): c(c) { } virtual int acquireTemporary(int r) { if (r == NoRegister) { r = freeRegisterExcept(c, NoRegister, false); } else { expect(c, c->registers[r].refCount == 0); expect(c, c->registers[r].value == 0); } increment(c, r); return r; } virtual void releaseTemporary(int r) { decrement(c, r); } Context* c; }; class MyCompiler: public Compiler { public: MyCompiler(System* s, Assembler* assembler, Zone* zone): c(s, assembler, zone), client(&c) { assembler->setClient(&client); } virtual void pushState() { ::pushState(&c); } virtual void popState() { ::popState(&c); } virtual void init(unsigned logicalCodeLength, unsigned stackOffset) { c.logicalCodeLength = logicalCodeLength; c.stackOffset = stackOffset; c.logicalCode = static_cast (c.zone->allocate(sizeof(LogicalInstruction) * logicalCodeLength)); memset(c.logicalCode, 0, sizeof(LogicalInstruction) * logicalCodeLength); } virtual void visitLogicalIp(unsigned logicalIp) { visit(&c, logicalIp); c.stackReset = false; if (c.logicalCode[logicalIp].immediatePredecessor) { c.junctions = new (c.zone->allocate(sizeof(Junction))) Junction(logicalIp, c.junctions); } } virtual void startLogicalIp(unsigned logicalIp) { if (DebugAppend) { fprintf(stderr, " -- ip: %d\n", logicalIp); } visit(&c, logicalIp); saveStack(&c); c.logicalIp = logicalIp; } virtual Promise* machineIp(unsigned logicalIp) { return new (c.zone->allocate(sizeof(IpPromise))) IpPromise(&c, logicalIp); } virtual Promise* poolAppend(intptr_t value) { return poolAppendPromise(resolved(&c, value)); } virtual Promise* poolAppendPromise(Promise* value) { Promise* p = new (c.zone->allocate(sizeof(PoolPromise))) PoolPromise(&c, c.constantCount); ConstantPoolNode* constant = new (c.zone->allocate(sizeof(ConstantPoolNode))) ConstantPoolNode(value); if (c.firstConstant) { c.lastConstant->next = constant; } else { c.firstConstant = constant; } c.lastConstant = constant; ++ c.constantCount; return p; } virtual Operand* constant(int64_t value) { return promiseConstant(resolved(&c, value)); } virtual Operand* promiseConstant(Promise* value) { return ::value(&c, ::constantSite(&c, value)); } virtual Operand* address(Promise* address) { return value(&c, ::addressSite(&c, address)); } virtual Operand* memory(Operand* base, int displacement = 0, Operand* index = 0, unsigned scale = 1) { Value* result = value(&c); appendMemory(&c, static_cast(base), displacement, static_cast(index), scale, result); return result; } virtual Operand* stack() { return value(&c, registerSite(&c, c.assembler->stack())); } virtual Operand* base() { return value(&c, registerSite(&c, c.assembler->base())); } virtual Operand* thread() { return value(&c, registerSite(&c, c.assembler->thread())); } virtual bool isConstant(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) return true; } return false; } virtual int64_t constantValue(Operand* a) { for (Site* s = static_cast(a)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { return static_cast(s)->value.value->value(); } } abort(&c); } virtual Operand* label() { return value(&c, ::constantSite(&c, static_cast(0))); } Promise* machineIp() { Event* e = c.logicalCode[c.logicalIp].lastEvent; return e->promises = new (c.zone->allocate(sizeof(CodePromise))) CodePromise(&c, e->promises); } virtual void mark(Operand* label) { appendStackSync(&c); resetStack(&c); for (Site* s = static_cast(label)->sites; s; s = s->next) { if (s->type(&c) == ConstantOperand) { static_cast(s)->value.value = machineIp(); return; } } abort(&c); } virtual void push(unsigned size, Operand* value) { ::push(&c, size, static_cast(value)); } virtual Operand* pop(unsigned size) { return ::pop(&c, size); } virtual void pushed(unsigned count) { for (unsigned i = 0; i < count; ++i) { Value* v = value(&c); c.state->stack = ::stack(&c, v, 1, c.state->stack); c.state->stack->pushed = true; } } virtual void popped(unsigned count) { appendPop(&c, count, true); for (unsigned i = count; i;) { Stack* s = c.state->stack; c.state->stack = s->next; i -= s->size; } } virtual Operand* peek(unsigned size UNUSED, unsigned index) { Stack* s = c.state->stack; for (unsigned i = index; i > 0;) { s = s->next; i -= s->size; } assert(&c, s->size == ceiling(size, BytesPerWord)); return s->value; } virtual Operand* call(Operand* address, void* indirection, unsigned flags, TraceHandler* traceHandler, unsigned resultSize, unsigned argumentCount, ...) { va_list a; va_start(a, argumentCount); unsigned footprint = 0; unsigned size = BytesPerWord; Value* arguments[argumentCount]; unsigned argumentSizes[argumentCount]; unsigned index = 0; for (unsigned i = 0; i < argumentCount; ++i) { Value* o = va_arg(a, Value*); if (o) { arguments[index] = o; argumentSizes[index] = size; size = BytesPerWord; ++ index; } else { size = 8; } ++ footprint; } va_end(a); for (Stack* s = c.state->stack; s; s = s->next) { if (s->pushEvent == 0) { appendPush(&c, s); } s->pushEvent->active = true; } Stack* oldStack = c.state->stack; for (int i = argumentCount - 1; i >= 0; --i) { ::push(&c, argumentSizes[i], arguments[i]); } Stack* argumentStack = c.state->stack; c.state->stack = oldStack; Value* result = value(&c); appendCall(&c, static_cast(address), indirection, flags, traceHandler, result, resultSize, argumentStack, index); return result; } virtual void return_(unsigned size, Operand* value) { appendReturn(&c, size, static_cast(value)); } virtual void store(unsigned size, Operand* src, Operand* dst) { appendMove(&c, Move, size, static_cast(src), static_cast(dst)); } virtual Operand* load(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, Move, size, static_cast(src), dst); return dst; } virtual Operand* loadz(unsigned size, Operand* src) { Value* dst = value(&c); appendMove(&c, MoveZ, size, static_cast(src), dst); return dst; } virtual Operand* load4To8(Operand* src) { Value* dst = value(&c); appendMove(&c, Move4To8, 0, static_cast(src), dst); return dst; } virtual void cmp(unsigned size, Operand* a, Operand* b) { appendCompare(&c, size, static_cast(a), static_cast(b)); } virtual void jl(Operand* address) { appendBranch(&c, JumpIfLess, static_cast(address)); } virtual void jg(Operand* address) { appendBranch(&c, JumpIfGreater, static_cast(address)); } virtual void jle(Operand* address) { appendBranch(&c, JumpIfLessOrEqual, static_cast(address)); } virtual void jge(Operand* address) { appendBranch(&c, JumpIfGreaterOrEqual, static_cast(address)); } virtual void je(Operand* address) { appendBranch(&c, JumpIfEqual, static_cast(address)); } virtual void jne(Operand* address) { appendBranch(&c, JumpIfNotEqual, static_cast(address)); } virtual void jmp(Operand* address) { appendBranch(&c, Jump, static_cast(address)); } virtual Operand* add(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Add, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* sub(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Subtract, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* mul(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Multiply, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* div(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Divide, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* rem(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Remainder, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shl(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftLeft, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* shr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, ShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* ushr(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, UnsignedShiftRight, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* and_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, And, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* or_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Or, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* xor_(unsigned size, Operand* a, Operand* b) { Value* result = value(&c); appendCombine(&c, Xor, size, static_cast(a), static_cast(b), result); return result; } virtual Operand* neg(unsigned size, Operand* a) { Value* result = value(&c); appendTranslate(&c, Negate, size, static_cast(a), result); return result; } virtual unsigned compile() { updateJunctions(&c); ::compile(&c); return c.assembler->length(); } virtual unsigned poolSize() { return c.constantCount * BytesPerWord; } virtual void writeTo(uint8_t* dst) { c.machineCode = dst; c.assembler->writeTo(dst); int i = 0; for (ConstantPoolNode* n = c.firstConstant; n; n = n->next) { *reinterpret_cast(dst + pad(c.assembler->length()) + i) = n->promise->value(); i += BytesPerWord; } } virtual void dispose() { // ignore } Context c; Client client; }; } // namespace namespace vm { Compiler* makeCompiler(System* system, Assembler* assembler, Zone* zone) { return new (zone->allocate(sizeof(MyCompiler))) MyCompiler(system, assembler, zone); } } // namespace vm