Added to collection:
public boolean containsAll(Collection<?> c);
public boolean removeAll(Collection<?> c);
Added to list:
public boolean addAll(int startIndex, Collection<? extends T> c);
Also where possible for inner classes I made them extend the abstract version instead of just implement the interface. This helps reduce code duplication where possible.
These changes were necessary to support protobuf 2.5.0
This mainly moves several sun.misc.Unsafe method implementations from
classpath-openjdk.cpp to builtin.cpp so that the Avian and Android
builds can use them.
It also replaces FinalizerReference.finalizeAllEnqueued with a no-op,
since the real implementations assumes too much about how the VM
handles (or delegates) finalization.
This package name must match the URL protocol we use for loading
embedded resources, but OpenJDK's URL class won't tolerate underscores
in a protocol name. Also, I had not updated the names of the native
methods in avian.avianvmresource.Handler, leading to
UnsatisfiedLinkErrors when they were called.
Java requires that NaNs be converted to zero and that numbers at or
beyond the limits of integer representation be clamped to the largest
or smallest value that can be represented, respectively.
Our implementation uses Object.wait(long) to implement Thread.sleep,
which had the side effect of interpreting zero as infinity. However,
for Thread.sleep, zero just means zero. I assume that doesn't mean
"don't sleep at all", though, or else the app wouldn't have called
Thread.sleep in the first place, so this patch sleeps for one
millisecond when zero is passed -- just enough to yield the processor
for a bit. Thread.yield might be a better choice in this case, but I
assume the app would have called that directly if that's what it
wanted.
The ArrayList(Collection) constructor was allocating two arrays
instead of one due to an off-by-one error in ArrayList.grow. This
commit fixes that and makes grow and shrink more robust.
We were not properly converting dots to slashes internally for package names
and we did not properly handle Method.getAnnotations and
Method.getAnnotation(Class<T>) on methods without any annotations.
Added some tests to cover these cases.
The previous code caused frequent seed collisions for successive calls
to the no-arg constructor, even for single threaded workloads. This
patch should avoid such collisions in both single and multi-threaded
cases.
The previous code caused frequent seed collisions for successive calls
to the no-arg constructor, even for single threaded workloads. This
patch should avoid such collisions in both single and multi-threaded
cases.
We now properly forward the errno value from the child when execvp()
fails, which the parent then uses to for the errno message as well as
including the failed command's name in the message.
We must throw an AbstractMethodError when such a call is executed (not
when the call is compiled), so we compile this case as a call to a
thunk which throws such an error.
Previously, Deflater.deflate would pass Z_SYNC_FLUSH to zlib
unconditionally, which caused the output to be enormous when setInput
was called repeatedly with very small input buffers. In order to
allow zlib to buffer output and thereby maximize compression, we must
use Z_NO_FLUSH until Deflater.finish is called, at which point we
switch to Z_FINISH. We also modify DeflaterOutputStream.close to call
Deflater.finish and write any remaining output to the wrapped stream.
OpenJDK's java.lang.ClassLoader.getResource makes use of
sun.misc.Launcher to load bootstrap resources, which is not
appropriate for the Avian build, so we override it to ensure we get
the behavior we want.
This test covers the case where a local stack slot is first used to
store an object reference and later to store a subroutine return
address. Unfortunately, this confuses the VM's stack mapping code;
I'll be working on a fix for that next.
The new test requires generating bytecode from scratch, since there's
no reliable way to get javac to generate the code we want. Since we
already had primitive bytecode construction code in Proxy.java, I
factored it out so we can reuse it in Subroutine.java.
In commit 7fffba2, I had modified BufferedInputStream.read to keep
reading until in.available() <= 0 or an EOF was reached, but neglected
to update the offset into the destination buffer after each read.
This caused the previously-read data to be overwritten. This commit
fixes that regression.
When trying to create an array class, we try to resolve
java.lang.Object so we can use its vtable in the array class.
However, if Object is missing, we'll try to create and throw a
ClassNotFoundException, which requires creating an array to store the
stack trace, which requires creating an array class, which requires
resolving Object, etc.. This commit short-circuits this process by
telling resolveClass not to create and throw an exception if it can't
find Object.
While doing the above work, I noticed that the implementations of
Classpath::makeThrowable in classpath-avian.cpp and
classpath-openjdk.cpp were identical, so I made makeThrowable a
top-level function.
Finally, I discovered that Thread.setDaemon can only be called before
the target thread has been started, which allowed me to simplify the
code to track daemon threads in the VM.
The main change here is to use a lazily-populated vector to associate
runtime data with classes instead of referencing them directly from
the class which requires updating immutable references in the heap
image. The other changes employ other strategies to avoid trying to
update immutable references.
1. HashMap.containsValue only checked one hash bucket, which was
pretty much useless :)
2. HashMap.MyIterator.remove was broken in that it failed to
decrement the size field and it did not update the previousCell field
properly, which sometimes led to more than one cell being removed.
The first bug affected POSIX systems: if the app never called
Process.waitFor, we'd never call waitpid on the child and thus leak a
zombie process. This patch ensures that we always call waitpid by
spawning a thread to handle it.
The second bug affected Windows systems: we weren't closing the
child's ends of the stdin, stdout, and stderr pipes after process
creation, which lead to us blocking forever while reading from the
child's stdout or stderr.
Rather than try to support mixing Avian's core classes with those of
an external class library -- which necessitates adding a lot of stub
methods which throw UnsupportedOperationExceptions, among other
comprimises -- we're looking to support such external class libraries
in their unmodified forms. The latter strategy has already proven
successful with OpenJDK's class library. Thus, this commit removes
the stub methods, etc., which not only cleans up the code but avoids
misleading application developers as to what classes and methods
Avian's built-in class library supports.
The main changes in this commit ensure that we don't hold the global
class lock when doing class resolution using application-defined
classloaders. Such classloaders may do their own locking (in fact,
it's almost certain), making deadlock likely when mixed with VM-level
locking in various orders.
Other changes include a fix to avoid overflow when waiting for
extremely long intervals and a GC root stack mapping bug.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
We were incorrectly returning an empty array when the input was empty,
whereas we ought to return an array containing a single empty string.
When the pattern to match was empty, we went into a loop to create an
infinite list of empty strings, only to crash once we've run out of
memory. This commit addresses both problems.
In order to facilitate making the VM compatible with multiple class
libraries, it's useful to separate the VM-specific representation of
these classes from the library implementations. This commit
introduces VMClass, VMField, and VMMethod for that purpose.