Lots has changed since we forked Android's libcore, so merging the
latest upstream code has required extensive changes to the
Avian/Android port.
One big change is that we now use Avian's versions of
java.lang.Object, java.lang.Class, java.lang.ClassLoader, some
java.lang.reflect.* classes, etc. instead of the Android versions.
The main reason is that the Android versions have become very
Dex/Dalvik-specific, and since Avian is based on Java class files, not
dex archives, that code doesn't make sense here. This has the side
benefit that we can share more native code with classpath-avian.cpp
and reduce the amount of Java/C++ code duplication.
So there I was, planning to just fix one little bug: Thread.holdsLock
and Thread.yield were missing for the Android class library. Easy
enough, right? So, I added a test, got it passing, and figured I'd go
ahead and run ci.sh with all three class libraries. Big mistake.
Here's the stuff I found:
* minor inconsistency in README.md about OpenSSL version
* untested, broken Class.getEnclosingMethod (reported by Josh)
* JNI test failed for tails=true Android build
* Runtime.nativeExit missing for Android build
* obsolete assertion in CallEvent broke tails=true Android build
* obsolete superclass field offset padding broke bootimage=true Android build
* runtime annotation parsing broke bootimage=true Android build
(because we couldn't modify Addendum.annotationTable for classes in
the heap image)
* ci.sh tried building with both android=... and openjdk=..., which
the makefile rightfully balked at
Sorry this is all in a single commit; I didn't expect so many
unrelated issues, and I'm too lazy to break them apart.
Most of these regressions were simply due to testing a lot more stuff,
esp. annotations and reflection, revealing holes in the Android
compatibility code. There are still some holes, but at least the
suite is passing (except for a fragile test in Serialize.java which I
will open an issue for).
Sorry this is such a big commit; there was more to address than I
initially expected.
Method.invoke should initialize its class before invoking the method,
throwing an ExceptionInInitializerError if it fails, without wrapping
said error in an InvocationTargetException.
Also, we must initialize ExceptionInInitializerError.exception when
throwing instances from the VM, since OpenJDK's
ExceptionInInitializerError.getCause uses the exception field, not the
cause field.
We should pass the method of the original interface to the
InvocationHandler, not the method of the interface.
That way, proxy instances of annotations will have easy access to
the default values.
This happens to be compatible with the way Oracle Java does it, too.
To accomplish our goal, we keep a global map between proxy classes and
Method references and assign the appropriate list to a field of the
Proxy subclass. This means that we now have to call the super-class
constructor in the generated constructor (which is the correct thing to
do anyway... ;-)).
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Proxies implement interfaces whose methods *must* be public, as per the
specification of the Java language.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
When the class whose field is to be inspected has no annotations at all,
at least my javac here (1.6.0_51 on MacOSX) does not produce any class
addendum.
Therefore, let's verify that the addendum is not null before proceeding.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Previously, I used a shell script to extract modification date ranges
from the Git history, but that was complicated and unreliable, so now
every file just gets the same year range in its copyright header. If
someone needs to know when a specific file was modified and by whom,
they can look at the Git history themselves; no need to include it
redundantly in the header.
We were not properly converting dots to slashes internally for package names
and we did not properly handle Method.getAnnotations and
Method.getAnnotation(Class<T>) on methods without any annotations.
Added some tests to cover these cases.
This test covers the case where a local stack slot is first used to
store an object reference and later to store a subroutine return
address. Unfortunately, this confuses the VM's stack mapping code;
I'll be working on a fix for that next.
The new test requires generating bytecode from scratch, since there's
no reliable way to get javac to generate the code we want. Since we
already had primitive bytecode construction code in Proxy.java, I
factored it out so we can reuse it in Subroutine.java.
Rather than try to support mixing Avian's core classes with those of
an external class library -- which necessitates adding a lot of stub
methods which throw UnsupportedOperationExceptions, among other
comprimises -- we're looking to support such external class libraries
in their unmodified forms. The latter strategy has already proven
successful with OpenJDK's class library. Thus, this commit removes
the stub methods, etc., which not only cleans up the code but avoids
misleading application developers as to what classes and methods
Avian's built-in class library supports.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
In order to facilitate making the VM compatible with multiple class
libraries, it's useful to separate the VM-specific representation of
these classes from the library implementations. This commit
introduces VMClass, VMField, and VMMethod for that purpose.