This allows OpenJDK to access time zone data which is normally found
under java.home, but which we must embed in the executable itself to
create a self-contained build. The VM intercepts various file
operations, looking for paths which start with a prefix specified by
the avian.embed.prefix property and redirecting those operations to an
embedded JAR.
For example, if avian.embed.prefix is "/avian-embedded", and code
calls File.exists() with a path of
"/avian-embedded/javahomeJar/foo.txt", the VM looks for a function
named javahomeJar via dlsym, calls the function to find the memory
region containing the embeded JAR, and finally consults the JAR to see
if the file "foo.txt" exists.
The main changes in this commit ensure that we don't hold the global
class lock when doing class resolution using application-defined
classloaders. Such classloaders may do their own locking (in fact,
it's almost certain), making deadlock likely when mixed with VM-level
locking in various orders.
Other changes include a fix to avoid overflow when waiting for
extremely long intervals and a GC root stack mapping bug.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
In order to facilitate making the VM compatible with multiple class
libraries, it's useful to separate the VM-specific representation of
these classes from the library implementations. This commit
introduces VMClass, VMField, and VMMethod for that purpose.
Previously, we risked segfaults by passing negative numbers to memcpy.
This commit also makes arraycopy throw an IndexOutOfBounds exception
instead of an ArrayStoreException if the specified offsets and lengths
would take us outside the bounds of one or both of the arrays, per the
Sun documentation.
This helps us support the Java Memory Model without adding a memory
barrier to every object allocation. It's also potentially more
efficient, since we zero out each heap segment all at once instead of
bit-by-bit with each object allocation.
This is particularly important if you want to get the number of bytes of a
resource loaded by the class loader:
getClass().getResource("myFile").openConnection().getContentLength()