We have to be careful about how we calculate return addresses on ARM
due to padding introduced by constant pools interspersed with code.
When calculating the offset of code where we're inserting a constant
pool, we want the offset of the end of the pool for jump targets, but
we want the offset just prior to the beginning of the pool (i.e. the
offset of the instruction responsible for jumping past the pool) when
calculating a return address.
The code added to runJavaThread was unecessary and harmful since it
allowed the global daemon thread count to become permanently
out-of-sync with the actual number of daemon threads.
This mainly involves some makefile ugliness to work around bugs in the
native Windows OpenJDK code involving conflicting static and
not-static declarations which GCC 4.0 and later justifiably reject but
MSVC tolerates.
We weren't properly handling the case where a 64-bit value is
multipled with itself in multiplyRR, leading to wrong code. Also,
addCarryCR didn't know how to handle constants more than 8-bits wide.
* add libnet.so and libnio.so to built-in libraries for openjdk-src build
* implement sun.misc.Unsafe.park/unpark
* implement JVM_SetClassSigners/JVM_GetClassSigners
* etc.
The main change here is to use a lazily-populated vector to associate
runtime data with classes instead of referencing them directly from
the class which requires updating immutable references in the heap
image. The other changes employ other strategies to avoid trying to
update immutable references.
Compiling the entire OpenJDK class library into a bootimage revealed
some corner cases which broke the compiler, including synchronization
in a finally block and gotos targeting the first instruction of an
unsynchronized method.
We must call notifyAll on visitLock after setting threadVisitor to
null in case another thread is waiting to do a visit of its own.
Otherwise, the latter thread will wait forever, eventually deadlocking
the whole VM at the next GC since it's in an active state.
If the VM runs out of heap space and the "avian.heap.dump" system
property was specified at startup, the VM will write a heap dump to
the filename indicated by that property. This dump may be analyzed
using e.g. DumpStats.java.
My recent commit to ensure that OS resources are released immediately
upon thread exit introduced a race condition where interrupting or
joining a thread as it exited could lead to attempts to use
already-released resources. This commit adds locking to avoid the
race.
This makes heap dumps more useful since these classes are now refered
to by name instead of number.
This commit also adds a couple of utilities for parsing heap dumps:
PrintDump and DumpStats.
The primary change is to ensure we output a Mach-O file of appropriate
endianness when cross-compiling for an opposite-endian architecture.
Earlier versions of XCode's linker accepted files of either
endianness, reguardless of architecture, but later versions don't,
hence the change.
Previously, loading an arbitrary 32-bit constant required up to four
instructions (128 bytes), since we did so one byte at a time via
immediate-mode operations.
The preferred way to load constants on ARM is via PC-relative
addressing, but this is challenging because immediate memory offsets
are limited to 4096 bytes in either direction. We frequently need to
compile methods which are larger than 4096, or even 8192, bytes, so we
must intersperse code and data if we want to use PC-relative loads
everywhere.
This commit enables pervasive PC-relative loads by handling the
following cases:
1. Method is shorter than 4096 bytes: append data table to end
2. Method is longer than 4096 bytes, but no basic block is longer
than 4096 bytes: insert data tables as necessary after blocks, taking
care to minimize the total number of tables
3. Method is longer than 4096 bytes, and some blocks are longer than
4096 bytes: split large basic blocks and insert data tables as above