Rebuild asset contracts using clauses

This commit is contained in:
Ross Nicoll 2016-07-12 11:49:00 +01:00
parent ea051d57be
commit cba3aab96e
13 changed files with 534 additions and 604 deletions

View File

@ -1,6 +1,10 @@
package com.r3corda.contracts.asset
import com.r3corda.contracts.clause.AbstractConserveAmount
import com.r3corda.contracts.clause.AbstractIssue
import com.r3corda.contracts.clause.NoZeroSizedOutputs
import com.r3corda.core.contracts.*
import com.r3corda.core.contracts.clauses.*
import com.r3corda.core.crypto.*
import com.r3corda.core.node.services.Wallet
import com.r3corda.core.utilities.Emoji
@ -28,7 +32,7 @@ val CASH_PROGRAM_ID = Cash()
* At the same time, other contracts that just want money and don't care much who is currently holding it in their
* vaults can ignore the issuer/depositRefs and just examine the amount fields.
*/
class Cash : FungibleAsset<Currency>() {
class Cash : ClauseVerifier() {
/**
* TODO:
* 1) hash should be of the contents, not the URI
@ -40,6 +44,34 @@ class Cash : FungibleAsset<Currency>() {
* that is inconsistent with the legal contract.
*/
override val legalContractReference: SecureHash = SecureHash.sha256("https://www.big-book-of-banking-law.gov/cash-claims.html")
override val clauses: List<SingleClause>
get() = listOf(Clauses.Group())
override fun extractCommands(tx: TransactionForContract): List<AuthenticatedObject<FungibleAsset.Commands>>
= tx.commands.select<Cash.Commands>()
interface Clauses {
class Group : GroupClauseVerifier<State, Issued<Currency>>() {
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.ERROR
override val clauses: List<GroupClause<State, Issued<Currency>>>
get() = listOf(
NoZeroSizedOutputs<State, Currency>(),
Issue(),
ConserveAmount())
override fun extractGroups(tx: TransactionForContract): List<TransactionForContract.InOutGroup<State, Issued<Currency>>>
= tx.groupStates<State, Issued<Currency>> { it.issuanceDef }
}
class Issue : AbstractIssue<State, Currency>({ sumCash() }, { token -> sumCashOrZero(token) }) {
override val requiredCommands: Set<Class<out CommandData>>
get() = setOf(Commands.Issue::class.java)
}
class ConserveAmount : AbstractConserveAmount<State, Currency>()
}
/** A state representing a cash claim against some party */
data class State(
@ -47,12 +79,10 @@ class Cash : FungibleAsset<Currency>() {
/** There must be a MoveCommand signed by this key to claim the amount */
override val owner: PublicKey
) : FungibleAsset.State<Currency> {
) : FungibleAsset<Currency> {
constructor(deposit: PartyAndReference, amount: Amount<Currency>, owner: PublicKey)
: this(Amount(amount.quantity, Issued<Currency>(deposit, amount.token)), owner)
override val productAmount: Amount<Currency>
get() = Amount(amount.quantity, amount.token.product)
override val deposit: PartyAndReference
get() = amount.token.issuer
override val exitKeys: Collection<PublicKey>
@ -63,7 +93,7 @@ class Cash : FungibleAsset<Currency>() {
override val participants: List<PublicKey>
get() = listOf(owner)
override fun move(newAmount: Amount<Currency>, newOwner: PublicKey): FungibleAsset.State<Currency>
override fun move(newAmount: Amount<Issued<Currency>>, newOwner: PublicKey): FungibleAsset<Currency>
= copy(amount = amount.copy(newAmount.quantity, amount.token), owner = newOwner)
override fun toString() = "${Emoji.bagOfCash}Cash($amount at $deposit owned by ${owner.toStringShort()})"
@ -72,7 +102,7 @@ class Cash : FungibleAsset<Currency>() {
}
// Just for grouping
interface Commands : CommandData {
interface Commands : FungibleAsset.Commands {
/**
* A command stating that money has been moved, optionally to fulfil another contract.
*

View File

@ -1,41 +1,38 @@
package com.r3corda.contracts.asset
import com.r3corda.core.contracts.*
import com.r3corda.core.crypto.Party
import java.security.PublicKey
import java.util.*
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Cash-like
//
class InsufficientBalanceException(val amountMissing: Amount<Currency>) : Exception()
/**
* Superclass for contracts representing assets which are fungible, countable and issued by a specific party. States
* contain assets which are equivalent (such as cash of the same currency), so records of their existence can
* be merged or split as needed where the issuer is the same. For instance, dollars issued by the Fed are fungible and
* countable (in cents), barrels of West Texas crude are fungible and countable (oil from two small containers
* can be poured into one large container), shares of the same class in a specific company are fungible and
* countable, and so on.
* Interface for contract states representing assets which are fungible, countable and issued by a
* specific party. States contain assets which are equivalent (such as cash of the same currency),
* so records of their existence can be merged or split as needed where the issuer is the same. For
* instance, dollars issued by the Fed are fungible and countable (in cents), barrels of West Texas
* crude are fungible and countable (oil from two small containers can be poured into one large
* container), shares of the same class in a specific company are fungible and countable, and so on.
*
* See [Cash] for an example subclass that implements currency.
* See [Cash] for an example contract that implements currency using state objects that implement
* this interface.
*
* @param T a type that represents the asset in question. This should describe the basic type of the asset
* (GBP, USD, oil, shares in company <X>, etc.) and any additional metadata (issuer, grade, class, etc.).
*/
abstract class FungibleAsset<T> : Contract {
/** A state representing a cash claim against some party */
interface State<T> : FungibleAssetState<T, Issued<T>> {
/** Where the underlying currency backing this ledger entry can be found (propagated) */
interface FungibleAsset<T> : OwnableState {
/**
* Where the underlying asset backing this ledger entry can be found. The reference
* is only intended for use by the issuer, and is not intended to be meaningful to others.
*/
val deposit: PartyAndReference
val issuanceDef: Issued<T>
val amount: Amount<Issued<T>>
/** There must be an ExitCommand signed by these keys to destroy the amount */
val exitKeys: Collection<PublicKey>
/** There must be a MoveCommand signed by this key to claim the amount */
override val owner: PublicKey
}
fun move(newAmount: Amount<Issued<T>>, newOwner: PublicKey): FungibleAsset<T>
// Just for grouping
interface Commands : CommandData {
@ -53,92 +50,14 @@ abstract class FungibleAsset<T> : Contract {
*/
interface Exit<T> : Commands { val amount: Amount<Issued<T>> }
}
/** This is the function EVERYONE runs */
override fun verify(tx: TransactionForContract) {
// Each group is a set of input/output states with distinct issuance definitions. These assets are not fungible
// and must be kept separated for bookkeeping purposes.
val groups = tx.groupStates() { it: FungibleAsset.State<T> -> it.issuanceDef }
for ((inputs, outputs, token) in groups) {
// Either inputs or outputs could be empty.
val deposit = token.issuer
val issuer = deposit.party
requireThat {
"there are no zero sized outputs" by outputs.none { it.amount.quantity == 0L }
}
val issueCommand = tx.commands.select<Commands.Issue>().firstOrNull()
if (issueCommand != null) {
verifyIssueCommand(inputs, outputs, tx, issueCommand, token, issuer)
} else {
val inputAmount = inputs.sumFungibleOrNull<T>() ?: throw IllegalArgumentException("there is at least one asset input for this group")
val outputAmount = outputs.sumFungibleOrZero(token)
// If we want to remove assets from the ledger, that must be signed for by the issuer.
// A mis-signed or duplicated exit command will just be ignored here and result in the exit amount being zero.
val exitCommand = tx.commands.select<Commands.Exit<T>>(party = issuer).singleOrNull()
val amountExitingLedger = exitCommand?.value?.amount ?: Amount(0, token)
requireThat {
"there are no zero sized inputs" by inputs.none { it.amount.quantity == 0L }
"for deposit ${deposit.reference} at issuer ${deposit.party.name} the amounts balance" by
(inputAmount == outputAmount + amountExitingLedger)
}
verifyMoveCommand<Commands.Move>(inputs, tx)
}
}
}
private fun verifyIssueCommand(inputs: List<State<T>>,
outputs: List<State<T>>,
tx: TransactionForContract,
issueCommand: AuthenticatedObject<Commands.Issue>,
token: Issued<T>,
issuer: Party) {
// If we have an issue command, perform special processing: the group is allowed to have no inputs,
// and the output states must have a deposit reference owned by the signer.
//
// Whilst the transaction *may* have no inputs, it can have them, and in this case the outputs must
// sum to more than the inputs. An issuance of zero size is not allowed.
//
// Note that this means literally anyone with access to the network can issue asset claims of arbitrary
// amounts! It is up to the recipient to decide if the backing party is trustworthy or not, via some
// external mechanism (such as locally defined rules on which parties are trustworthy).
// The grouping ensures that all outputs have the same deposit reference and token.
val inputAmount = inputs.sumFungibleOrZero(token)
val outputAmount = outputs.sumFungible<T>()
val assetCommands = tx.commands.select<FungibleAsset.Commands>()
requireThat {
"the issue command has a nonce" by (issueCommand.value.nonce != 0L)
"output states are issued by a command signer" by (issuer in issueCommand.signingParties)
"output values sum to more than the inputs" by (outputAmount > inputAmount)
"there is only a single issue command" by (assetCommands.count() == 1)
}
}
}
// Small DSL extensions.
/**
* Sums the asset states in the list belonging to a single owner, throwing an exception
* if there are none, or if any of the asset states cannot be added together (i.e. are
* different tokens).
*/
fun <T> Iterable<ContractState>.sumFungibleBy(owner: PublicKey) = filterIsInstance<FungibleAsset.State<T>>().filter { it.owner == owner }.map { it.amount }.sumOrThrow()
/**
* Sums the asset states in the list, throwing an exception if there are none, or if any of the asset
* states cannot be added together (i.e. are different tokens).
*/
fun <T> Iterable<ContractState>.sumFungible() = filterIsInstance<FungibleAsset.State<T>>().map { it.amount }.sumOrThrow()
/** Sums the asset states in the list, returning null if there are none. */
fun <T> Iterable<ContractState>.sumFungibleOrNull() = filterIsInstance<FungibleAsset.State<T>>().map { it.amount }.sumOrNull()
fun <T> Iterable<ContractState>.sumFungibleOrNull() = filterIsInstance<FungibleAsset<T>>().map { it.amount }.sumOrNull()
/** Sums the asset states in the list, returning zero of the given token if there are none. */
fun <T> Iterable<ContractState>.sumFungibleOrZero(token: Issued<T>) = filterIsInstance<FungibleAsset.State<T>>().map { it.amount }.sumOrZero(token)
fun <T> Iterable<ContractState>.sumFungibleOrZero(token: Issued<T>) = filterIsInstance<FungibleAsset<T>>().map { it.amount }.sumOrZero(token)

View File

@ -1,14 +0,0 @@
package com.r3corda.contracts.asset
import com.r3corda.core.contracts.Amount
import com.r3corda.core.contracts.OwnableState
import java.security.PublicKey
/**
* Common elements of cash contract states.
*/
interface FungibleAssetState<T, I> : OwnableState {
val issuanceDef: I
val productAmount: Amount<T>
fun move(newAmount: Amount<T>, newOwner: PublicKey): FungibleAssetState<T, I>
}

View File

@ -1,8 +1,9 @@
package com.r3corda.contracts.asset
import com.google.common.annotations.VisibleForTesting
import com.r3corda.contracts.asset.Obligation.Lifecycle.NORMAL
import com.r3corda.contracts.clause.*
import com.r3corda.core.contracts.*
import com.r3corda.core.contracts.clauses.*
import com.r3corda.core.crypto.NullPublicKey
import com.r3corda.core.crypto.Party
import com.r3corda.core.crypto.SecureHash
@ -29,7 +30,7 @@ val OBLIGATION_PROGRAM_ID = Obligation<Currency>()
*
* @param P the product the obligation is for payment of.
*/
class Obligation<P> : Contract {
class Obligation<P> : ClauseVerifier() {
/**
* TODO:
@ -42,445 +43,94 @@ class Obligation<P> : Contract {
* that is inconsistent with the legal contract.
*/
override val legalContractReference: SecureHash = SecureHash.sha256("https://www.big-book-of-banking-law.example.gov/cash-settlement.html")
override val clauses: List<SingleClause>
get() = listOf(InterceptorClause(Clauses.VerifyLifecycle<P>(), Clauses.Net<P>()),
Clauses.Group<P>())
interface Clauses {
/**
* Represents where in its lifecycle a contract state is, which in turn controls the commands that can be applied
* to the state. Most states will not leave the [NORMAL] lifecycle. Note that settled (as an end lifecycle) is
* represented by absence of the state on transaction output.
* Parent clause for clauses that operate on grouped states (those which are fungible).
*/
enum class Lifecycle {
/** Default lifecycle state for a contract, in which it can be settled normally */
NORMAL,
/**
* Indicates the contract has not been settled by its due date. Once in the defaulted state,
* it can only be reverted to [NORMAL] state by the beneficiary.
*/
DEFAULTED
class Group<P> : GroupClauseVerifier<State<P>, Issued<Terms<P>>>() {
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.ERROR
override val clauses: List<GroupClause<State<P>, Issued<Terms<P>>>>
get() = listOf(
NoZeroSizedOutputs<State<P>, Terms<P>>(),
SetLifecycle<P>(),
VerifyLifecycle<P>(),
Settle<P>(),
Issue(),
ConserveAmount())
override fun extractGroups(tx: TransactionForContract): List<TransactionForContract.InOutGroup<Obligation.State<P>, Issued<Terms<P>>>>
= tx.groupStates<Obligation.State<P>, Issued<Terms<P>>> { it.issuanceDef }
}
/**
* Common interface for the state subsets used when determining nettability of two or more states. Exposes the
* underlying issued thing.
* Generic issuance clause
*/
interface NetState<P> {
val template: StateTemplate<P>
class Issue<P> : AbstractIssue<State<P>, Terms<P>>({ -> sumObligations() }, { token: Issued<Terms<P>> -> sumObligationsOrZero(token) }) {
override val requiredCommands: Set<Class<out CommandData>>
get() = setOf(Obligation.Commands.Issue::class.java)
}
/**
* Subset of state, containing the elements which must match for two obligation transactions to be nettable.
* If two obligation state objects produce equal bilateral net states, they are considered safe to net directly.
* Bilateral states are used in close-out netting.
* Generic move/exit clause for fungible assets
*/
data class BilateralNetState<P>(
val partyKeys: Set<PublicKey>,
override val template: StateTemplate<P>
) : NetState<P>
class ConserveAmount<P> : AbstractConserveAmount<State<P>, Terms<P>>()
/**
* Subset of state, containing the elements which must match for two or more obligation transactions to be candidates
* for netting (this does not include the checks to enforce that everyone's amounts received are the same at the end,
* which is handled under the verify() function).
* In comparison to [BilateralNetState], this doesn't include the parties' keys, as ensuring balances match on
* input and output is handled elsewhere.
* Used in cases where all parties (or their proxies) are signing, such as central clearing.
* Clause for supporting netting of obligations.
*/
data class MultilateralNetState<P>(
override val template: StateTemplate<P>
) : NetState<P>
class Net<P> : NetClause<P>()
/**
* Subset of state, containing the elements specified when issuing a new settlement contract.
*
* @param P the product the obligation is for payment of.
* Obligation-specific clause for changing the lifecycle of one or more states.
*/
data class StateTemplate<P>(
/** The hash of the asset contract we're willing to accept in payment for this debt. */
val acceptableContracts: NonEmptySet<SecureHash>,
/** The parties whose assets we are willing to accept in payment for this debt. */
val acceptableIssuedProducts: NonEmptySet<Issued<P>>,
class SetLifecycle<P> : GroupClause<State<P>, Issued<Terms<P>>> {
override val requiredCommands: Set<Class<out CommandData>>
get() = setOf(Commands.SetLifecycle::class.java)
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.CONTINUE
/** When the contract must be settled by. */
val dueBefore: Instant,
val timeTolerance: Duration = Duration.ofSeconds(30)
) {
val product: P
get() = acceptableIssuedProducts.map { it.product }.toSet().single()
}
/**
* Subset of state, containing the elements specified when issuing a new settlement contract.
* TODO: This needs to be something common to contracts that we can be obliged to pay, and moved
* out into core accordingly.
*
* @param P the product the obligation is for payment of.
*/
data class IssuanceDefinition<P>(
val obligor: Party,
val template: StateTemplate<P>
)
/**
* A state representing the obligation of one party (obligor) to deliver a specified number of
* units of an underlying asset (described as issuanceDef.acceptableIssuedProducts) to the beneficiary
* no later than the specified time.
*
* @param P the product the obligation is for payment of.
*/
data class State<P>(
var lifecycle: Lifecycle = Lifecycle.NORMAL,
/** Where the debt originates from (obligor) */
val obligor: Party,
val template: StateTemplate<P>,
val quantity: Long,
/** The public key of the entity the contract pays to */
val beneficiary: PublicKey
) : FungibleAssetState<P, IssuanceDefinition<P>>, BilateralNettableState<State<P>> {
val amount: Amount<P>
get() = Amount(quantity, template.product)
val aggregateState: IssuanceDefinition<P>
get() = issuanceDef
override val productAmount: Amount<P>
get() = amount
override val contract = OBLIGATION_PROGRAM_ID
val acceptableContracts: NonEmptySet<SecureHash>
get() = template.acceptableContracts
val acceptableIssuanceDefinitions: NonEmptySet<*>
get() = template.acceptableIssuedProducts
val dueBefore: Instant
get() = template.dueBefore
override val issuanceDef: IssuanceDefinition<P>
get() = IssuanceDefinition(obligor, template)
override val participants: List<PublicKey>
get() = listOf(obligor.owningKey, beneficiary)
override val owner: PublicKey
get() = beneficiary
override fun move(newAmount: Amount<P>, newOwner: PublicKey): State<P>
= copy(quantity = newAmount.quantity, beneficiary = newOwner)
override fun toString() = when (lifecycle) {
Lifecycle.NORMAL -> "${Emoji.bagOfCash}Debt($amount due $dueBefore to ${beneficiary.toStringShort()})"
Lifecycle.DEFAULTED -> "${Emoji.bagOfCash}Debt($amount unpaid by $dueBefore to ${beneficiary.toStringShort()})"
}
override val bilateralNetState: BilateralNetState<P>
get() {
check(lifecycle == Lifecycle.NORMAL)
return BilateralNetState(setOf(obligor.owningKey, beneficiary), template)
}
val multilateralNetState: MultilateralNetState<P>
get() {
check(lifecycle == Lifecycle.NORMAL)
return MultilateralNetState(template)
}
override fun net(other: State<P>): State<P> {
val netA = bilateralNetState
val netB = other.bilateralNetState
require(netA == netB) { "net substates of the two state objects must be identical" }
if (obligor.owningKey == other.obligor.owningKey) {
// Both sides are from the same obligor to beneficiary
return copy(quantity = quantity + other.quantity)
} else {
// Issuer and beneficiary are backwards
return copy(quantity = quantity - other.quantity)
}
}
override fun withNewOwner(newOwner: PublicKey) = Pair(Commands.Move(issuanceDef), copy(beneficiary = newOwner))
}
/** Interface for commands that apply to states grouped by issuance definition */
interface IssuanceCommands<P> : CommandData {
val aggregateState: IssuanceDefinition<P>
}
// Just for grouping
interface Commands : CommandData {
/**
* Net two or more obligation states together in a close-out netting style. Limited to bilateral netting
* as only the beneficiary (not the obligor) needs to sign.
*/
data class Net(val type: NetType) : Commands
/**
* A command stating that a debt has been moved, optionally to fulfil another contract.
*
* @param contractHash the contract this move is for the attention of. Only that contract's verify function
* should take the moved states into account when considering whether it is valid. Typically this will be
* null.
*/
data class Move<P>(override val aggregateState: IssuanceDefinition<P>,
override val contractHash: SecureHash? = null) : Commands, IssuanceCommands<P>, MoveCommand
/**
* Allows new obligation states to be issued into existence: the nonce ("number used once") ensures the
* transaction has a unique ID even when there are no inputs.
*/
data class Issue<P>(override val aggregateState: IssuanceDefinition<P>,
val nonce: Long = random63BitValue()) : Commands, IssuanceCommands<P>
/**
* A command stating that the obligor is settling some or all of the amount owed by transferring a suitable
* state object to the beneficiary. If this reduces the balance to zero, the state object is destroyed.
* @see [MoveCommand].
*/
data class Settle<P>(override val aggregateState: IssuanceDefinition<P>,
val amount: Amount<P>) : Commands, IssuanceCommands<P>
/**
* A command stating that the beneficiary is moving the contract into the defaulted state as it has not been settled
* by the due date, or resetting a defaulted contract back to the issued state.
*/
data class SetLifecycle<P>(override val aggregateState: IssuanceDefinition<P>,
val lifecycle: Lifecycle) : Commands, IssuanceCommands<P> {
val inverse: Lifecycle
get() = when (lifecycle) {
Lifecycle.NORMAL -> Lifecycle.DEFAULTED
Lifecycle.DEFAULTED -> Lifecycle.NORMAL
}
}
/**
* A command stating that the debt is being released by the beneficiary. Normally would indicate
* either settlement outside of the ledger, or that the obligor is unable to pay.
*/
data class Exit<P>(override val aggregateState: IssuanceDefinition<P>,
val amount: Amount<P>) : Commands, IssuanceCommands<P>
}
/** This is the function EVERYONE runs */
override fun verify(tx: TransactionForContract) {
val commands = tx.commands.select<Commands>()
// Net commands are special, and cross issuance definitions, so handle them first
val netCommands = commands.select<Commands.Net>()
if (netCommands.isNotEmpty()) {
val netCommand = netCommands.single()
val groups = when (netCommand.value.type) {
NetType.CLOSE_OUT -> tx.groupStates { it: State<P> -> it.bilateralNetState }
NetType.PAYMENT -> tx.groupStates { it: State<P> -> it.multilateralNetState }
}
for ((inputs, outputs, key) in groups) {
verifyNetCommand(inputs, outputs, netCommand, key)
}
} else {
val commandGroups = tx.groupCommands<IssuanceCommands<P>, IssuanceDefinition<P>> { it.value.aggregateState }
// Each group is a set of input/output states with distinct issuance definitions. These types
// of settlement are not fungible and must be kept separated for bookkeeping purposes.
val groups = tx.groupStates() { it: State<P> -> it.aggregateState }
for ((inputs, outputs, key) in groups) {
// Either inputs or outputs could be empty.
val obligor = key.obligor
requireThat {
"there are no zero sized outputs" by outputs.none { it.amount.quantity == 0L }
}
verifyCommandGroup(tx, commandGroups[key] ?: emptyList(), inputs, outputs, obligor, key)
}
}
}
private fun verifyCommandGroup(tx: TransactionForContract,
commands: List<AuthenticatedObject<IssuanceCommands<P>>>,
override fun verify(tx: TransactionForContract,
inputs: List<State<P>>,
outputs: List<State<P>>,
obligor: Party,
key: IssuanceDefinition<P>) {
// We've already pre-grouped by product amongst other fields, and verified above that every state specifies
// at least one acceptable issuance definition, so we can just use the first issuance definition to
// determine product
val issued = key.template.acceptableIssuedProducts.first()
// Issue, default, net and settle commands are all single commands (there's only ever one of them, and
// they exclude all other commands).
val issueCommand = commands.select<Commands.Issue<P>>().firstOrNull()
val setLifecycleCommand = commands.select<Commands.SetLifecycle<P>>().firstOrNull()
val settleCommand = commands.select<Commands.Settle<P>>().firstOrNull()
if (commands.size != 1) {
// Only commands can be move/exit
require(commands.map { it.value }.all { it is Commands.Move || it is Commands.Exit })
{ "only move/exit commands can be present along with other obligation commands" }
}
// Issue, default and net commands are special, and do not follow normal input/output summing rules, so
// deal with them first
if (setLifecycleCommand != null) {
verifySetLifecycleCommand(inputs, outputs, tx, setLifecycleCommand)
} else {
// Only the default command processes inputs/outputs that are not in the normal state
// TODO: Need to be able to exit defaulted amounts
requireThat {
"all inputs are in the normal state " by inputs.all { it.lifecycle == Lifecycle.NORMAL }
"all outputs are in the normal state " by outputs.all { it.lifecycle == Lifecycle.NORMAL }
}
if (issueCommand != null) {
verifyIssueCommand(inputs, outputs, issueCommand, issued, obligor)
} else if (settleCommand != null) {
// Perhaps through an abundance of caution, settlement is enforced as its own command.
// This could perhaps be merged into verifyBalanceChange() later, however doing so introduces a lot
// of scope for making it more opaque what's going on in a transaction and whether it's as expected
// by all parties.
verifySettleCommand(inputs, outputs, tx, settleCommand, issued, obligor, key)
} else {
verifyBalanceChange(inputs, outputs, commands, issued.product, obligor)
}
}
}
/**
* Verify simple lifecycle changes for settlement contracts, handling exit and move commands.
*
* @param commands a list of commands filtered to those matching issuance definition for the provided inputs and
* outputs.
*/
private fun verifyBalanceChange(inputs: List<State<P>>,
outputs: List<State<P>>,
commands: List<AuthenticatedObject<IssuanceCommands<P>>>,
product: P,
obligor: Party) {
// Sum up how much settlement owed there is in the inputs, and the difference in outputs. The difference should
// be matched by exit commands representing the extracted amount.
val inputAmount = inputs.sumObligationsOrNull<P>() ?: throw IllegalArgumentException("there is at least one obligation input for this group")
val outputAmount = outputs.sumObligationsOrZero(product)
val exitCommands = commands.select<Commands.Exit<P>>()
val requiredExitSignatures = HashSet<PublicKey>()
val amountExitingLedger: Amount<P> = if (exitCommands.isNotEmpty()) {
require(exitCommands.size == 1) { "There can only be one exit command" }
val exitCommand = exitCommands.single()
// If we want to remove debt from the ledger, that must be signed for by the beneficiary. For now we require exit
// commands to be signed by all input beneficiarys, unlocking the full input amount, rather than trying to detangle
// exactly who exited what.
requiredExitSignatures.addAll(inputs.map { it.beneficiary })
exitCommand.value.amount
} else {
Amount(0, product)
}
requireThat {
"there are no zero sized inputs" by inputs.none { it.amount.quantity == 0L }
"at obligor ${obligor.name} the amounts balance" by
(inputAmount == outputAmount + amountExitingLedger)
}
verifyMoveCommand<Commands.Move<P>>(inputs, commands)
}
/**
* A default command mutates inputs and produces identical outputs, except that the lifecycle changes.
*/
@VisibleForTesting
protected fun verifySetLifecycleCommand(inputs: List<State<P>>,
outputs: List<State<P>>,
tx: TransactionForContract,
setLifecycleCommand: AuthenticatedObject<Commands.SetLifecycle<P>>) {
// Default must not change anything except lifecycle, so number of inputs and outputs must match
// exactly.
require(inputs.size == outputs.size) { "Number of inputs and outputs must match" }
// If we have an default command, perform special processing: issued contracts can only be defaulted
// after the due date, and default/reset can only be done by the beneficiary
val expectedInputLifecycle: Lifecycle = setLifecycleCommand.value.inverse
val expectedOutputLifecycle: Lifecycle = setLifecycleCommand.value.lifecycle
// Check that we're past the deadline for ALL involved inputs, and that the output states correspond 1:1
for ((stateIdx, input) in inputs.withIndex()) {
val actualOutput = outputs[stateIdx]
val deadline = input.dueBefore
val timestamp: TimestampCommand? = tx.timestamp
val expectedOutput: State<P> = input.copy(lifecycle = expectedOutputLifecycle)
requireThat {
"there is a timestamp from the authority" by (timestamp != null)
"the due date has passed" by (timestamp!!.after?.isAfter(deadline) ?: false)
"input state lifecycle is correct" by (input.lifecycle == expectedInputLifecycle)
"output state corresponds exactly to input state, with lifecycle changed" by (expectedOutput == actualOutput)
}
}
val owningPubKeys = inputs.map { it.beneficiary }.toSet()
val keysThatSigned = setLifecycleCommand.signers.toSet()
requireThat {
"the owning keys are the same as the signing keys" by keysThatSigned.containsAll(owningPubKeys)
}
}
@VisibleForTesting
protected fun verifyIssueCommand(inputs: List<State<P>>,
outputs: List<State<P>>,
issueCommand: AuthenticatedObject<Commands.Issue<P>>,
issued: Issued<P>,
obligor: Party) {
// If we have an issue command, perform special processing: the group is must have no inputs,
// and that signatures are present for all obligors.
val inputAmount: Amount<P> = inputs.sumObligationsOrZero(issued.product)
val outputAmount: Amount<P> = outputs.sumObligations<P>()
requireThat {
"the issue command has a nonce" by (issueCommand.value.nonce != 0L)
"output states are issued by a command signer" by (obligor in issueCommand.signingParties)
"output values sum to more than the inputs" by (outputAmount > inputAmount)
"valid settlement issuance definition is not this issuance definition" by inputs.none { it.issuanceDef in it.acceptableIssuanceDefinitions }
commands: Collection<AuthenticatedObject<CommandData>>,
token: Issued<Terms<P>>): Set<CommandData> {
val command = commands.requireSingleCommand<Commands.SetLifecycle>()
Obligation<P>().verifySetLifecycleCommand(inputs, outputs, tx, command)
return setOf(command.value)
}
}
/**
* Verify a netting command. This handles both close-out and payment netting.
* Obligation-specific clause for settling an outstanding obligation by witnessing
* change of ownership of other states to fulfil
*/
@VisibleForTesting
protected fun verifyNetCommand(inputs: Iterable<State<P>>,
outputs: Iterable<State<P>>,
command: AuthenticatedObject<Commands.Net>,
netState: NetState<P>) {
// TODO: Can we merge this with the checks for aggregated commands?
requireThat {
"all inputs are in the normal state " by inputs.all { it.lifecycle == Lifecycle.NORMAL }
"all outputs are in the normal state " by outputs.all { it.lifecycle == Lifecycle.NORMAL }
}
class Settle<P> : GroupClause<State<P>, Issued<Terms<P>>> {
override val requiredCommands: Set<Class<out CommandData>>
get() = setOf(Commands.Settle::class.java)
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.CONTINUE
val template = netState.template
val product = template.product
// Create two maps of balances from obligors to beneficiaries, one for input states, the other for output states.
val inputBalances = extractAmountsDue(product, inputs)
val outputBalances = extractAmountsDue(product, outputs)
// Sum the columns of the matrices. This will yield the net amount payable to/from each party to/from all other participants.
// The two summaries must match, reflecting that the amounts owed match on both input and output.
requireThat {
"all input states use the same template" by (inputs.all { it.template == template })
"all output states use the same template" by (outputs.all { it.template == template })
"amounts owed on input and output must match" by (sumAmountsDue(inputBalances) == sumAmountsDue(outputBalances))
}
// TODO: Handle proxies nominated by parties, i.e. a central clearing service
val involvedParties = inputs.map { it.beneficiary }.union(inputs.map { it.obligor.owningKey }).toSet()
when (command.value.type) {
// For close-out netting, allow any involved party to sign
NetType.CLOSE_OUT -> require(command.signers.intersect(involvedParties).isNotEmpty()) { "any involved party has signed" }
// Require signatures from all parties (this constraint can be changed for other contracts, and is used as a
// placeholder while exact requirements are established), or fail the transaction.
NetType.PAYMENT -> require(command.signers.containsAll(involvedParties)) { "all involved parties have signed" }
}
}
/**
* Verify settlement of state objects.
*/
private fun verifySettleCommand(inputs: List<State<P>>,
override fun verify(tx: TransactionForContract,
inputs: List<State<P>>,
outputs: List<State<P>>,
tx: TransactionForContract,
command: AuthenticatedObject<Commands.Settle<P>>,
issued: Issued<P>,
obligor: Party,
key: IssuanceDefinition<P>) {
val template = key.template
val inputAmount: Amount<P> = inputs.sumObligationsOrNull<P>() ?: throw IllegalArgumentException("there is at least one obligation input for this group")
val outputAmount: Amount<P> = outputs.sumObligationsOrZero(issued.product)
commands: Collection<AuthenticatedObject<CommandData>>,
token: Issued<Terms<P>>): Set<CommandData> {
val command = commands.requireSingleCommand<Commands.Settle<P>>()
val obligor = token.issuer.party
val template = token.product
val inputAmount: Amount<Issued<Terms<P>>> = inputs.sumObligationsOrNull<P>() ?: throw IllegalArgumentException("there is at least one obligation input for this group")
val outputAmount: Amount<Issued<Terms<P>>> = outputs.sumObligationsOrZero(token)
// Sum up all asset state objects that are moving and fulfil our requirements
@ -500,7 +150,7 @@ class Obligation<P> : Contract {
// Move (signed by B)
//
// That would pass this check. Ensuring they do not is best addressed in the transaction generation stage.
val assetStates = tx.outputs.filterIsInstance<FungibleAssetState<*, *>>()
val assetStates = tx.outputs.filterIsInstance<FungibleAsset<*>>()
val acceptableAssetStates = assetStates
// TODO: This filter is nonsense, because it just checks there is an asset contract loaded, we need to
// verify the asset contract is the asset contract we expect.
@ -521,12 +171,12 @@ class Obligation<P> : Contract {
// this one.
val moveCommands = tx.commands.select<MoveCommand>()
var totalPenniesSettled = 0L
val requiredSigners = inputs.map { it.obligor.owningKey }.toSet()
val requiredSigners = inputs.map { it.deposit.party.owningKey }.toSet()
for ((beneficiary, obligations) in inputs.groupBy { it.beneficiary }) {
for ((beneficiary, obligations) in inputs.groupBy { it.owner }) {
val settled = amountReceivedByOwner[beneficiary]?.sumFungibleOrNull<P>()
if (settled != null) {
val debt = obligations.sumObligationsOrZero(issued)
val debt = obligations.sumObligationsOrZero(token)
require(settled.quantity <= debt.quantity) { "Payment of $settled must not exceed debt $debt" }
totalPenniesSettled += settled.quantity
}
@ -536,14 +186,248 @@ class Obligation<P> : Contract {
// settled as well
requireThat {
"all move commands relate to this contract" by (moveCommands.map { it.value.contractHash }
.all { it == null || it == legalContractReference })
"contract does not try to consume itself" by (moveCommands.map { it.value }.filterIsInstance<Commands.Move<P>>()
.none { it.aggregateState == key })
"amounts paid must match recipients to settle" by inputs.map { it.beneficiary }.containsAll(amountReceivedByOwner.keys)
.all { it == null || it == Obligation<P>().legalContractReference })
// Settle commands exclude all other commands, so we don't need to check for contracts moving at the same
// time.
"amounts paid must match recipients to settle" by inputs.map { it.owner }.containsAll(amountReceivedByOwner.keys)
"signatures are present from all obligors" by command.signers.containsAll(requiredSigners)
"there are no zero sized inputs" by inputs.none { it.amount.quantity == 0L }
"at obligor ${obligor.name} the obligations after settlement balance" by
(inputAmount == outputAmount + Amount(totalPenniesSettled, issued.product))
(inputAmount == outputAmount + Amount(totalPenniesSettled, token))
}
return setOf(command.value)
}
}
/**
* Obligation-specific clause for verifying that all states are in
* normal lifecycle. In a group clause set, this must be run after
* any lifecycle change clause, which is the only clause that involve
* non-standard lifecycle states on input/output.
*/
class VerifyLifecycle<P> : SingleClause, GroupClause<State<P>, Issued<Terms<P>>> {
override val requiredCommands: Set<Class<out CommandData>>
get() = emptySet()
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.CONTINUE
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.ERROR
override fun verify(tx: TransactionForContract, commands: Collection<AuthenticatedObject<CommandData>>): Set<CommandData>
= verify(
tx.inputs.filterIsInstance<State<P>>(),
tx.outputs.filterIsInstance<State<P>>()
)
override fun verify(tx: TransactionForContract,
inputs: List<State<P>>,
outputs: List<State<P>>,
commands: Collection<AuthenticatedObject<CommandData>>,
token: Issued<Terms<P>>): Set<CommandData>
= verify(inputs, outputs)
fun verify(inputs: List<State<P>>,
outputs: List<State<P>>): Set<CommandData> {
requireThat {
"all inputs are in the normal state " by inputs.all { it.lifecycle == Lifecycle.NORMAL }
"all outputs are in the normal state " by outputs.all { it.lifecycle == Lifecycle.NORMAL }
}
return emptySet()
}
}
}
/**
* Represents where in its lifecycle a contract state is, which in turn controls the commands that can be applied
* to the state. Most states will not leave the [NORMAL] lifecycle. Note that settled (as an end lifecycle) is
* represented by absence of the state on transaction output.
*/
enum class Lifecycle {
/** Default lifecycle state for a contract, in which it can be settled normally */
NORMAL,
/**
* Indicates the contract has not been settled by its due date. Once in the defaulted state,
* it can only be reverted to [NORMAL] state by the beneficiary.
*/
DEFAULTED
}
/**
* Subset of state, containing the elements specified when issuing a new settlement contract.
*
* @param P the product the obligation is for payment of.
*/
data class Terms<P>(
/** The hash of the asset contract we're willing to accept in payment for this debt. */
val acceptableContracts: NonEmptySet<SecureHash>,
/** The parties whose assets we are willing to accept in payment for this debt. */
val acceptableIssuedProducts: NonEmptySet<Issued<P>>,
/** When the contract must be settled by. */
val dueBefore: Instant,
val timeTolerance: Duration = Duration.ofSeconds(30)
) {
val product: P
get() = acceptableIssuedProducts.map { it.product }.toSet().single()
}
/**
* A state representing the obligation of one party (obligor) to deliver a specified number of
* units of an underlying asset (described as token.acceptableIssuedProducts) to the beneficiary
* no later than the specified time.
*
* @param P the product the obligation is for payment of.
*/
data class State<P>(
var lifecycle: Lifecycle = Lifecycle.NORMAL,
/** Where the debt originates from (obligor) */
val obligor: Party,
val template: Terms<P>,
val quantity: Long,
/** The public key of the entity the contract pays to */
val beneficiary: PublicKey
) : FungibleAsset<Obligation.Terms<P>>, NettableState<State<P>, MultilateralNetState<P>> {
override val amount: Amount<Issued<Terms<P>>>
get() = Amount(quantity, issuanceDef)
override val contract = OBLIGATION_PROGRAM_ID
override val deposit: PartyAndReference
get() = amount.token.issuer
override val exitKeys: Collection<PublicKey>
get() = setOf(owner)
val dueBefore: Instant
get() = template.dueBefore
override val issuanceDef: Issued<Terms<P>>
get() = Issued(obligor.ref(0), template)
override val participants: List<PublicKey>
get() = listOf(obligor.owningKey, beneficiary)
override val owner: PublicKey
get() = beneficiary
override fun move(newAmount: Amount<Issued<Terms<P>>>, newOwner: PublicKey): State<P>
= copy(quantity = newAmount.quantity, beneficiary = newOwner)
override fun toString() = when (lifecycle) {
Lifecycle.NORMAL -> "${Emoji.bagOfCash}Debt($amount due $dueBefore to ${beneficiary.toStringShort()})"
Lifecycle.DEFAULTED -> "${Emoji.bagOfCash}Debt($amount unpaid by $dueBefore to ${beneficiary.toStringShort()})"
}
override val bilateralNetState: BilateralNetState<P>
get() {
check(lifecycle == Lifecycle.NORMAL)
return BilateralNetState(setOf(obligor.owningKey, beneficiary), template)
}
override val multilateralNetState: MultilateralNetState<P>
get() {
check(lifecycle == Lifecycle.NORMAL)
return MultilateralNetState(template)
}
override fun net(other: State<P>): State<P> {
val netA = bilateralNetState
val netB = other.bilateralNetState
require(netA == netB) { "net substates of the two state objects must be identical" }
if (obligor.owningKey == other.obligor.owningKey) {
// Both sides are from the same obligor to beneficiary
return copy(quantity = quantity + other.quantity)
} else {
// Issuer and beneficiary are backwards
return copy(quantity = quantity - other.quantity)
}
}
override fun withNewOwner(newOwner: PublicKey) = Pair(Commands.Move(), copy(beneficiary = newOwner))
}
// Just for grouping
interface Commands : FungibleAsset.Commands {
/**
* Net two or more obligation states together in a close-out netting style. Limited to bilateral netting
* as only the beneficiary (not the obligor) needs to sign.
*/
data class Net(val type: NetType) : Obligation.Commands
/**
* A command stating that a debt has been moved, optionally to fulfil another contract.
*
* @param contractHash the contract this move is for the attention of. Only that contract's verify function
* should take the moved states into account when considering whether it is valid. Typically this will be
* null.
*/
data class Move(override val contractHash: SecureHash? = null) : Commands, FungibleAsset.Commands.Move
/**
* Allows new obligation states to be issued into existence: the nonce ("number used once") ensures the
* transaction has a unique ID even when there are no inputs.
*/
data class Issue(override val nonce: Long = random63BitValue()) : FungibleAsset.Commands.Issue, Commands
/**
* A command stating that the obligor is settling some or all of the amount owed by transferring a suitable
* state object to the beneficiary. If this reduces the balance to zero, the state object is destroyed.
* @see [MoveCommand].
*/
data class Settle<P>(val amount: Amount<Issued<Terms<P>>>) : Commands
/**
* A command stating that the beneficiary is moving the contract into the defaulted state as it has not been settled
* by the due date, or resetting a defaulted contract back to the issued state.
*/
data class SetLifecycle(val lifecycle: Lifecycle) : Commands {
val inverse: Lifecycle
get() = when (lifecycle) {
Lifecycle.NORMAL -> Lifecycle.DEFAULTED
Lifecycle.DEFAULTED -> Lifecycle.NORMAL
}
}
/**
* A command stating that the debt is being released by the beneficiary. Normally would indicate
* either settlement outside of the ledger, or that the obligor is unable to pay.
*/
data class Exit<P>(override val amount: Amount<Issued<Terms<P>>>) : Commands, FungibleAsset.Commands.Exit<Terms<P>>
}
override fun extractCommands(tx: TransactionForContract): List<AuthenticatedObject<FungibleAsset.Commands>>
= tx.commands.select<Obligation.Commands>()
/**
* A default command mutates inputs and produces identical outputs, except that the lifecycle changes.
*/
@VisibleForTesting
protected fun verifySetLifecycleCommand(inputs: List<FungibleAsset<Terms<P>>>,
outputs: List<FungibleAsset<Terms<P>>>,
tx: TransactionForContract,
setLifecycleCommand: AuthenticatedObject<Commands.SetLifecycle>) {
// Default must not change anything except lifecycle, so number of inputs and outputs must match
// exactly.
require(inputs.size == outputs.size) { "Number of inputs and outputs must match" }
// If we have an default command, perform special processing: issued contracts can only be defaulted
// after the due date, and default/reset can only be done by the beneficiary
val expectedInputLifecycle: Lifecycle = setLifecycleCommand.value.inverse
val expectedOutputLifecycle: Lifecycle = setLifecycleCommand.value.lifecycle
// Check that we're past the deadline for ALL involved inputs, and that the output states correspond 1:1
for ((stateIdx, input) in inputs.withIndex()) {
if (input is State<P>) {
val actualOutput = outputs[stateIdx]
val deadline = input.dueBefore
val timestamp: TimestampCommand? = tx.timestamp
val expectedOutput: State<P> = input.copy(lifecycle = expectedOutputLifecycle)
requireThat {
"there is a timestamp from the authority" by (timestamp != null)
"the due date has passed" by (timestamp!!.after?.isAfter(deadline) ?: false)
"input state lifecycle is correct" by (input.lifecycle == expectedInputLifecycle)
"output state corresponds exactly to input state, with lifecycle changed" by (expectedOutput == actualOutput)
}
}
}
val owningPubKeys = inputs.filter { it is State<P> }.map { (it as State<P>).beneficiary }.toSet()
val keysThatSigned = setLifecycleCommand.signers.toSet()
requireThat {
"the owning keys are the same as the signing keys" by keysThatSigned.containsAll(owningPubKeys)
}
}
@ -577,19 +461,18 @@ class Obligation<P> : Contract {
*/
fun generateIssue(tx: TransactionBuilder,
obligor: Party,
issuanceDef: StateTemplate<P>,
issuanceDef: Terms<P>,
pennies: Long,
beneficiary: PublicKey,
notary: Party) {
check(tx.inputStates().isEmpty())
check(tx.outputStates().map { it.data }.sumObligationsOrNull<P>() == null)
val aggregateState = IssuanceDefinition(obligor, issuanceDef)
tx.addOutputState(State(Lifecycle.NORMAL, obligor, issuanceDef, pennies, beneficiary), notary)
tx.addCommand(Commands.Issue(aggregateState), obligor.owningKey)
tx.addCommand(Commands.Issue(), obligor.owningKey)
}
fun generatePaymentNetting(tx: TransactionBuilder,
issued: Issued<P>,
issued: Issued<Obligation.Terms<P>>,
notary: Party,
vararg states: State<P>) {
requireThat {
@ -647,7 +530,7 @@ class Obligation<P> : Contract {
tx.addOutputState(outState, notary)
partiesUsed.add(stateAndRef.state.data.beneficiary)
}
tx.addCommand(Commands.SetLifecycle(aggregateState, lifecycle), partiesUsed.distinct())
tx.addCommand(Commands.SetLifecycle(lifecycle), partiesUsed.distinct())
}
tx.setTime(issuanceDef.dueBefore, notary, issuanceDef.timeTolerance)
}
@ -662,7 +545,7 @@ class Obligation<P> : Contract {
*/
fun generateSettle(tx: TransactionBuilder,
statesAndRefs: Iterable<StateAndRef<State<P>>>,
assetStatesAndRefs: Iterable<StateAndRef<FungibleAssetState<P, *>>>,
assetStatesAndRefs: Iterable<StateAndRef<FungibleAsset<P>>>,
moveCommand: MoveCommand,
notary: Party) {
val states = statesAndRefs.map { it.state }
@ -682,28 +565,31 @@ class Obligation<P> : Contract {
// on each side together
val issuanceDef = getIssuanceDefinitionOrThrow(statesAndRefs.map { it.state.data })
val template = issuanceDef.template
val obligationTotal: Amount<P> = states.map { it.data }.sumObligations<P>()
val template: Terms<P> = issuanceDef.product
val obligationTotal: Amount<P> = Amount(states.map { it.data }.sumObligations<P>().quantity, template.product)
var obligationRemaining: Amount<P> = obligationTotal
val assetSigners = HashSet<PublicKey>()
statesAndRefs.forEach { tx.addInputState(it) }
// Move the assets to the new beneficiary
assetStatesAndRefs.forEach {
assetStatesAndRefs.forEach { ref ->
if (obligationRemaining.quantity > 0L) {
val assetState = it.state
tx.addInputState(it)
if (obligationRemaining >= assetState.data.productAmount) {
tx.addOutputState(assetState.data.move(assetState.data.productAmount, obligationOwner), notary)
obligationRemaining -= assetState.data.productAmount
tx.addInputState(ref)
val assetState = ref.state.data
val amount: Amount<P> = Amount(assetState.amount.quantity, assetState.amount.token.product)
if (obligationRemaining >= amount) {
tx.addOutputState(assetState.move(assetState.amount, obligationOwner), notary)
obligationRemaining -= amount
} else {
val change = Amount(obligationRemaining.quantity, assetState.amount.token)
// Split the state in two, sending the change back to the previous beneficiary
tx.addOutputState(assetState.data.move(obligationRemaining, obligationOwner), notary)
tx.addOutputState(assetState.data.move(assetState.data.productAmount - obligationRemaining, assetState.data.owner), notary)
tx.addOutputState(assetState.move(change, obligationOwner), notary)
tx.addOutputState(assetState.move(assetState.amount - change, assetState.owner), notary)
obligationRemaining -= Amount(0L, obligationRemaining.token)
}
assetSigners.add(assetState.data.owner)
assetSigners.add(assetState.owner)
}
}
@ -716,15 +602,15 @@ class Obligation<P> : Contract {
// Add the asset move command and obligation settle
tx.addCommand(moveCommand, assetSigners.toList())
tx.addCommand(Commands.Settle(issuanceDef, obligationTotal - obligationRemaining), obligationOwner)
tx.addCommand(Commands.Settle(Amount((obligationTotal - obligationRemaining).quantity, issuanceDef)), obligationIssuer.owningKey)
}
/** Get the common issuance definition for one or more states, or throw an IllegalArgumentException. */
private fun getIssuanceDefinitionOrThrow(states: Iterable<State<P>>): IssuanceDefinition<P> =
private fun getIssuanceDefinitionOrThrow(states: Iterable<State<P>>): Issued<Terms<P>> =
states.map { it.issuanceDef }.distinct().single()
/** Get the common issuance definition for one or more states, or throw an IllegalArgumentException. */
private fun getTemplateOrThrow(states: Iterable<State<P>>): StateTemplate<P> =
private fun getTemplateOrThrow(states: Iterable<State<P>>): Terms<P> =
states.map { it.template }.distinct().single()
}
@ -734,13 +620,13 @@ class Obligation<P> : Contract {
*
* @return a map of obligor/beneficiary pairs to the balance due.
*/
fun <P> extractAmountsDue(product: P, states: Iterable<Obligation.State<P>>): Map<Pair<PublicKey, PublicKey>, Amount<P>> {
val balances = HashMap<Pair<PublicKey, PublicKey>, Amount<P>>()
fun <P> extractAmountsDue(product: Obligation.Terms<P>, states: Iterable<Obligation.State<P>>): Map<Pair<PublicKey, PublicKey>, Amount<Obligation.Terms<P>>> {
val balances = HashMap<Pair<PublicKey, PublicKey>, Amount<Obligation.Terms<P>>>()
states.forEach { state ->
val key = Pair(state.obligor.owningKey, state.beneficiary)
val balance = balances[key] ?: Amount(0L, product)
balances[key] = balance + state.productAmount
balances[key] = balance + Amount(state.amount.quantity, state.amount.token.product)
}
return balances
@ -804,19 +690,18 @@ fun <P> sumAmountsDue(balances: Map<Pair<PublicKey, PublicKey>, Amount<P>>): Map
}
/** Sums the obligation states in the list, throwing an exception if there are none. All state objects in the list are presumed to be nettable. */
fun <P> Iterable<ContractState>.sumObligations(): Amount<P>
fun <P> Iterable<ContractState>.sumObligations(): Amount<Issued<Obligation.Terms<P>>>
= filterIsInstance<Obligation.State<P>>().map { it.amount }.sumOrThrow()
/** Sums the obligation states in the list, returning null if there are none. */
fun <P> Iterable<ContractState>.sumObligationsOrNull(): Amount<P>?
fun <P> Iterable<ContractState>.sumObligationsOrNull(): Amount<Issued<Obligation.Terms<P>>>?
= filterIsInstance<Obligation.State<P>>().filter { it.lifecycle == Obligation.Lifecycle.NORMAL }.map { it.amount }.sumOrNull()
/** Sums the obligation states in the list, returning zero of the given product if there are none. */
fun <P> Iterable<ContractState>.sumObligationsOrZero(product: P): Amount<P>
= filterIsInstance<Obligation.State<P>>().filter { it.lifecycle == Obligation.Lifecycle.NORMAL }.map { it.amount }.sumOrZero(product)
fun <P> Iterable<ContractState>.sumObligationsOrZero(issuanceDef: Issued<Obligation.Terms<P>>): Amount<Issued<Obligation.Terms<P>>>
= filterIsInstance<Obligation.State<P>>().filter { it.lifecycle == Obligation.Lifecycle.NORMAL }.map { it.amount }.sumOrZero(issuanceDef)
infix fun <T> Obligation.State<T>.at(dueBefore: Instant) = copy(template = template.copy(dueBefore = dueBefore))
infix fun <T> Obligation.IssuanceDefinition<T>.at(dueBefore: Instant) = copy(template = template.copy(dueBefore = dueBefore))
infix fun <T> Obligation.State<T>.between(parties: Pair<Party, PublicKey>) = copy(obligor = parties.first, beneficiary = parties.second)
infix fun <T> Obligation.State<T>.`owned by`(owner: PublicKey) = copy(beneficiary = owner)
infix fun <T> Obligation.State<T>.`issued by`(party: Party) = copy(obligor = party)
@ -824,7 +709,7 @@ infix fun <T> Obligation.State<T>.`issued by`(party: Party) = copy(obligor = par
fun <T> Obligation.State<T>.ownedBy(owner: PublicKey) = copy(beneficiary = owner)
fun <T> Obligation.State<T>.issuedBy(party: Party) = copy(obligor = party)
val Issued<Currency>.OBLIGATION_DEF: Obligation.StateTemplate<Currency>
get() = Obligation.StateTemplate(nonEmptySetOf(Cash().legalContractReference), nonEmptySetOf(this), TEST_TX_TIME)
val Issued<Currency>.OBLIGATION_DEF: Obligation.Terms<Currency>
get() = Obligation.Terms(nonEmptySetOf(Cash().legalContractReference), nonEmptySetOf(this), TEST_TX_TIME)
val Amount<Issued<Currency>>.OBLIGATION: Obligation.State<Currency>
get() = Obligation.State(Obligation.Lifecycle.NORMAL, MINI_CORP, token.OBLIGATION_DEF, quantity, NullPublicKey)

View File

@ -13,7 +13,7 @@ import java.security.PublicKey
* Move command is provided, and errors if absent. Must be the last clause under a grouping clause;
* errors on no-match, ends on match.
*/
abstract class AbstractConserveAmount<C: MoveCommand, S: FungibleAsset.State<T>, T: Any> : GroupClause<S, Issued<T>> {
abstract class AbstractConserveAmount<S: FungibleAsset<T>, T: Any> : GroupClause<S, Issued<T>> {
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val ifNotMatched: MatchBehaviour

View File

@ -6,6 +6,13 @@ import com.r3corda.core.contracts.clauses.MatchBehaviour
/**
* Standard issue clause for contracts that issue fungible assets.
*
* @param S the type of contract state which is being issued.
* @param T the token underlying the issued state.
* @param sum function to convert a list of states into an amount of the token. Must error if there are no states in
* the list.
* @param sumOrZero function to convert a list of states into an amount of the token, and returns zero if there are
* no states in the list. Takes in an instance of the token definition for constructing the zero amount if needed.
*/
abstract class AbstractIssue<S: ContractState, T: Any>(
val sum: List<S>.() -> Amount<Issued<T>>,

View File

@ -0,0 +1,97 @@
package com.r3corda.contracts.clause
import com.google.common.annotations.VisibleForTesting
import com.r3corda.contracts.asset.Obligation
import com.r3corda.contracts.asset.extractAmountsDue
import com.r3corda.contracts.asset.sumAmountsDue
import com.r3corda.core.contracts.*
import com.r3corda.core.contracts.clauses.MatchBehaviour
import com.r3corda.core.contracts.clauses.SingleClause
import java.security.PublicKey
/**
* Common interface for the state subsets used when determining nettability of two or more states. Exposes the
* underlying issued thing.
*/
interface NetState<P> {
val template: Obligation.Terms<P>
}
/**
* Subset of state, containing the elements which must match for two obligation transactions to be nettable.
* If two obligation state objects produce equal bilateral net states, they are considered safe to net directly.
* Bilateral states are used in close-out netting.
*/
data class BilateralNetState<P>(
val partyKeys: Set<PublicKey>,
override val template: Obligation.Terms<P>
) : NetState<P>
/**
* Subset of state, containing the elements which must match for two or more obligation transactions to be candidates
* for netting (this does not include the checks to enforce that everyone's amounts received are the same at the end,
* which is handled under the verify() function).
* In comparison to [BilateralNetState], this doesn't include the parties' keys, as ensuring balances match on
* input and output is handled elsewhere.
* Used in cases where all parties (or their proxies) are signing, such as central clearing.
*/
data class MultilateralNetState<P>(
override val template: Obligation.Terms<P>
) : NetState<P>
/**
* Clause for netting contract states. Currently only supports obligation contract.
*/
// TODO: Make this usable for any nettable contract states
open class NetClause<P> : SingleClause {
override val ifNotMatched: MatchBehaviour
get() = MatchBehaviour.CONTINUE
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.END
override val requiredCommands: Set<Class<out CommandData>>
get() = setOf(Obligation.Commands.Net::class.java)
override fun verify(tx: TransactionForContract, commands: Collection<AuthenticatedObject<CommandData>>): Set<CommandData> {
val command = commands.requireSingleCommand<Obligation.Commands.Net>()
val groups = when (command.value.type) {
NetType.CLOSE_OUT -> tx.groupStates { it: Obligation.State<P> -> it.bilateralNetState }
NetType.PAYMENT -> tx.groupStates { it: Obligation.State<P> -> it.multilateralNetState }
}
for ((inputs, outputs, key) in groups) {
verifyNetCommand(inputs, outputs, command, key)
}
return setOf(command.value)
}
/**
* Verify a netting command. This handles both close-out and payment netting.
*/
@VisibleForTesting
public fun verifyNetCommand(inputs: List<Obligation.State<P>>,
outputs: List<Obligation.State<P>>,
command: AuthenticatedObject<Obligation.Commands.Net>,
netState: NetState<P>) {
val template = netState.template
// Create two maps of balances from obligors to beneficiaries, one for input states, the other for output states.
val inputBalances = extractAmountsDue(template, inputs)
val outputBalances = extractAmountsDue(template, outputs)
// Sum the columns of the matrices. This will yield the net amount payable to/from each party to/from all other participants.
// The two summaries must match, reflecting that the amounts owed match on both input and output.
requireThat {
"all input states use the same template" by (inputs.all { it.template == template })
"all output states use the same template" by (outputs.all { it.template == template })
"amounts owed on input and output must match" by (sumAmountsDue(inputBalances) == sumAmountsDue(outputBalances))
}
// TODO: Handle proxies nominated by parties, i.e. a central clearing service
val involvedParties = inputs.map { it.beneficiary }.union(inputs.map { it.obligor.owningKey }).toSet()
when (command.value.type) {
// For close-out netting, allow any involved party to sign
NetType.CLOSE_OUT -> require(command.signers.intersect(involvedParties).isNotEmpty()) { "any involved party has signed" }
// Require signatures from all parties (this constraint can be changed for other contracts, and is used as a
// placeholder while exact requirements are established), or fail the transaction.
NetType.PAYMENT -> require(command.signers.containsAll(involvedParties)) { "all involved parties have signed" }
}
}
}

View File

@ -9,7 +9,7 @@ import com.r3corda.core.contracts.clauses.MatchBehaviour
* Clause for fungible asset contracts, which enforces that no output state should have
* a balance of zero.
*/
open class NoZeroSizedOutputs<S: FungibleAsset.State<T>, T: Any> : GroupClause<S, Issued<T>> {
open class NoZeroSizedOutputs<S: FungibleAsset<T>, T: Any> : GroupClause<S, Issued<T>> {
override val ifMatched: MatchBehaviour
get() = MatchBehaviour.CONTINUE
override val ifNotMatched: MatchBehaviour

View File

@ -150,15 +150,15 @@ class CashTests {
command(MEGA_CORP_PUBKEY) { Cash.Commands.Issue() }
tweak {
command(MEGA_CORP_PUBKEY) { Cash.Commands.Issue() }
this `fails with` "there is only a single issue command"
this `fails with` "List has more than one element."
}
tweak {
command(MEGA_CORP_PUBKEY) { Cash.Commands.Move() }
this `fails with` "there is only a single issue command"
this `fails with` "All commands must be matched at end of execution."
}
tweak {
command(MEGA_CORP_PUBKEY) { Cash.Commands.Exit(inState.amount / 2) }
this `fails with` "there is only a single issue command"
this `fails with` "All commands must be matched at end of execution."
}
this.verifies()
}
@ -238,7 +238,7 @@ class CashTests {
input { inState }
output { outState.copy(amount = inState.amount / 2).editDepositRef(0) }
output { outState.copy(amount = inState.amount / 2).editDepositRef(1) }
this `fails with` "for deposit [01] at issuer MegaCorp the amounts balance"
this `fails with` "for reference [01] at issuer MegaCorp the amounts balance"
}
// Can't mix currencies.
transaction {
@ -271,7 +271,7 @@ class CashTests {
input { inState }
input { inState.editDepositRef(3) }
output { outState.copy(amount = inState.amount * 2).editDepositRef(3) }
this `fails with` "for deposit [01]"
this `fails with` "for reference [01]"
}
}

View File

@ -3,12 +3,13 @@ package com.r3corda.contracts.asset
import com.r3corda.contracts.asset.Obligation.Lifecycle
import com.r3corda.core.contracts.*
import com.r3corda.core.crypto.SecureHash
import com.r3corda.core.serialization.OpaqueBytes
import com.r3corda.core.testing.*
import com.r3corda.core.utilities.nonEmptySetOf
import org.junit.Test
import java.security.PublicKey
import java.time.Duration
import java.time.Instant
import java.time.temporal.ChronoUnit
import java.util.*
import kotlin.test.assertEquals
import kotlin.test.assertFailsWith
@ -16,15 +17,15 @@ import kotlin.test.assertNotEquals
import kotlin.test.assertTrue
class ObligationTests {
val defaultIssuer = MEGA_CORP.ref(1)
val defaultUsd = USD `issued by` defaultIssuer
val defaultRef = OpaqueBytes(ByteArray(1, { 1 }))
val defaultIssuer = MEGA_CORP.ref(defaultRef)
val oneMillionDollars = 1000000.DOLLARS `issued by` defaultIssuer
val trustedCashContract = nonEmptySetOf(SecureHash.Companion.randomSHA256() as SecureHash)
val megaIssuedDollars = nonEmptySetOf(Issued(defaultIssuer, USD))
val megaIssuedPounds = nonEmptySetOf(Issued(defaultIssuer, GBP))
val fivePm = Instant.parse("2016-01-01T17:00:00.00Z")
val sixPm = Instant.parse("2016-01-01T18:00:00.00Z")
val megaCorpDollarSettlement = Obligation.StateTemplate(trustedCashContract, megaIssuedDollars, fivePm)
val megaIssuedDollars = nonEmptySetOf(Issued<Currency>(defaultIssuer, USD))
val megaIssuedPounds = nonEmptySetOf(Issued<Currency>(defaultIssuer, GBP))
val fivePm = TEST_TX_TIME.truncatedTo(ChronoUnit.DAYS).plus(17, ChronoUnit.HOURS)
val sixPm = fivePm.plus(1, ChronoUnit.HOURS)
val megaCorpDollarSettlement = Obligation.Terms(trustedCashContract, megaIssuedDollars, fivePm)
val megaCorpPoundSettlement = megaCorpDollarSettlement.copy(acceptableIssuedProducts = megaIssuedPounds)
val inState = Obligation.State(
lifecycle = Lifecycle.NORMAL,
@ -58,24 +59,24 @@ class ObligationTests {
}
tweak {
output { outState }
// No command commanduments
this `fails with` "required com.r3corda.contracts.asset.Obligation.Commands.Move command"
// No command arguments
this `fails with` "required com.r3corda.contracts.asset.FungibleAsset.Commands.Move command"
}
tweak {
output { outState }
command(DUMMY_PUBKEY_2) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_2) { Obligation.Commands.Move() }
this `fails with` "the owning keys are the same as the signing keys"
}
tweak {
output { outState }
output { outState `issued by` MINI_CORP }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
this `fails with` "at least one obligation input"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this `fails with` "at least one asset input"
}
// Simple reallocation works.
tweak {
output { outState }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this.verifies()
}
}
@ -87,16 +88,16 @@ class ObligationTests {
transaction {
input { DummyState() }
output { outState }
command(MINI_CORP_PUBKEY) { Obligation.Commands.Move(outState.issuanceDef) }
command(MINI_CORP_PUBKEY) { Obligation.Commands.Move() }
this `fails with` "there is at least one obligation input"
this `fails with` "there is at least one asset input"
}
// Check we can issue money only as long as the issuer institution is a command signer, i.e. any recognised
// institution is allowed to issue as much cash as they want.
transaction {
output { outState }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Issue(outState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Issue() }
this `fails with` "output states are issued by a command signer"
}
transaction {
@ -109,10 +110,10 @@ class ObligationTests {
)
}
tweak {
command(MINI_CORP_PUBKEY) { Obligation.Commands.Issue(Obligation.IssuanceDefinition(MINI_CORP, megaCorpDollarSettlement), 0) }
command(MINI_CORP_PUBKEY) { Obligation.Commands.Issue(0) }
this `fails with` "has a nonce"
}
command(MINI_CORP_PUBKEY) { Obligation.Commands.Issue(Obligation.IssuanceDefinition(MINI_CORP, megaCorpDollarSettlement)) }
command(MINI_CORP_PUBKEY) { Obligation.Commands.Issue() }
this.verifies()
}
@ -128,7 +129,7 @@ class ObligationTests {
template = megaCorpDollarSettlement
)
assertEquals(ptx.outputStates()[0].data, expected)
assertTrue(ptx.commands()[0].value is Obligation.Commands.Issue<*>)
assertTrue(ptx.commands()[0].value is Obligation.Commands.Issue)
assertEquals(MINI_CORP_PUBKEY, ptx.commands()[0].signers[0])
// We can consume $1000 in a transaction and output $2000 as long as it's signed by an issuer.
@ -138,13 +139,13 @@ class ObligationTests {
// Move fails: not allowed to summon money.
tweak {
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
this `fails with` "at obligor MegaCorp the amounts balance"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
}
// Issue works.
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue(inState.issuanceDef) }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue() }
this.verifies()
}
}
@ -153,7 +154,7 @@ class ObligationTests {
transaction {
input { inState }
output { inState.copy(quantity = inState.amount.quantity / 2) }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue(inState.issuanceDef) }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue() }
this `fails with` "output values sum to more than the inputs"
}
@ -161,30 +162,26 @@ class ObligationTests {
transaction {
input { inState }
output { inState }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue(inState.issuanceDef) }
this `fails with` "output values sum to more than the inputs"
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue() }
this `fails with` ""
}
// Can't have any other commands if we have an issue command (because the issue command overrules them)
transaction {
input { inState }
output { inState.copy(quantity = inState.amount.quantity * 2) }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue(inState.issuanceDef) }
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue() }
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue(inState.issuanceDef) }
this `fails with` "only move/exit commands can be present along with other obligation commands"
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Issue() }
this `fails with` "List has more than one element."
}
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Move(inState.issuanceDef) }
this `fails with` "only move/exit commands can be present along with other obligation commands"
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Move() }
this `fails with` "All commands must be matched at end of execution."
}
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.SetLifecycle(inState.issuanceDef, Lifecycle.DEFAULTED) }
this `fails with` "only move/exit commands can be present along with other obligation commands"
}
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Exit(inState.issuanceDef, inState.amount / 2) }
this `fails with` "only move/exit commands can be present along with other obligation commands"
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Exit<Currency>(inState.amount / 2) }
this `fails with` "All commands must be matched at end of execution."
}
this.verifies()
}
@ -245,7 +242,7 @@ class ObligationTests {
val obligationAliceToBob = oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY)
val obligationBobToAlice = oneMillionDollars.OBLIGATION between Pair(BOB, ALICE_PUBKEY)
val tx = TransactionType.General.Builder(DUMMY_NOTARY).apply {
Obligation<Currency>().generatePaymentNetting(this, defaultUsd, DUMMY_NOTARY, obligationAliceToBob, obligationBobToAlice)
Obligation<Currency>().generatePaymentNetting(this, obligationAliceToBob.issuanceDef, DUMMY_NOTARY, obligationAliceToBob, obligationBobToAlice)
signWith(ALICE_KEY)
signWith(BOB_KEY)
signWith(DUMMY_NOTARY_KEY)
@ -259,7 +256,7 @@ class ObligationTests {
val obligationAliceToBob = oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY)
val obligationBobToAlice = (2000000.DOLLARS `issued by` defaultIssuer).OBLIGATION between Pair(BOB, ALICE_PUBKEY)
val tx = TransactionType.General.Builder(DUMMY_NOTARY).apply {
Obligation<Currency>().generatePaymentNetting(this, defaultUsd, DUMMY_NOTARY, obligationAliceToBob, obligationBobToAlice)
Obligation<Currency>().generatePaymentNetting(this, obligationAliceToBob.issuanceDef, DUMMY_NOTARY, obligationAliceToBob, obligationBobToAlice)
signWith(ALICE_KEY)
signWith(BOB_KEY)
}.toSignedTransaction().tx
@ -453,7 +450,7 @@ class ObligationTests {
input("Alice's $1,000,000 obligation to Bob")
input("Alice's $1,000,000")
output("Bob's $1,000,000") { 1000000.DOLLARS.CASH `issued by` defaultIssuer `owned by` BOB_PUBKEY }
command(ALICE_PUBKEY) { Obligation.Commands.Settle(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF), Amount(oneMillionDollars.quantity, USD)) }
command(ALICE_PUBKEY) { Obligation.Commands.Settle<Currency>(Amount(oneMillionDollars.quantity, inState.issuanceDef)) }
command(ALICE_PUBKEY) { Cash.Commands.Move(Obligation<Currency>().legalContractReference) }
this.verifies()
}
@ -467,7 +464,7 @@ class ObligationTests {
input(500000.DOLLARS.CASH `issued by` defaultIssuer `owned by` ALICE_PUBKEY)
output("Alice's $5,000,000 obligation to Bob") { halfAMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY) }
output("Bob's $500,000") { 500000.DOLLARS.CASH `issued by` defaultIssuer `owned by` BOB_PUBKEY }
command(ALICE_PUBKEY) { Obligation.Commands.Settle<Currency>(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF), Amount(oneMillionDollars.quantity, USD)) }
command(ALICE_PUBKEY) { Obligation.Commands.Settle<Currency>(Amount(oneMillionDollars.quantity, inState.issuanceDef)) }
command(ALICE_PUBKEY) { Cash.Commands.Move(Obligation<Currency>().legalContractReference) }
this.verifies()
}
@ -480,7 +477,7 @@ class ObligationTests {
input(defaultedObligation) // Alice's defaulted $1,000,000 obligation to Bob
input(1000000.DOLLARS.CASH `issued by` defaultIssuer `owned by` ALICE_PUBKEY)
output("Bob's $1,000,000") { 1000000.DOLLARS.CASH `issued by` defaultIssuer `owned by` BOB_PUBKEY }
command(ALICE_PUBKEY) { Obligation.Commands.Settle<Currency>(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF), Amount(oneMillionDollars.quantity, USD)) }
command(ALICE_PUBKEY) { Obligation.Commands.Settle<Currency>(Amount(oneMillionDollars.quantity, inState.issuanceDef)) }
command(ALICE_PUBKEY) { Cash.Commands.Move(Obligation<Currency>().legalContractReference) }
this `fails with` "all inputs are in the normal state"
}
@ -495,7 +492,7 @@ class ObligationTests {
transaction("Settlement") {
input("Alice's $1,000,000 obligation to Bob")
output("Alice's defaulted $1,000,000 obligation to Bob") { (oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY)).copy(lifecycle = Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF), Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Lifecycle.DEFAULTED) }
this `fails with` "there is a timestamp from the authority"
}
}
@ -506,7 +503,7 @@ class ObligationTests {
transaction("Settlement") {
input(oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY) `at` futureTestTime)
output("Alice's defaulted $1,000,000 obligation to Bob") { (oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY) `at` futureTestTime).copy(lifecycle = Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF) `at` futureTestTime, Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Lifecycle.DEFAULTED) }
timestamp(TEST_TX_TIME)
this `fails with` "the due date has passed"
}
@ -516,7 +513,7 @@ class ObligationTests {
transaction("Settlement") {
input(oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY) `at` pastTestTime)
output("Alice's defaulted $1,000,000 obligation to Bob") { (oneMillionDollars.OBLIGATION between Pair(ALICE, BOB_PUBKEY) `at` pastTestTime).copy(lifecycle = Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Obligation.IssuanceDefinition(ALICE, defaultUsd.OBLIGATION_DEF) `at` pastTestTime, Lifecycle.DEFAULTED) }
command(BOB_PUBKEY) { Obligation.Commands.SetLifecycle(Lifecycle.DEFAULTED) }
timestamp(TEST_TX_TIME)
this.verifies()
}
@ -528,7 +525,7 @@ class ObligationTests {
fun testMergeSplit() {
// Splitting value works.
transaction {
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
tweak {
input { inState }
repeat(4) { output { inState.copy(quantity = inState.quantity / 4) } }
@ -572,7 +569,7 @@ class ObligationTests {
transaction {
input { inState }
output { outState `issued by` MINI_CORP }
this `fails with` "at obligor MegaCorp the amounts balance"
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
}
// Can't mix currencies.
transaction {
@ -598,55 +595,54 @@ class ObligationTests {
input { inState }
input { inState `issued by` MINI_CORP }
output { outState }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move((inState `issued by` MINI_CORP).issuanceDef) }
this `fails with` "at obligor MiniCorp the amounts balance"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this `fails with` "for reference [00] at issuer MiniCorp the amounts balance"
}
}
@Test
fun exitLedger() {
fun `exit single product obligation`() {
// Single input/output straightforward case.
transaction {
input { inState }
output { outState.copy(quantity = inState.quantity - 200.DOLLARS.quantity) }
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Exit(inState.issuanceDef, 100.DOLLARS) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Exit<Currency>(Amount(100.DOLLARS.quantity, inState.issuanceDef)) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this `fails with` "the amounts balance"
}
tweak {
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Exit(inState.issuanceDef, 200.DOLLARS) }
this `fails with` "required com.r3corda.contracts.asset.Obligation.Commands.Move command"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Exit<Currency>(Amount(200.DOLLARS.quantity, inState.issuanceDef)) }
this `fails with` "required com.r3corda.contracts.asset.FungibleAsset.Commands.Move command"
tweak {
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this.verifies()
}
}
}
// Multi-issuer case.
transaction {
input { inState }
input { inState `issued by` MINI_CORP }
output { inState.copy(quantity = inState.quantity - 200.DOLLARS.quantity) `issued by` MINI_CORP }
output { inState.copy(quantity = inState.quantity - 200.DOLLARS.quantity) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
this `fails with` "at obligor MegaCorp the amounts balance"
command(MEGA_CORP_PUBKEY) { Obligation.Commands.Exit(inState.issuanceDef, 200.DOLLARS) }
tweak {
command(MINI_CORP_PUBKEY) { Obligation.Commands.Exit((inState `issued by` MINI_CORP).issuanceDef, 0.DOLLARS) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move((inState `issued by` MINI_CORP).issuanceDef) }
this `fails with` "at obligor MiniCorp the amounts balance"
}
command(MINI_CORP_PUBKEY) { Obligation.Commands.Exit((inState `issued by` MINI_CORP).issuanceDef, 200.DOLLARS) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move((inState `issued by` MINI_CORP).issuanceDef) }
@Test
fun `exit multiple product obligations`() {
// Multi-product case.
transaction {
input { inState.copy(template = inState.template.copy(acceptableIssuedProducts = megaIssuedPounds)) }
input { inState.copy(template = inState.template.copy(acceptableIssuedProducts = megaIssuedDollars)) }
output { inState.copy(template = inState.template.copy(acceptableIssuedProducts = megaIssuedPounds), quantity = inState.quantity - 200.POUNDS.quantity) }
output { inState.copy(template = inState.template.copy(acceptableIssuedProducts = megaIssuedDollars), quantity = inState.quantity - 200.DOLLARS.quantity) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Exit(Amount(200.DOLLARS.quantity, inState.issuanceDef.copy(product = megaCorpDollarSettlement))) }
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
command(DUMMY_PUBKEY_1) { Obligation.Commands.Exit(Amount(200.POUNDS.quantity, inState.issuanceDef.copy(product = megaCorpPoundSettlement))) }
this.verifies()
}
}
@ -661,20 +657,19 @@ class ObligationTests {
// Can't merge them together.
tweak {
output { inState.copy(beneficiary = DUMMY_PUBKEY_2, quantity = 200000L) }
this `fails with` "at obligor MegaCorp the amounts balance"
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
}
// Missing MiniCorp deposit
tweak {
output { inState.copy(beneficiary = DUMMY_PUBKEY_2) }
output { inState.copy(beneficiary = DUMMY_PUBKEY_2) }
this `fails with` "at obligor MegaCorp the amounts balance"
this `fails with` "for reference [00] at issuer MegaCorp the amounts balance"
}
// This works.
output { inState.copy(beneficiary = DUMMY_PUBKEY_2) }
output { inState.copy(beneficiary = DUMMY_PUBKEY_2) `issued by` MINI_CORP }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move((inState `issued by` MINI_CORP).issuanceDef) }
command(DUMMY_PUBKEY_1) { Obligation.Commands.Move() }
this.verifies()
}
}
@ -688,8 +683,7 @@ class ObligationTests {
input { pounds }
output { inState `owned by` DUMMY_PUBKEY_2 }
output { pounds `owned by` DUMMY_PUBKEY_1 }
command(DUMMY_PUBKEY_1, DUMMY_PUBKEY_2) { Obligation.Commands.Move(inState.issuanceDef) }
command(DUMMY_PUBKEY_1, DUMMY_PUBKEY_2) { Obligation.Commands.Move(pounds.issuanceDef) }
command(DUMMY_PUBKEY_1, DUMMY_PUBKEY_2) { Obligation.Commands.Move() }
this.verifies()
}
@ -754,7 +748,7 @@ class ObligationTests {
@Test
fun `adding two settlement contracts nets them`() {
val megaCorpDollarSettlement = Obligation.StateTemplate(trustedCashContract, megaIssuedDollars, fivePm)
val megaCorpDollarSettlement = Obligation.Terms(trustedCashContract, megaIssuedDollars, fivePm)
val fiveKDollarsFromMegaToMini = Obligation.State(Lifecycle.NORMAL, MEGA_CORP, megaCorpDollarSettlement,
5000.DOLLARS.quantity, MINI_CORP_PUBKEY)
val oneKDollarsFromMiniToMega = Obligation.State(Lifecycle.NORMAL, MINI_CORP, megaCorpDollarSettlement,
@ -780,11 +774,12 @@ class ObligationTests {
@Test
fun `extracting amounts due between parties from a list of states`() {
val megaCorpDollarSettlement = Obligation.StateTemplate(trustedCashContract, megaIssuedDollars, fivePm)
val megaCorpDollarSettlement = Obligation.Terms(trustedCashContract, megaIssuedDollars, fivePm)
val fiveKDollarsFromMegaToMini = Obligation.State(Lifecycle.NORMAL, MEGA_CORP, megaCorpDollarSettlement,
5000.DOLLARS.quantity, MINI_CORP_PUBKEY)
val expected = mapOf(Pair(Pair(MEGA_CORP_PUBKEY, MINI_CORP_PUBKEY), fiveKDollarsFromMegaToMini.amount))
val actual = extractAmountsDue(USD, listOf(fiveKDollarsFromMegaToMini))
val amount = fiveKDollarsFromMegaToMini.amount
val expected = mapOf(Pair(Pair(MEGA_CORP_PUBKEY, MINI_CORP_PUBKEY), Amount(amount.quantity, amount.token.product)))
val actual = extractAmountsDue<Currency>(megaCorpDollarSettlement, listOf(fiveKDollarsFromMegaToMini))
assertEquals(expected, actual)
}
@ -810,7 +805,7 @@ class ObligationTests {
val expected = mapOf(
Pair(Pair(BOB_PUBKEY, ALICE_PUBKEY), Amount(100000000, GBP))
)
val actual = netAmountsDue(balanced)
val actual = netAmountsDue<Currency>(balanced)
assertEquals(expected, actual)
}

View File

@ -23,7 +23,7 @@ interface NamedByHash {
/**
* Interface for state objects that support being netted with other state objects.
*/
interface BilateralNettableState<T: BilateralNettableState<T>> {
interface BilateralNettableState<N: BilateralNettableState<N>> {
/**
* Returns an object used to determine if two states can be subject to close-out netting. If two states return
* equal objects, they can be close out netted together.
@ -34,9 +34,23 @@ interface BilateralNettableState<T: BilateralNettableState<T>> {
* Perform bilateral netting of this state with another state. The two states must be compatible (as in
* bilateralNetState objects are equal).
*/
fun net(other: T): T
fun net(other: N): N
}
/**
* Interface for state objects that support being netted with other state objects.
*/
interface MultilateralNettableState<T: Any> {
/**
* Returns an object used to determine if two states can be subject to close-out netting. If two states return
* equal objects, they can be close out netted together.
*/
val multilateralNetState: T
}
interface NettableState<N: BilateralNettableState<N>, T: Any>: BilateralNettableState<N>,
MultilateralNettableState<T>
/**
* A contract state (or just "state") contains opaque data used by a contract program. It can be thought of as a disk
* file that the program can use to persist data across transactions. States are immutable: once created they are never

View File

@ -96,9 +96,6 @@ data class TransactionForContract(val inputs: List<ContractState>,
@Deprecated("This property was renamed to outputs", ReplaceWith("outputs"))
val outStates: List<ContractState> get() = outputs
inline fun <reified T: CommandData, K> groupCommands(keySelector: (AuthenticatedObject<T>) -> K): Map<K, List<AuthenticatedObject<T>>>
= commands.select<T>().groupBy(keySelector)
/**
* Given a type and a function that returns a grouping key, associates inputs and outputs together so that they
* can be processed as one. The grouping key is any arbitrary object that can act as a map key (so must implement

View File

@ -23,10 +23,10 @@ interface GroupClause<S : ContractState, T : Any> : Clause, GroupVerify<S, T>
abstract class GroupClauseVerifier<S : ContractState, T : Any> : SingleClause {
abstract val clauses: List<GroupClause<S, T>>
override val requiredCommands: Set<Class<CommandData>>
override val requiredCommands: Set<Class<out CommandData>>
get() = emptySet()
abstract fun extractGroups(tx: TransactionForContract): List<TransactionForContract.InOutGroup<out S, T>>
abstract fun extractGroups(tx: TransactionForContract): List<TransactionForContract.InOutGroup<S, T>>
override fun verify(tx: TransactionForContract, commands: Collection<AuthenticatedObject<CommandData>>): Set<CommandData> {
val groups = extractGroups(tx)