This avoids the requirement of putting the code image in a
section/segment which is both writable and executable, which is good
for security and avoids trouble with systems like iOS which disallow
such things.
The implementation relies on relative addressing such that the offset
of the desired address is fixed as a compile-time constant relative to
the start of the memory area of interest (e.g. the code image, heap
image, or thunk table). At runtime, the base pointer to the memory
area is retrieved from the thread structure and added to the offset to
compute the final address. Using the thread pointer allows us to
generate read-only, position-independent code while avoiding the use
of IP-relative addressing, which is not available on all
architectures.
Also, assume any class which has an ancestor class which has a static
initializer needs initialization even if it doesn't have one itself,
per the Java Language Spec.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
A long time ago, I refactored the class initialization code in the VM,
but did not notice until today that it had caused the
process=interpret build to break on certain recursive initializations.
In particular, we were not always detecting when a thread recursively
tried to initialize a class it was already in the process of
initializing, leading to the mistaken assumption that another thread
was initializing it and that we should wait until it was done, in
which case we would wait forever.
This commit ensures that we always detect recursive initialization and
short-circuit it.
We now create a unique thunk for each vtable position so as to avoid
relying on using the return address to determine what method is to be
compiled and invoked, since we will not have the correct return address
in the case of a tail call. This required refactoring how executable
memory is allocated in order to keep AOT compilation working. Also, we
must always use the same register to hold the class pointer when
compiling virtual calls, and ensure that the pointer stays there until
the call instruction is executed so we know where to find it in the
thunk.
The trick is to make all destructors non-virtual. This is safe because
we never use the delete operator, which is the only case where virtual
destructors are relevant. This is a better solution than implementing
our own delete operator, because we want libraries loaded at runtime to
use the libstdc++ version, not ours.