* Create a ``NodeInfo`` object, and sign it to create a ``SignedData<NodeInfo>`` object. TODO: We will need list of signatures in ``SignedData`` to support multiple node identities in the future.
* Serialise the signed data and POST the data to the network map server.
* The network map server validates the signature and acknowledges the registration with a HTTP 200 response, it will return HTTP 400 "Bad Request" if the data failed validation or if the public key wasn't registered with the network.
* The network map server will sign and distribute the new network map periodically.
Node side network map update protocol:
* The Corda node will query the network map service periodically according to the ``Expires`` attribute in the HTTP header.
| POST | /network-map/publish | Publish new ``NodeInfo`` to the network map service, the legal identity in ``NodeInfo`` must match with the identity registered with the doorman. |
| GET | /network-map | Retrieve ``NetworkMap`` from the server, the ``NetworkMap`` object contains list of node info hashes and ``NetworkParameters`` hash. |
TODO: Access control of the network map will be added in the future.
The ``additional-node-infos`` directory
---------------------------------------
Each Corda node reads, and continuously polls, the files contained in a directory named ``additional-node-infos`` inside the node base directory.
Nodes expect to find a serialized ``SignedData<NodeInfo>`` object, the same object which is sent to network map server.
Whenever a node starts it writes on disk a file containing its own ``NodeInfo``, this file is called ``nodeInfo-XXX`` where ``XXX`` is a long string.
Hence if an operator wants node A to see node B they can pick B's ``NodeInfo`` file from B base directory and drop it into A's ``additional-node-infos`` directory.