This avoids the requirement of putting the code image in a
section/segment which is both writable and executable, which is good
for security and avoids trouble with systems like iOS which disallow
such things.
The implementation relies on relative addressing such that the offset
of the desired address is fixed as a compile-time constant relative to
the start of the memory area of interest (e.g. the code image, heap
image, or thunk table). At runtime, the base pointer to the memory
area is retrieved from the thread structure and added to the offset to
compute the final address. Using the thread pointer allows us to
generate read-only, position-independent code while avoiding the use
of IP-relative addressing, which is not available on all
architectures.
This fixes a number of bugs concerning cross-architecture bootimage
builds involving diffent endianesses. There will be more work to do
before it works.
Some apps and libraries may generate recoverable SEH exceptions on
Windows, in which cases we don't want to waste time and disk space
generating memory dumps.
This monster commit is the first step towards supporting
cross-architecture bootimage builds. The challenge is to build a heap
and code image for the target platform where the word size and
endianess may differ from those of the build architecture. That means
the memory layout of objects may differ due to alignment and size
differences, so we can't just copy objects into the heap image
unchanged; we must copy field by field, resizing values, reversing
endianess and shifting offsets as necessary.
This commit also removes POD (plain old data) type support from the
type generator because it added a lot of complication and little
value.
On Windows, some versions of Git automatically translate Unix line
endings to Windows line endings, which can break the build unless we
treat carriage returns as whitespace when parsing.
Previously, we returned immediately from Monitor.wait if we found we
had been interrupted, but this caused deadlock when waiting to enter
the exclusive state, since we never released Machine::stateLock to
allow active threads to transition into the idle state. This commit
ensures that we at least briefly release the lock without actually
waiting in that case.
We must throw an AbstractMethodError when such a call is executed (not
when the call is compiled), so we compile this case as a call to a
thunk which throws such an error.
Singletons may have embedded object references, and if they are
allocated at fixed memory locations (e.g. if they are larger than
64KB), they must have object masks so the garbage collector knows were
to find said references.
We can't reduce a conditional branch to an unconditional jump unless
both arguments to the comparison are constants *and* those constants
have been resolved. The latter may not be true in the case of a
bootimage build.
We had be using System::Monitor::wait to block threads internally in
the VM as well as to implement Object.wait. However, the interrupted
flag should only be cleared in the latter case, not the former. This
commit adds a new method and changes the semantics of the old one in
order to acheive the desired behavior.
This was causing 8-byte SSE-to-SSE moves involving registers
xmm8-xmm15 to be misencoded on x86_64, leading to incorrect code
generation in methods with lots of local variables of type double.
We can only omit the jump past a constant pool if it's placed at the
end of a method, which is only true if the pool belongs to the last
block of that method and that block is not so large that the pool must
be placed inside the block instead of after it.
The previous code did not take into account any padding embedded in a
basic block due to inline jump tables, which led to invalid code
generation in large methods
If we fail to resolve a given class (e.g. due to ProGuard obfuscating
or eliminating it), just move on to the next one rather than return
immediately. Otherwise, we may miss intercepting methods of classes
we can resolve.
sun.font.FontManager.initIDs is a native method defined in
libfontmanager.so, yet there seems to be no mechanism in OpenJDK's
class library to actually load that library, so we lazily load it
before trying to resolve the method.
Internally, the VM augments the method tables for abstract classes
with any inherited abstract methods to make code simpler elsewhere,
but that means we can't use that table to construct the result of
Class.getDeclaredMethods since it would include methods not actually
declared in the class. This commit ensures that we preserve and use
the original, un-augmented table for that purpose.
Under certain circumstances, the implementations of these functions
may throw errors, so we need to wrap them using vm::run so we don't
try to unwind past the JNI boundary.
As described in commit 36aa0d6, apps such as jython which generate
bytecode dynamically can produce patterns of bytecode for which the
VM's compiler could not handle properly. However, that commit
introduced a regression and had to be partially reverted.
It turns out the real problem was the call to Compiler::restoreState
which we made before checking whether we were actually ready to
compile the exception handler (we delay compiling an exception handler
until and unless the try/catch block it serves has been compiled so we
can calculate the stack maps properly). That confused the compiler in
rare cases, so we now only call restoreState once we're actually ready
to compile the handler.
My last commit introduced a regression in JIT compilation of
subroutines. This reverts the specific change which caused the
regression. Further work will be needed to address the case which
that change was intended to fix (namely, exception handlers which
apply to multiple try/catch blocks).
Bytecode generated by compilers other than javac or ecj (such as
jython's dynamically generated classes) can contain unreachable code
and exception handlers which apply to more than one try/catch scope.
Previously, the VM's JIT compiler did not handle either of these cases
well, hence this commit.
Previously, we would abort the process if we encountered a truncated
multibyte character in parseUtf8NonAscii (called by the JNI method
NewStringUTF). Now we simply terminate the string at that point.
Previously, we would abort the process if we encountered a truncated
multibyte character in parseUtf8NonAscii (called by the JNI method
NewStringUTF). Now we simply terminate the string at that point.
Also, assume any class which has an ancestor class which has a static
initializer needs initialization even if it doesn't have one itself,
per the Java Language Spec.
The result of Class.getInterfaces should not include interfaces
declared to be implemented/extended by superclasses/superinterfaces,
only those declared by the class itself. This is important because it
influences how java.io.ObjectStreamClass calculates serial version
IDs.
Some broken code implicitly relies on System.identityHashCode always
returning a non-negative number (e.g. old versions of
com/sun/xml/bind/v2/util/CollisionCheckStack.hash).
Code including subroutines and conditionals can result in frame and
register resources being held by values which aren't in scope when
resetFrame is called, so we need to clean them up after cleaning the
in-scope values.
OpenJDK's sun.reflect.MethodAccessorGenerator can generate
invokevirtual calls to private methods (which we normally consider
non-virtual); we must compile them as non-virtual calls since they
aren't in the vtable.
It turns out commit 31eb047 was too aggressive and led to incorrect
calculation of line numbers for machine addresses, as well as
potentially incorrect exception handler scope calculation. This fixes
the regression.