corda/src/system.cpp

413 lines
8.6 KiB
C++
Raw Normal View History

#include "sys/mman.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/time.h"
#include "time.h"
#include "fcntl.h"
#include "dlfcn.h"
#include "errno.h"
#include "pthread.h"
#include "stdint.h"
2007-07-20 14:39:50 +00:00
#include "system.h"
#ifdef __i386__
extern "C" uint64_t
cdeclCall(void* function, void* stack, unsigned stackSize,
unsigned returnType);
namespace {
inline uint64_t
dynamicCall(void* function, uint32_t* arguments, uint8_t*,
unsigned, unsigned argumentsSize, unsigned returnType)
{
return cdeclCall(function, arguments, argumentsSize, returnType);
}
} // namespace
#elif defined __x86_64__
extern "C" uint64_t
amd64Call(void* function, void* stack, unsigned stackSize,
void* gprTable, void* sseTable, unsigned returnType);
namespace {
uint64_t
dynamicCall(void* function, uint64_t* arguments, uint8_t* argumentTypes,
unsigned argumentCount, unsigned, unsigned returnType)
{
const unsigned GprCount = 6;
uint64_t gprTable[GprCount];
unsigned gprIndex = 0;
const unsigned SseCount = 8;
uint64_t sseTable[SseCount];
unsigned sseIndex = 0;
uint64_t stack[argumentCount];
unsigned stackIndex = 0;
for (unsigned i = 0; i < argumentCount; ++i) {
switch (argumentTypes[i]) {
case FLOAT_TYPE:
case DOUBLE_TYPE: {
if (sseIndex < SseCount) {
sseTable[sseIndex++] = arguments[i];
} else {
stack[stackIndex++] = arguments[i];
}
} break;
default: {
if (gprIndex < GprCount) {
gprTable[gprIndex++] = arguments[i];
} else {
stack[stackIndex++] = arguments[i];
}
} break;
}
}
return amd64Call(function, stack, stackIndex * 8, (gprIndex ? gprTable : 0),
(sseIndex ? sseTable : 0), returnType);
}
} // namespace
#else
# error unsupported platform
#endif
using namespace vm;
namespace {
2007-07-28 16:10:13 +00:00
int64_t
now()
{
timeval tv = { 0, 0 };
gettimeofday(&tv, 0);
return (static_cast<int64_t>(tv.tv_sec) * 1000) +
(static_cast<int64_t>(tv.tv_usec) / 1000);
}
void*
run(void* t)
{
static_cast<System::Thread*>(t)->run();
return 0;
}
const bool Verbose = false;
class MySystem: public System {
public:
class Thread: public System::Thread {
public:
Thread(System* s, System::Runnable* r): s(s), r(r) { }
virtual void run() {
r->run(this);
}
virtual void join() {
int rv = pthread_join(thread, 0);
assert(s, rv == 0);
}
virtual void dispose() {
if (r) {
r->dispose();
}
s->free(this);
}
System* s;
System::Runnable* r;
pthread_t thread;
};
class Monitor: public System::Monitor {
public:
Monitor(System* s): s(s), context(0), depth(0) {
pthread_mutex_init(&mutex, 0);
pthread_cond_init(&condition, 0);
}
virtual bool tryAcquire(void* context) {
if (this->context == context) {
++ depth;
return true;
} else {
switch (pthread_mutex_trylock(&mutex)) {
case EBUSY:
return false;
case 0:
this->context = context;
++ depth;
return true;
default:
sysAbort(s);
}
}
}
virtual void acquire(void* context) {
if (this->context != context) {
pthread_mutex_lock(&mutex);
this->context = context;
}
++ depth;
}
virtual void release(void* context) {
if (this->context == context) {
if (-- depth == 0) {
this->context = 0;
pthread_mutex_unlock(&mutex);
}
} else {
sysAbort(s);
}
}
virtual void wait(void* context, int64_t time) {
if (this->context == context) {
unsigned depth = this->depth;
this->depth = 0;
this->context = 0;
if (time) {
2007-07-28 16:10:13 +00:00
int64_t then = now() + time;
timespec ts = { then / 1000, (then % 1000) * 1000 * 1000 };
int rv = pthread_cond_timedwait(&condition, &mutex, &ts);
2007-07-28 16:10:13 +00:00
assert(s, rv == 0 or rv == ETIMEDOUT);
} else {
int rv = pthread_cond_wait(&condition, &mutex);
assert(s, rv == 0);
}
this->context = context;
this->depth = depth;
} else {
sysAbort(s);
}
}
virtual void notify(void* context) {
if (this->context == context) {
int rv = pthread_cond_signal(&condition);
assert(s, rv == 0);
} else {
sysAbort(s);
}
}
virtual void notifyAll(void* context) {
if (this->context == context) {
int rv = pthread_cond_broadcast(&condition);
assert(s, rv == 0);
} else {
sysAbort(s);
}
}
virtual void* owner() {
return context;
}
virtual void dispose() {
assert(s, context == 0);
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&condition);
s->free(this);
}
System* s;
pthread_mutex_t mutex;
pthread_cond_t condition;
void* context;
unsigned depth;
};
class Library: public System::Library {
public:
Library(System* s, void* p, const char* name, System::Library* next):
s(s),
p(p),
name_(name),
next_(next)
{ }
virtual void* resolve(const char* function) {
return dlsym(p, function);
}
virtual const char* name() {
return name_;
}
virtual System::Library* next() {
return next_;
}
virtual void dispose() {
if (Verbose) {
fprintf(stderr, "close %p\n", p);
}
dlclose(p);
if (next_) {
next_->dispose();
}
s->free(name_);
s->free(this);
}
System* s;
void* p;
const char* name_;
System::Library* next_;
};
MySystem(unsigned limit): limit(limit), count(0) {
pthread_mutex_init(&mutex, 0);
}
virtual bool success(Status s) {
return s == 0;
}
virtual void* tryAllocate(unsigned size) {
pthread_mutex_lock(&mutex);
if (Verbose) {
fprintf(stderr, "try %d; count: %d; limit: %d\n",
size, count, limit);
}
if (count + size > limit) {
pthread_mutex_unlock(&mutex);
return 0;
} else {
uintptr_t* up = static_cast<uintptr_t*>
(malloc(size + sizeof(uintptr_t)));
if (up == 0) {
pthread_mutex_unlock(&mutex);
sysAbort(this);
} else {
*up = size;
count += *up;
pthread_mutex_unlock(&mutex);
return up + 1;
}
}
}
virtual void free(const void* p) {
pthread_mutex_lock(&mutex);
if (p) {
const uintptr_t* up = static_cast<const uintptr_t*>(p) - 1;
if (count < *up) {
abort();
}
count -= *up;
if (Verbose) {
fprintf(stderr, "free " LD "; count: %d; limit: %d\n",
*up, count, limit);
}
::free(const_cast<uintptr_t*>(up));
}
pthread_mutex_unlock(&mutex);
}
virtual Status attach(System::Thread** tp) {
Thread* t = new (System::allocate(sizeof(Thread))) Thread(this, 0);
t->thread = pthread_self();
*tp = t;
return 0;
}
virtual Status start(Runnable* r) {
Thread* t = new (System::allocate(sizeof(Thread))) Thread(this, r);
int rv = pthread_create(&(t->thread), 0, run, t);
assert(this, rv == 0);
return 0;
}
virtual Status make(System::Monitor** m) {
*m = new (System::allocate(sizeof(Monitor))) Monitor(this);
return 0;
}
virtual uint64_t call(void* function, uintptr_t* arguments, uint8_t* types,
unsigned count, unsigned size, unsigned returnType)
{
return dynamicCall(function, arguments, types, count, size, returnType);
}
virtual Status load(System::Library** lib,
const char* name,
System::Library* next)
{
unsigned nameLength = strlen(name);
unsigned size = nameLength + 7;
char buffer[size];
snprintf(buffer, size, "lib%s.so", name);
void* p = dlopen(buffer, RTLD_LAZY);
if (p) {
if (Verbose) {
fprintf(stderr, "open %s as %p\n", buffer, p);
}
char* n = static_cast<char*>(System::allocate(nameLength + 1));
memcpy(n, name, nameLength + 1);
*lib = new (System::allocate(sizeof(Library))) Library(this, p, n, next);
return 0;
} else {
return 1;
}
}
virtual void exit(int code) {
::exit(code);
}
virtual void abort() {
::abort();
}
virtual void dispose() {
pthread_mutex_destroy(&mutex);
::free(this);
}
pthread_mutex_t mutex;
unsigned limit;
unsigned count;
};
} // namespace
namespace vm {
System*
makeSystem(unsigned heapSize)
{
return new (malloc(sizeof(MySystem))) MySystem(heapSize);
}
} // namespace vm