The main changes in this commit ensure that we don't hold the global
class lock when doing class resolution using application-defined
classloaders. Such classloaders may do their own locking (in fact,
it's almost certain), making deadlock likely when mixed with VM-level
locking in various orders.
Other changes include a fix to avoid overflow when waiting for
extremely long intervals and a GC root stack mapping bug.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
In order to facilitate making the VM compatible with multiple class
libraries, it's useful to separate the VM-specific representation of
these classes from the library implementations. This commit
introduces VMClass, VMField, and VMMethod for that purpose.
Before allocating a new reference in NewGlobalReference or when
creating a local reference, we look for a previously-allocated
reference pointing to the same object. This is a linear search, but
usually the number of elements in the reference list is small, whereas
the memory, locking, and allocation overhead of creating duplicate
references can be large.
This helps us support the Java Memory Model without adding a memory
barrier to every object allocation. It's also potentially more
efficient, since we zero out each heap segment all at once instead of
bit-by-bit with each object allocation.
This simplifies the JNI implementation for looking up methods. It also
fixes a bug where an applications calls GetStaticMethodID with class A
and then calls CallStatic<Type>Method with class B which extends A. The
old code would look in the wrong method table and thus call the wrong
method.