This commit ensures that we use the proper memory barriers or locking
necessary to preserve volatile semantics for such fields when accessed
or updated via JNI.
Unlike the interpreter, the JIT compiler tries to resolve all the
symbols referenced by a method when compiling that method. However,
this can backfire if a symbol cannot be resolved: we end up throwing
an e.g. NoClassDefFoundError for code which may never be executed.
This is particularly troublesome for code which supports multiple
APIs, choosing one at runtime.
The solution is to defer to stub code for symbols which can't be
resolved at JIT compile time. Such a stub will try again at runtime
to resolve the needed symbol and throw an appropriate error if it
still can't be found.
It is possible to create an Exception with no stack trace by
overriding Throwable.fillInStackTrace, so we can't assume any given
instance will have one.
There was a race between these two functions such that one thread A
would run dispose on thread B just before thread B finishes exit, with
the result that Thread::lock and/or Thread::systemThread would be
disposed twice, resulting in a crash.
It seems that older versions of GCC (4.0 and older, at least) generate
assembly files with duplicate symbols for function templates which
differ only by the attributes of the templated types. Newer versions
have no such problem, but we need to support both, hence the
workaround in this commit of using a dedicated, non-template "alias"
function where we previously used "cast<alias_t>".
We use a template function called "cast" to get raw access to fields
in in the VM. In particular, we use this function in util.cpp to
treat reference fields as intptr_t fields so we can use the least
significant bit as the red/black flag in red/black tree nodes.
Unfortunately, this runs afoul of the type aliasing rules in C/C++,
and the compiler is permitted to optimize in a way that assumes such
aliasing cannot occur. Such optimization caused all the nodes in the
tree to be black, leading to extremely unbalanced trees and thus slow
performance.
The fix in this case is to use the __may_alias__ attribute to tell the
compiler we're doing something devious. I've also used this technique
to avoid other potential aliasing problems. There may be others
lurking, so a complete audit of the VM might be a good idea.
When loading a class which extends another class that contained a
field of primitive array type using defineClass in a bootimage=true
build, the VM was unable to find the primitive array class, and
makeArrayClass refused to create one since it should already have
existed.
The problem was that the bootimage=true build uses an empty
Machine::BootstrapClassMap, and resolveArrayClass expected to find the
primitive array classes there. The fix is to check the
Machine::BootLoader map if we can't find it in
Machine::BootstrapClassMap.
Previously, we unwound the stack by following the chain of frame
pointers for normal returns, stack trace creation, and exception
unwinding. On x86, this required reserving EBP/RBP for frame pointer
duties, making it unavailable for general computation and requiring
that it be explicitly saved and restored on entry and exit,
respectively.
On PowerPC, we use an ABI that makes the stack pointer double as a
frame pointer, so it doesn't cost us anything. We've been using the
same convention on ARM, but it doesn't match the native calling
convention, which makes it unusable when we want to call native code
from Java and pass arguments on the stack.
So far, the ARM calling convention mismatch hasn't been an issue
because we've never passed more arguments from Java to native code
than would fit in registers. However, we must now pass an extra
argument (the thread pointer) to e.g. divideLong so it can throw an
exception on divide by zero, which means the last argument must be
passed on the stack. This will clobber the linkage area we've been
using to hold the frame pointer, so we need to stop using it.
One solution would be to use the same convention on ARM as we do on
x86, but this would introduce the same overhead of making a register
unavailable for general use and extra code at method entry and exit.
Instead, this commit removes the need for a frame pointer. Unwinding
involves consulting a map of instruction offsets to frame sizes which
is generated at compile time. This is necessary because stack trace
creation can happen at any time due to Thread.getStackTrace being
called by another thread, and the frame size varies during the
execution of a method.
So far, only x86(_64) is working, and continuations and tail call
optimization are probably broken. More to come.
This rather large commit modifies the VM to use non-local returns to
throw exceptions instead of simply setting Thread::exception and
returning frame-by-frame as it used to. This has several benefits:
* Functions no longer need to check Thread::exception after each call
which might throw an exception (which would be especially tedious
and error-prone now that any function which allocates objects
directly or indirectly might throw an OutOfMemoryError)
* There's no need to audit the code for calls to functions which
previously did not throw exceptions but later do
* Performance should be improved slightly due to both the reduced
need for conditionals and because undwinding now occurs in a single
jump instead of a series of returns
The main disadvantages are:
* Slightly higher overhead for entering and leaving the VM via the
JNI and JDK methods
* Non-local returns can make the code harder to read
* We must be careful to register destructors for stack-allocated
resources with the Thread so they can be called prior to a
non-local return
The non-local return implementation is similar to setjmp/longjmp,
except it uses continuation-passing style to avoid the need for
cooperation from the C/C++ compiler. Native C++ exceptions would have
also been an option, but that would introduce a dependence on
libstdc++, which we're trying to avoid for portability reasons.
Finally, this commit ensures that the VM throws an OutOfMemoryError
instead of aborting when it reaches its memory ceiling. Currently, we
treat the ceiling as a soft limit and temporarily exceed it as
necessary to allow garbage collection and certain internal allocations
to succeed, but refuse to allocate any Java objects until the heap
size drops back below the ceiling.
There is a delay between when we tell the OS to start a thread and
when it actually starts, and during that time a thread might
mistakenly think it was the last to exit, try to shut down the VM, and
then block in joinAll when it finds it wasn't the last one after all.
The solution is to increment Machine::liveCount and add the new thread
to the process tree before starting it -- all while holding
Machine::stateLock for atomicity. This helps guarantee that when
liveCount is one, we can be sure there's really only one thread
running or staged to run.
If we don't do this, the VM will crash when it tries to create a stack
trace for the error because makeObjectArray will return null
immediately when it sees there is a pending exception.
When trying to create an array class, we try to resolve
java.lang.Object so we can use its vtable in the array class.
However, if Object is missing, we'll try to create and throw a
ClassNotFoundException, which requires creating an array to store the
stack trace, which requires creating an array class, which requires
resolving Object, etc.. This commit short-circuits this process by
telling resolveClass not to create and throw an exception if it can't
find Object.
While doing the above work, I noticed that the implementations of
Classpath::makeThrowable in classpath-avian.cpp and
classpath-openjdk.cpp were identical, so I made makeThrowable a
top-level function.
Finally, I discovered that Thread.setDaemon can only be called before
the target thread has been started, which allowed me to simplify the
code to track daemon threads in the VM.
* add libnet.so and libnio.so to built-in libraries for openjdk-src build
* implement sun.misc.Unsafe.park/unpark
* implement JVM_SetClassSigners/JVM_GetClassSigners
* etc.
The main change here is to use a lazily-populated vector to associate
runtime data with classes instead of referencing them directly from
the class which requires updating immutable references in the heap
image. The other changes employ other strategies to avoid trying to
update immutable references.
If the VM runs out of heap space and the "avian.heap.dump" system
property was specified at startup, the VM will write a heap dump to
the filename indicated by that property. This dump may be analyzed
using e.g. DumpStats.java.
My recent commit to ensure that OS resources are released immediately
upon thread exit introduced a race condition where interrupting or
joining a thread as it exited could lead to attempts to use
already-released resources. This commit adds locking to avoid the
race.
This makes heap dumps more useful since these classes are now refered
to by name instead of number.
This commit also adds a couple of utilities for parsing heap dumps:
PrintDump and DumpStats.
Previously, we waited until the next GC to do this, but that can be
too long for workloads which create a lot of short-lived threads but
don't do much allocation.
This allows OpenJDK to access time zone data which is normally found
under java.home, but which we must embed in the executable itself to
create a self-contained build. The VM intercepts various file
operations, looking for paths which start with a prefix specified by
the avian.embed.prefix property and redirecting those operations to an
embedded JAR.
For example, if avian.embed.prefix is "/avian-embedded", and code
calls File.exists() with a path of
"/avian-embedded/javahomeJar/foo.txt", the VM looks for a function
named javahomeJar via dlsym, calls the function to find the memory
region containing the embeded JAR, and finally consults the JAR to see
if the file "foo.txt" exists.
As described in readme.txt, a standalone OpenJDK build embeds all
libraries, classes, and other files needed at runtime in the resulting
binary, eliminating dependencies on external resources.
We now consult the JAVA_HOME environment variable to determine where
to find the system library JARs and SOs. Ultimately, we'll want to
support self-contained build, but this allows Avian to behave like a
conventional libjvm.so.
The main changes in this commit ensure that we don't hold the global
class lock when doing class resolution using application-defined
classloaders. Such classloaders may do their own locking (in fact,
it's almost certain), making deadlock likely when mixed with VM-level
locking in various orders.
Other changes include a fix to avoid overflow when waiting for
extremely long intervals and a GC root stack mapping bug.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
In order to facilitate making the VM compatible with multiple class
libraries, it's useful to separate the VM-specific representation of
these classes from the library implementations. This commit
introduces VMClass, VMField, and VMMethod for that purpose.
A long time ago, I refactored the class initialization code in the VM,
but did not notice until today that it had caused the
process=interpret build to break on certain recursive initializations.
In particular, we were not always detecting when a thread recursively
tried to initialize a class it was already in the process of
initializing, leading to the mistaken assumption that another thread
was initializing it and that we should wait until it was done, in
which case we would wait forever.
This commit ensures that we always detect recursive initialization and
short-circuit it.
It's not safe to use malloc from a signal handler, so we can't
allocate new memory when handling segfaults or Thread.getStackTrace
signals. Instead, we allocate a fixed-size backup heap for each
thread ahead of time and use it if there's no space left in the normal
heap pool. In the rare case that the backup heap isn't large enough,
we fall back to using a preallocated exception without a stack trace
as a last resort.
See commit 8120bee4dc for the original
problem description and solution. That commit and a couple of related
ones had to be reverted when we found they had introduced GC-safety
regressions leading to crashes.
This commit restores the reverted code and fixes the regressions.
We're seeing race conditions which occasionally lead to assertion
failures and thus crashes, so I'm reverting these changes for now:
29309fb414e92674cb738120bee4dc
Due to SWT's nasty habit of creating a new object monitor for every
task added to Display.asyncExec, we've found that, on Windows at
least, we tend to run out of OS handles due to the large number of
mutexes we create between garbage collections.
One way to address this might be to trigger a GC when either the
number of monitors created since the last GC exceeds a certain number
or when the total number of monitors in the VM reaches a certain
number. Both of these risk hurting performance, especially if they
force major collections which would otherwise be infrequent. Also,
it's hard to know what the values of such thresholds should be on a
given system.
Instead, we reimplement Java monitors using atomic compare-and-swap
(CAS) and thread-specific native locks for blocking in the case of
contention. This way, we can create an arbitrary number of monitors
without creating any new native locks. The total number of native
locks needed by the VM is bounded instead by the number of live
threads plus a small constant.
Note that if we ever add support for an architecture which does not
support CAS, we'll need to provide a fallback monitor implementation.
If another thread succeeds in entering the "exclusive" state while we
use the fast path to transition the current thread to "active", we
must switch back to "idle" temporarily to allow the exclusive thread a
chance to continue, and then retry the transition to "active" via the
slow path.
These paths reduce contention among threads by using atomic operations
and memory barriers instead of mutexes where possible. This is
especially important for JNI calls, since each such call involves two
state transitions: from "active" to "idle" and back.
This implementation does not conform to the Java standard in that
finalize methods are called from whichever thread happens to be garbage
collecting, and that thread may hold locks, whereas the standard
guarantees that finalize will be run from a thread which holds no locks.
Also, an object will never be finalized more than once, even if its
finalize method "rescues" (i.e. makes reachable) the object such that it
might become unreachable a second time and thus a candidate for
finalization once more. It's not clear to me from the standard if this
is OK or not.
Nonwithstanding the above, this implementation is useful for "normal"
finalize methods which simply release resources associated with an
object.
The previous code relied on the invalid assumption that the thread-local
heaps for all threads would have been cleared immediately following a
garbage collection. However, the last thing the garbage collection
function does is run finalizers which may allocate new objects. This
can lead allocate3 to call allocateSmall with a size which is too large
to accomodate, overflowing the heap.
The solution is to iterate until there really is enough room for the
original allocation request.
This helps us support the Java Memory Model without adding a memory
barrier to every object allocation. It's also potentially more
efficient, since we zero out each heap segment all at once instead of
bit-by-bit with each object allocation.
This simplifies the JNI implementation for looking up methods. It also
fixes a bug where an applications calls GetStaticMethodID with class A
and then calls CallStatic<Type>Method with class B which extends A. The
old code would look in the wrong method table and thus call the wrong
method.
We now support immortal objects, which the GC will scan for references
but not consider for collection. On x86_64, we allocate JIT code memory
via mmap, which lets us map memory into the bottom 2GB of the address
space, ensuring that 32-bit relative jumps and calls work.