implement ConcurrentHashMap and AtomicReferenceArray

This is the simplest possible ConcurrentHashMap I could come up with
that works and is actually concurrent in the way one would expect.
It's pretty unconventional, being based on a persistent red-black
tree, and not particularly memory-efficient or cache-friendly.  I
think this is a good place to start, though, and it should perform
reasonably well for most workloads.  Patches for a more efficient
implementation are welcome!

I also implemented AtomicReferenceArray, since I was using it in my
first, naive attempt to implement ConcurrentHashMap.

I had to do a bit of refactoring, including moving some non-standard
stuff from java.util.Collections to avian.Data so I could make it
available to code outside the java.util package, which is why I had to
modify several unrelated files.
This commit is contained in:
Joel Dice
2014-03-07 09:08:19 -07:00
parent b6c3bc6f4d
commit c0d178d5f1
19 changed files with 1074 additions and 284 deletions

View File

@ -10,12 +10,14 @@
package java.util;
import avian.Data;
public class Collections {
private Collections() { }
public static void shuffle(List list, Random random) {
Object[] array = toArray(list, new Object[list.size()]);
Object[] array = Data.toArray(list, new Object[list.size()]);
for (int i = 0; i < array.length; ++i) {
int j = random.nextInt(array.length);
Object tmp = array[i];
@ -173,25 +175,6 @@ public class Collections {
}
}
static <T> T[] toArray(Collection collection, T[] array) {
Class c = array.getClass().getComponentType();
if (array.length < collection.size()) {
array = (T[]) java.lang.reflect.Array.newInstance(c, collection.size());
}
int i = 0;
for (Object o: collection) {
if (c.isInstance(o)) {
array[i++] = (T) o;
} else {
throw new ArrayStoreException();
}
}
return array;
}
public static final List EMPTY_LIST
= new UnmodifiableList<Object>(new ArrayList<Object>(0));
@ -208,35 +191,6 @@ public class Collections {
return (Set<T>) new UnmodifiableSet<Object>(
new HashSet<Object>(0));
}
static String toString(Collection c) {
StringBuilder sb = new StringBuilder();
sb.append("[");
for (Iterator it = c.iterator(); it.hasNext();) {
sb.append(it.next());
if (it.hasNext()) {
sb.append(",");
}
}
sb.append("]");
return sb.toString();
}
static String toString(Map m) {
StringBuilder sb = new StringBuilder();
sb.append("{");
for (Iterator<Map.Entry> it = m.entrySet().iterator(); it.hasNext();) {
Map.Entry e = it.next();
sb.append(e.getKey())
.append("=")
.append(e.getValue());
if (it.hasNext()) {
sb.append(",");
}
}
sb.append("}");
return sb.toString();
}
public static <T> Enumeration<T> enumeration(Collection<T> c) {
return new IteratorEnumeration<T> (c.iterator());
@ -746,46 +700,6 @@ public class Collections {
public static <T> Set<T> unmodifiableSet(Set<T> hs) {
return new UnmodifiableSet<T>(hs);
}
static class KeyIterator<K, V> implements Iterator<K> {
private final Iterator<Map.Entry<K, V>> it;
public KeyIterator(Iterator<Map.Entry<K, V>> it) {
this.it = it;
}
public K next() {
return it.next().getKey();
}
public boolean hasNext() {
return it.hasNext();
}
public void remove() {
it.remove();
}
}
static class ValueIterator<K, V> implements Iterator<V> {
private final Iterator<Map.Entry<K, V>> it;
public ValueIterator(Iterator<Map.Entry<K, V>> it) {
this.it = it;
}
public V next() {
return it.next().getValue();
}
public boolean hasNext() {
return it.hasNext();
}
public void remove() {
it.remove();
}
}
private static final class ReverseComparator<T> implements Comparator<T> {