Mutual TLS auth - mixed RSA and ECDSA keys (#2095)

This commit is contained in:
Konstantinos Chalkias 2017-11-23 16:07:08 +00:00 committed by GitHub
parent 5c18c57417
commit 502d0df630
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 400 additions and 6 deletions

View File

@ -63,21 +63,21 @@ import javax.crypto.spec.SecretKeySpec
*/ */
object Crypto { object Crypto {
/** /**
* RSA_SHA256 signature scheme using SHA256 as hash algorithm and MGF1 (with SHA256) as mask generation function. * RSA_SHA256 signature scheme using SHA256 as hash algorithm.
* Note: Recommended key size >= 3072 bits. * Note: Recommended key size >= 3072 bits.
*/ */
@JvmField @JvmField
val RSA_SHA256 = SignatureScheme( val RSA_SHA256 = SignatureScheme(
1, 1,
"RSA_SHA256", "RSA_SHA256",
AlgorithmIdentifier(PKCSObjectIdentifiers.rsaEncryption, null), AlgorithmIdentifier(PKCSObjectIdentifiers.sha256WithRSAEncryption, null),
emptyList(), listOf(AlgorithmIdentifier(PKCSObjectIdentifiers.rsaEncryption, null)),
BouncyCastleProvider.PROVIDER_NAME, BouncyCastleProvider.PROVIDER_NAME,
"RSA", "RSA",
"SHA256WITHRSAANDMGF1", "SHA256WITHRSAEncryption",
null, null,
3072, 3072,
"RSA_SHA256 signature scheme using SHA256 as hash algorithm and MGF1 (with SHA256) as mask generation function." "RSA_SHA256 signature scheme using SHA256 as hash algorithm."
) )
/** ECDSA signature scheme using the secp256k1 Koblitz curve. */ /** ECDSA signature scheme using the secp256k1 Koblitz curve. */
@ -117,7 +117,7 @@ object Crypto {
"EDDSA_ED25519_SHA512", "EDDSA_ED25519_SHA512",
// OID taken from https://tools.ietf.org/html/draft-ietf-curdle-pkix-00 // OID taken from https://tools.ietf.org/html/draft-ietf-curdle-pkix-00
AlgorithmIdentifier(ASN1ObjectIdentifier("1.3.101.112"), null), AlgorithmIdentifier(ASN1ObjectIdentifier("1.3.101.112"), null),
emptyList(), emptyList(), // Both keys and the signature scheme use the same OID in i2p library.
// We added EdDSA to bouncy castle for certificate signing. // We added EdDSA to bouncy castle for certificate signing.
BouncyCastleProvider.PROVIDER_NAME, BouncyCastleProvider.PROVIDER_NAME,
"1.3.101.112", "1.3.101.112",

View File

@ -0,0 +1,394 @@
package net.corda.node.utilities
import net.corda.core.crypto.Crypto
import net.corda.core.crypto.SignatureScheme
import net.corda.core.crypto.newSecureRandom
import net.corda.core.identity.CordaX500Name
import net.corda.core.internal.*
import org.junit.Rule
import org.junit.Test
import org.junit.rules.TemporaryFolder
import java.io.DataInputStream
import java.io.DataOutputStream
import java.io.IOException
import java.net.InetAddress
import java.net.InetSocketAddress
import java.net.ServerSocket
import java.nio.file.Path
import java.security.KeyStore
import javax.net.ssl.*
import kotlin.concurrent.thread
import kotlin.test.*
/**
* Various tests for mixed-scheme mutual TLS authentication, such as:
* Both TLS keys and CAs are using EC NIST P-256.
* Both TLS keys and CAs are using RSA.
* Server EC NIST P-256 - Client RSA.
* Server RSA - Client EC NIST P-256.
* Mixed CA and TLS keys.
*
* TLS/SSL protocols support a large number of cipher suites.
* A cipher suite is a collection of symmetric and asymmetric encryption algorithms used by hosts to establish
* a secure communication. Supported cipher suites can be classified based on encryption algorithm strength,
* key length, key exchange and authentication mechanisms. Some cipher suites offer better level of security than others.
*
* Each TLS cipher suite has a unique name that is used to identify it and to describe the algorithmic contents of it.
* Each segment in a cipher suite name stands for a different algorithm or protocol.
* An example of a cipher suite name: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
* The meaning of this name is:
* TLS defines the protocol that this cipher suite is for; it will usually be TLS.
* ECDHE indicates the key exchange algorithm being used.
* ECDSA indicates the authentication algorithm (signing the DH keys).
* AES_128_GCM indicates the block cipher being used to encrypt the message stream.
* SHA256 indicates the message authentication algorithm which is used to authenticate a message.
*/
class TLSAuthenticationTests {
@Rule
@JvmField
val tempFolder: TemporaryFolder = TemporaryFolder()
// Root CA.
private val ROOT_X500 = CordaX500Name(commonName = "Root_CA_1", organisation = "R3CEV", locality = "London", country = "GB")
// Intermediate CA.
private val INTERMEDIATE_X500 = CordaX500Name(commonName = "Intermediate_CA_1", organisation = "R3CEV", locality = "London", country = "GB")
// TLS server (client1).
private val CLIENT_1_X500 = CordaX500Name(commonName = "Client_1", organisation = "R3CEV", locality = "London", country = "GB")
// TLS client (client2).
private val CLIENT_2_X500 = CordaX500Name(commonName = "Client_2", organisation = "R3CEV", locality = "London", country = "GB")
// Password for keys and keystores.
private val PASSWORD = "dummypassword"
// Default supported TLS schemes for Corda nodes.
private val CORDA_TLS_CIPHER_SUITES = arrayOf(
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
"TLS_DHE_RSA_WITH_AES_128_GCM_SHA256"
)
@Test
fun `All EC R1`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
intermediateCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1TLSScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2TLSScheme = Crypto.ECDSA_SECP256R1_SHA256
)
val (serverSocket, clientSocket) =
buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256")
}
@Test
fun `All RSA`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.RSA_SHA256,
intermediateCAScheme = Crypto.RSA_SHA256,
client1CAScheme = Crypto.RSA_SHA256,
client1TLSScheme = Crypto.RSA_SHA256,
client2CAScheme = Crypto.RSA_SHA256,
client2TLSScheme = Crypto.RSA_SHA256
)
val (serverSocket, clientSocket) =
buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")
}
// Server's public key type is the one selected if users use different key types (e.g RSA and EC R1).
@Test
fun `Server RSA - Client EC R1 - CAs all EC R1`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
intermediateCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1TLSScheme = Crypto.RSA_SHA256,
client2CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2TLSScheme = Crypto.ECDSA_SECP256R1_SHA256
)
val (serverSocket, clientSocket) =
buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256") // Server's key type is selected.
}
@Test
fun `Server EC R1 - Client RSA - CAs all EC R1`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
intermediateCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1TLSScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2TLSScheme = Crypto.RSA_SHA256
)
val (serverSocket, clientSocket) = buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256") // Server's key type is selected.
}
@Test
fun `Server EC R1 - Client EC R1 - CAs all RSA`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.RSA_SHA256,
intermediateCAScheme = Crypto.RSA_SHA256,
client1CAScheme = Crypto.RSA_SHA256,
client1TLSScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2CAScheme = Crypto.RSA_SHA256,
client2TLSScheme = Crypto.ECDSA_SECP256R1_SHA256
)
val (serverSocket, clientSocket) = buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256")
}
@Test
fun `Server EC R1 - Client RSA - Mixed CAs`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
intermediateCAScheme = Crypto.RSA_SHA256,
client1CAScheme = Crypto.RSA_SHA256,
client1TLSScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2TLSScheme = Crypto.RSA_SHA256
)
val (serverSocket, clientSocket) = buildTLSSockets(serverSocketFactory, clientSocketFactory, 0, 0)
testConnect(serverSocket, clientSocket, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256")
}
@Test
fun `All RSA - avoid ECC for DH`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.RSA_SHA256,
intermediateCAScheme = Crypto.RSA_SHA256,
client1CAScheme = Crypto.RSA_SHA256,
client1TLSScheme = Crypto.RSA_SHA256,
client2CAScheme = Crypto.RSA_SHA256,
client2TLSScheme = Crypto.RSA_SHA256
)
val (serverSocket, clientSocket) = buildTLSSockets(
serverSocketFactory,
clientSocketFactory,
0,
0,
CORDA_TLS_CIPHER_SUITES,
arrayOf("TLS_DHE_RSA_WITH_AES_128_GCM_SHA256")) // Second client accepts DHE only.
testConnect(serverSocket, clientSocket, "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256")
}
// According to RFC 5246 (TLS 1.2), section 7.4.1.2 ClientHello cipher_suites:
// This is a list of the cryptographic options supported by the client, with the client's first preference first.
//
// However, the server is still free to ignore this order and pick what it thinks is best,
// see https://security.stackexchange.com/questions/121608 for more information.
@Test
fun `TLS cipher suite order matters - client wins`() {
val (serverSocketFactory, clientSocketFactory) = buildTLSFactories(
rootCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
intermediateCAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client1TLSScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2CAScheme = Crypto.ECDSA_SECP256R1_SHA256,
client2TLSScheme = Crypto.ECDSA_SECP256R1_SHA256
)
val (serverSocket, clientSocket) = buildTLSSockets(
serverSocketFactory,
clientSocketFactory,
0,
0,
arrayOf("TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"), // GCM then CBC.
arrayOf("TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256", "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256")) // CBC then GCM.
testConnect(serverSocket, clientSocket, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256") // Client order wins.
}
private fun tempFile(name: String): Path = tempFolder.root.toPath() / name
private fun buildTLSFactories(
rootCAScheme: SignatureScheme,
intermediateCAScheme: SignatureScheme,
client1CAScheme: SignatureScheme,
client1TLSScheme: SignatureScheme,
client2CAScheme: SignatureScheme,
client2TLSScheme: SignatureScheme
): Pair<SSLServerSocketFactory, SSLSocketFactory> {
val trustStorePath = tempFile("cordaTrustStore.jks")
val client1TLSKeyStorePath = tempFile("client1sslkeystore.jks")
val client2TLSKeyStorePath = tempFile("client2sslkeystore.jks")
// ROOT CA key and cert.
val rootCAKeyPair = Crypto.generateKeyPair(rootCAScheme)
val rootCACert = X509Utilities.createSelfSignedCACertificate(ROOT_X500, rootCAKeyPair)
// Intermediate CA key and cert.
val intermediateCAKeyPair = Crypto.generateKeyPair(intermediateCAScheme)
val intermediateCACert = X509Utilities.createCertificate(
CertificateType.INTERMEDIATE_CA,
rootCACert,
rootCAKeyPair,
INTERMEDIATE_X500,
intermediateCAKeyPair.public
)
// Client 1 keys, certs and SSLKeyStore.
val client1CAKeyPair = Crypto.generateKeyPair(client1CAScheme)
val client1CACert = X509Utilities.createCertificate(
CertificateType.CLIENT_CA,
intermediateCACert,
intermediateCAKeyPair,
CLIENT_1_X500,
client1CAKeyPair.public
)
val client1TLSKeyPair = Crypto.generateKeyPair(client1TLSScheme)
val client1TLSCert = X509Utilities.createCertificate(
CertificateType.TLS,
client1CACert,
client1CAKeyPair,
CLIENT_1_X500,
client1TLSKeyPair.public
)
val client1TLSKeyStore = loadOrCreateKeyStore(client1TLSKeyStorePath, PASSWORD)
client1TLSKeyStore.addOrReplaceKey(
X509Utilities.CORDA_CLIENT_TLS,
client1TLSKeyPair.private,
PASSWORD.toCharArray(),
arrayOf(client1TLSCert, client1CACert, intermediateCACert, rootCACert))
// client1TLSKeyStore.save(client1TLSKeyStorePath, PASSWORD)
// Client 2 keys, certs and SSLKeyStore.
val client2CAKeyPair = Crypto.generateKeyPair(client2CAScheme)
val client2CACert = X509Utilities.createCertificate(
CertificateType.CLIENT_CA,
intermediateCACert,
intermediateCAKeyPair,
CLIENT_2_X500,
client2CAKeyPair.public
)
val client2TLSKeyPair = Crypto.generateKeyPair(client2TLSScheme)
val client2TLSCert = X509Utilities.createCertificate(
CertificateType.TLS,
client2CACert,
client2CAKeyPair,
CLIENT_2_X500,
client2TLSKeyPair.public
)
val client2TLSKeyStore = loadOrCreateKeyStore(client2TLSKeyStorePath, PASSWORD)
client2TLSKeyStore.addOrReplaceKey(
X509Utilities.CORDA_CLIENT_TLS,
client2TLSKeyPair.private,
PASSWORD.toCharArray(),
arrayOf(client2TLSCert, client2CACert, intermediateCACert, rootCACert))
// client2TLSKeyStore.save(client2TLSKeyStorePath, PASSWORD)
val trustStore = loadOrCreateKeyStore(trustStorePath, PASSWORD)
trustStore.addOrReplaceCertificate(X509Utilities.CORDA_ROOT_CA, rootCACert.cert)
trustStore.addOrReplaceCertificate(X509Utilities.CORDA_INTERMEDIATE_CA, intermediateCACert.cert)
// trustStore.save(trustStorePath, PASSWORD)
val client1SSLContext = sslContext(client1TLSKeyStore, PASSWORD, trustStore)
val client2SSLContext = sslContext(client2TLSKeyStore, PASSWORD, trustStore)
val serverSocketFactory = client1SSLContext.serverSocketFactory
val clientSocketFactory = client2SSLContext.socketFactory
return Pair(serverSocketFactory, clientSocketFactory)
}
private fun buildTLSSockets(
serverSocketFactory: SSLServerSocketFactory,
clientSocketFactory: SSLSocketFactory,
serverPort: Int = 0, // Use 0 to get first free socket.
clientPort: Int = 0, // Use 0 to get first free socket.
cipherSuitesServer: Array<String> = CORDA_TLS_CIPHER_SUITES,
cipherSuitesClient: Array<String> = CORDA_TLS_CIPHER_SUITES
): Pair<SSLServerSocket, SSLSocket> {
val serverSocket = serverSocketFactory.createServerSocket(serverPort) as SSLServerSocket // use 0 to get first free socket.
val serverParams = SSLParameters(cipherSuitesServer, arrayOf("TLSv1.2"))
serverParams.needClientAuth = true // Note that needClientAuth is requiring client authentication Vs wantClientAuth, in which client authentication is optional).
serverParams.endpointIdentificationAlgorithm = null // Reconfirm default no server name indication, use our own validator.
serverSocket.sslParameters = serverParams
serverSocket.useClientMode = false
val clientSocket = clientSocketFactory.createSocket() as SSLSocket
val clientParams = SSLParameters(cipherSuitesClient, arrayOf("TLSv1.2"))
clientParams.endpointIdentificationAlgorithm = null // Reconfirm default no server name indication, use our own validator.
clientSocket.sslParameters = clientParams
clientSocket.useClientMode = true
// We need to specify this explicitly because by default the client binds to 'localhost' and we want it to bind
// to whatever <hostname> resolves to(as that's what the server binds to). In particular on Debian <hostname>
// resolves to 127.0.1.1 instead of the external address of the interface, so the TLS handshake fails.
clientSocket.bind(InetSocketAddress(InetAddress.getLocalHost(), clientPort))
return Pair(serverSocket, clientSocket)
}
private fun testConnect(serverSocket: ServerSocket, clientSocket: SSLSocket, expectedCipherSuite: String) {
val lock = Object()
var done = false
var serverError = false
val serverThread = thread {
try {
val sslServerSocket = serverSocket.accept()
assertTrue(sslServerSocket.isConnected)
val serverInput = DataInputStream(sslServerSocket.inputStream)
val receivedString = serverInput.readUTF()
assertEquals("Hello World", receivedString)
synchronized(lock) {
done = true
lock.notifyAll()
}
sslServerSocket.close()
} catch (ex: Throwable) {
serverError = true
}
}
clientSocket.connect(InetSocketAddress(InetAddress.getLocalHost(), serverSocket.localPort))
assertTrue(clientSocket.isConnected)
assertEquals(expectedCipherSuite, clientSocket.session.cipherSuite)
// Timeout after 30 secs.
val output = DataOutputStream(clientSocket.outputStream)
output.writeUTF("Hello World")
var timeout = 0
synchronized(lock) {
while (!done) {
timeout++
if (timeout > 30) throw IOException("Timed out waiting for server to complete")
lock.wait(1000)
}
}
clientSocket.close()
serverThread.join(1000)
assertFalse { serverError }
serverSocket.close()
assertTrue(done)
}
// Generate an SSLContext from a KeyStore and a TrustStore.
private fun sslContext(sslKeyStore: KeyStore, sslKeyStorePassword: String, sslTrustStore: KeyStore) : SSLContext {
val context = SSLContext.getInstance("TLS")
val keyManagerFactory = KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm())
// Requires the KeyStore password as well.
keyManagerFactory.init(sslKeyStore, sslKeyStorePassword.toCharArray())
val keyManagers = keyManagerFactory.keyManagers
val trustMgrFactory = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm())
// Password is not required for TrustStore.
trustMgrFactory.init(sslTrustStore)
val trustManagers = trustMgrFactory.trustManagers
return context.apply { init(keyManagers, trustManagers, newSecureRandom()) }
}
}