Our Thread.getStackTrace implementation is tricky because it might be
invoked on a thread executing arbitrary native or Java code, and there
are numerous edge cases to consider. Unsurprisingly, there were a few
lingering, non-fatal bugs revealed by Valgrind recently, one involving
the brief interval just before and after returning from invokeNative,
and the other involving an off-by-one error in x86.cpp's nextFrame
implementation. This commit fixes both.
This rather large commit modifies the VM to use non-local returns to
throw exceptions instead of simply setting Thread::exception and
returning frame-by-frame as it used to. This has several benefits:
* Functions no longer need to check Thread::exception after each call
which might throw an exception (which would be especially tedious
and error-prone now that any function which allocates objects
directly or indirectly might throw an OutOfMemoryError)
* There's no need to audit the code for calls to functions which
previously did not throw exceptions but later do
* Performance should be improved slightly due to both the reduced
need for conditionals and because undwinding now occurs in a single
jump instead of a series of returns
The main disadvantages are:
* Slightly higher overhead for entering and leaving the VM via the
JNI and JDK methods
* Non-local returns can make the code harder to read
* We must be careful to register destructors for stack-allocated
resources with the Thread so they can be called prior to a
non-local return
The non-local return implementation is similar to setjmp/longjmp,
except it uses continuation-passing style to avoid the need for
cooperation from the C/C++ compiler. Native C++ exceptions would have
also been an option, but that would introduce a dependence on
libstdc++, which we're trying to avoid for portability reasons.
Finally, this commit ensures that the VM throws an OutOfMemoryError
instead of aborting when it reaches its memory ceiling. Currently, we
treat the ceiling as a soft limit and temporarily exceed it as
necessary to allow garbage collection and certain internal allocations
to succeed, but refuse to allocate any Java objects until the heap
size drops back below the ceiling.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
See commit 8120bee4dc5f9ae2dec75a907778f1479ad398bd for the original
problem description and solution. That commit and a couple of related
ones had to be reverted when we found they had introduced GC-safety
regressions leading to crashes.
This commit restores the reverted code and fixes the regressions.
We're seeing race conditions which occasionally lead to assertion
failures and thus crashes, so I'm reverting these changes for now:
29309fb4149ec02f993f84ffe4675e95c98db832
e92674cb7337355dc4dd6317219010e5d1ce7e1c
8120bee4dc5f9ae2dec75a907778f1479ad398bd