Instead of having an opcode 'CHAR', let's have the opcodes that fall
within the range of a char *be* the opcode 'match this character'.
While at it, break the ranges of the different types of opcodes apart
into ranges so that related operations are clustered.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
We still do not parse the regular expression patterns, but we can at
least test that the hardcoded 'a(bb)+a' works as expected.
This class will be extended as we support more and more features.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Based on the just-implemented PikeVM, let's test it with a specific
regular expression. At this point, no parsing is implemented but instead
an explicit program executing a(bb)?a is hardcoded.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
So far, these are humble beginnings indeed. Based on the descriptions of
http://swtch.com/%7Ersc/regexp/regexp2.html
I started implementing a Thompson NFA / Pike VM.
The idea being that eventually, regular expressions are to be compiled
into special-purpose bytecode for the Pike VM that executes a varying
number of threads in lock-step over each character of the text to match.
The thread count is bounded by the length of the program: two different
threads with identical instruction pointer at the same character-to-match
would yield exactly the same outcome (and therefore, we can execute just
one such thread instead of possibly many).
To allow for matching groups, each thread carries a state with it, saving
the group offsets acquired so far.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
This makes both the Pattern and the Matcher class abstract so that more
specialized patterns than the trivial patterns we support so far can be
implemented as convenient subclasses of the respective abstract base
classes.
To ease development, we work on copies in test/regex/ in the 'regex'
package. That way, it can be developed in Eclipse (because it does not
interfere with Oracle JRE's java.util.regex.* classes).
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
When the class whose field is to be inspected has no annotations at all,
at least my javac here (1.6.0_51 on MacOSX) does not produce any class
addendum.
Therefore, let's verify that the addendum is not null before proceeding.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
This adds an extra class path element to the VM running the unit tests,
writes files with identical file names into both directories and then
verifies that SystemClassLoader#getResources can find them.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
This change reuses the existing insertion sort (which was previously what
Arrays.sort() executed) in a full intro sort pipeline.
The implementation is based on the Musser paper on intro sort (Musser,
David R. "Introspective sorting and selection algorithms." Softw., Pract.
Exper. 27.8 (1997): 983-993.) and Wikipedia's current description of the
heap sort: http://en.wikipedia.org/wiki/Heapsort.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
We do not really support regular expressions yet, but we do support
trivial patterns including ones with escaped characters. Let's make sure
that that works as advertised.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
The OpenJDK library wants to track and run the shutdown hooks itself
rather than let the VM do it, so we need to tell it when we're
exiting.
Also, in machine.cpp we need to use only the modifiers specified in
the InnerClasses attribute for inner classes rather than OR them with
the flags given at the top level of the class file.
This fixes a couple of tests in the Scala test suite
(run/reflection-modulemirror-toplevel-badpath.scala and
run/reflection-constructormirror-nested-good.scala).