We now detect both metafactory and altMetafactory lambdas when
bootimage-compiling invokedynamic instructions, as well as make
allowance for the same lambda being invoked by multiple invokedynamic
instructions (as is the case for Serializable lambdas).
For lambdas that implement java.io.Serializable, the compiler emits
calls to LambdaMetaFactory.altMetafactory, not
LambdaMetaFactory.metafactory, so I've provided a stub implementation
that ignores that currently ignores the extra parameters it receives.
This also fixes a bug in compiling lambda glue code for lambdas that
take longs and/or doubles.
Did some cleanup as proposed by the main developers.
- Bigger HTTP Header Buffer
- Exception if Header is anyway exceeded.
- Linebreaks on HTTP Request fixed to standard.
- Only stop header reading on \r\n\r\n and no longer on \n\n\n\n
- Simplyfied the code to stop if buffer could not be filled.
- Handle special case if buffer has length 0, like specified in the Java API
- Socket will no longer fill the buffer completely
This option specifies that the test classes should be AOT-compiled
along with the class library, which allows us to test that everything
works in AOT-compiled form as well as JIT-compiled form. This is
primarily motivated by the need to test d906db6 (support for
AOT-compilation of Java 8 lambda expressions).
Note that I had to tweak Misc because it tested something that
couldn't be done in an AOT build without a lot of extra work, and
SystemClassLoader.getPackage because it was returning null when the
requested package could not be populated with JAR manifest metadata.
Technically, we probably *should* return null for packages that don't
exist at all (in the sense that no classes have been loaded from such
a package), but tracking that kind of thing seems like more trouble
than it's worth unless someone complains about it.
These expressions are tricky because they rely on invokedynamic, which
normally implies runtime code generation. However, since lambdas
don't actually use the "dynamicness" of invokedynamic, we can convert
them into static calls to synthetic classes at compile time.
Since I had already written code to synthesize such classes in Java
and I didn't want to rewrite it in C++, I needed to add support for
running Java code to the bootimage generator. And since the primary
VM used by the generator is purpose-built to generate AOT-compiled
code for a specific target architecture and is not capable of
generating or running JIT-compiled code for the host architecture, I
added support for loading a second, independent, host-specific VM for
running Java code.
The rest of the patch handles the fact that each method compilation
might cause new, synthetic classes to be created, so we need to make
sure those classes and their methods are included in the final heap
and code images. This required breaking some giant code blocks out of
makeCodeImage into their own methods, which makes the diff look
scarier than it really is.
The main goal here is to avoid making JNI calls from code that really
shouldn't need JNI (e.g. before this patch, ArrayList.add called
Math.max, which called Math.<clinit>, which called Random.<init>,
which called System.currentTimeMillis).
Besides following the "pay for only what you need" principle, this
change ensures we can call LambdaMetaFactory methods during AOT
compilation with a minimal VM (i.e. without compiling in JNI methods
we don't need).
The two big pieces here are basic invokedynamic support and a working
version of LambdaMetaFactory.metafactory. The latter works by
dynamically building a synthetic class with three methods: a static
factory method, a constructor for the factory method to call, and a
method to satisfy the requested interface which defers to the
specified MethodHandle.
This work relies heavily on Avian's specific MethodType and
MethodHandle implementations, which provide extra, non-standard
features to make code generation easier. That means we'll probably
need to use Avian's versions of java.lang.invoke.* even when building
with the OpenJDK or Android class libraries.
This is a bunch of commits squashed into one per Josh's request.
add dynamicTable field
add invokedynamic instruction
add defaultDynamic bootimage field
add dummy invokedynamic support in bootimage-generator
add defaultDynamic thunk
check dynamicTable offset
comment defaultDynamicThunk to fix unused function
comment defaultDynamicThunk to fix unused function
add dynamicTable / dynamicIndex stuff
comment dynamicIndex and dynamicTable
add invokedynamic instruction impl
stub out addDynamic
unstub addDynamic
don't allow tail calls in invokedynamic
implement stub JVM_GetTemporaryDirectory method
(build broken) begin add InvokeDynamicTest
Revert "(build broken) begin add InvokeDynamicTest"
This reverts commit 77f9c54e32ac66d0803eeab93e4a10d3541987a8.
add InternalError
add URLClassPath.c for openjdk-src builds
implement stub JVM_KnownToNotExist and JVM_GetResourceLookupCache methods
intercept open0 / open for openjdk
add basic java/lang/invoke stubs
remove non-public java/lang/invoke classes
fix invokedynamic example building
<wip debugging>
such as %s, %d, %x... also width, left justify, zerofill flags are
implemented. Many of the other formats do not work, see the comments in
avian.FormatString javadoc and look for FIXME and TODO items for more
information on features that are known to not work correctly.
As documented at
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARM64FunctionCallingConventions.html,
the ARM64 iOS ABI differs from the generic ABI in a few important
ways. Specifically, arguments passed via the stack are aligned
according to their natural alignment instead of 8 bytes. The VM's
dynamic call code was aligning each argument to 8 bytes, so native JNI
code couldn't find them in their expected places.
Also, we weren't setting the "os.arch" system property on ARM64, so I
fixed that too.
We need to call Socket.init before trying to use the Windows Socket
library. We were already doing this in SocketChannel.open, but not in
ServerSocketChannel.open.