corda/sdk/simulation/uinst/u_instructions.cpp

321 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
// u_instructions.cpp -- It simulates Enclave instructions.
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "arch.h"
#include "util.h"
#include "se_memory.h"
#include "se_memcpy.h"
#include "se_trace.h"
#include "enclave.h"
#include "td_mngr.h"
#include "lowlib.h"
#include "sgxsim.h"
#include "enclave_mngr.h"
#include "u_instructions.h"
#include "ippcp.h"
static uintptr_t _EINIT(secs_t* secs, enclave_css_t* css, token_t* launch);
static uintptr_t _ECREATE (page_info_t* pi);
static uintptr_t _EADD (page_info_t* pi, void* epc_lin_addr);
static uintptr_t _EREMOVE(const void* epc_lin_addr);
////////////////////////////////////////////////////////////////////////
#define __GP__() exit(EXIT_FAILURE)
#define GP() do { \
SE_TRACE(SE_TRACE_DEBUG, "#GP on %s, line: %d\n", __FILE__, __LINE__); \
__GP__(); \
} while (0)
#define GP_ON(cond) if (cond) GP()
#define GP_ON_EENTER GP_ON
#define mcp_same_size(dst_ptr, src_ptr, size) memcpy_s(dst_ptr, size, src_ptr, size)
uintptr_t _EINIT(secs_t* secs, enclave_css_t *css, token_t *launch)
{
CEnclaveMngr *mngr = CEnclaveMngr::get_instance();
assert(mngr != NULL);
CEnclaveSim* ce = mngr->get_enclave(secs);
GP_ON(ce == NULL);
GP_ON((ce->get_secs()->attributes.flags & SGX_FLAGS_INITTED) != 0);
// Fill MREnclave, MRSigner, ISVPRODID, ISVSVN
secs_t* this_secs = ce->get_secs();
if (css != NULL) {
// Check signature
if ((css->body.attribute_mask.xfrm & this_secs->attributes.xfrm)
!= (css->body.attribute_mask.xfrm & css->body.attributes.xfrm))
{
SE_TRACE(SE_TRACE_DEBUG,
"SECS attributes.xfrm does NOT match signature attributes.xfrm\n");
return SGX_ERROR_INVALID_ATTRIBUTE;
}
if ((css->body.attribute_mask.flags & this_secs->attributes.flags)
!= (css->body.attribute_mask.flags & css->body.attributes.flags))
{
SE_TRACE(SE_TRACE_DEBUG,
"SECS attributes.flag does NOT match signature attributes.flag\n");
return SGX_ERROR_INVALID_ATTRIBUTE;
}
mcp_same_size(&this_secs->mr_enclave, &css->body.enclave_hash, sizeof(sgx_measurement_t));
this_secs->isv_prod_id = css->body.isv_prod_id;
this_secs->isv_svn = css->body.isv_svn;
ippsHashMessage(css->key.modulus, SE_KEY_SIZE, (Ipp8u*)&this_secs->mr_signer, IPP_ALG_HASH_SHA256);
}
// Check launch token
if (launch != NULL && launch->body.valid) {
if (memcmp(&launch->body.attributes, &this_secs->attributes, sizeof(sgx_attributes_t)))
{
SE_TRACE(SE_TRACE_DEBUG,
"SECS attributes does NOT match launch token attribuets\n");
return SGX_ERROR_INVALID_ATTRIBUTE;
}
}
// Mark it initialized
this_secs->attributes.flags |= SGX_FLAGS_INITTED;
return SGX_SUCCESS;
}
static inline bool is_power_of_two(size_t n)
{
return (n != 0) && (!(n & (n - 1)));
}
// Returns the pointer to the Enclave instance on success.
uintptr_t _ECREATE(page_info_t* pi)
{
secs_t* secs = reinterpret_cast<secs_t*>(pi->src_page);
// Enclave size must be at least 2 pages and a power of 2.
GP_ON(!is_power_of_two((size_t)secs->size));
GP_ON(secs->size < (SE_PAGE_SIZE << 1));
CEnclaveSim* ce = new CEnclaveSim(secs);
void* addr;
// `ce' is not checked against NULL, since it is not
// allocated with new(std::no_throw).
addr = se_virtual_alloc(NULL, (size_t)secs->size, MEM_COMMIT);
if (addr == NULL) {
delete ce;
return 0;
}
// Mark all the memory inaccessible.
se_virtual_protect(addr, (size_t)secs->size, SGX_PROT_NONE);
ce->get_secs()->base = addr;
CEnclaveMngr::get_instance()->add(ce);
return reinterpret_cast<uintptr_t>(ce);
}
uintptr_t _EADD(page_info_t* pi, void *epc_lin_addr)
{
void *src_page = pi->src_page;
CEnclaveMngr *mngr = CEnclaveMngr::get_instance();
CEnclaveSim *ce = mngr->get_enclave(pi->lin_addr);
if (ce == NULL) {
SE_TRACE(SE_TRACE_DEBUG, "failed to get enclave instance\n");
return SGX_ERROR_UNEXPECTED;
}
GP_ON(!IS_PAGE_ALIGNED(epc_lin_addr));
GP_ON((ce->get_secs()->attributes.flags & SGX_FLAGS_INITTED) != 0);
// Make the page writable before doing memcpy()
se_virtual_protect(epc_lin_addr, SE_PAGE_SIZE, SI_FLAGS_RW);
mcp_same_size(epc_lin_addr, src_page, SE_PAGE_SIZE);
se_virtual_protect(epc_lin_addr, SE_PAGE_SIZE, (uint32_t)pi->sec_info->flags);
GP_ON(!ce->add_page(pi->lin_addr, pi->sec_info->flags));
return SGX_SUCCESS;
}
uintptr_t _EREMOVE(const void *epc_lin_addr)
{
CEnclaveMngr *mngr = CEnclaveMngr::get_instance();
CEnclaveSim *ce = mngr->get_enclave(epc_lin_addr);
GP_ON(!ce);
GP_ON(!IS_PAGE_ALIGNED(epc_lin_addr));
return ce->remove_page(epc_lin_addr) ? 0 : -1;
}
////////////////////////////////////////////////////////////////////////
// Master entry functions
void _SE3(uintptr_t xax, uintptr_t xbx,
uintptr_t xcx, uintptr_t xdx,
uintptr_t xsi, uintptr_t xdi)
{
UNUSED(xdx);
switch (xax)
{
case SE_EENTER:
uintptr_t xip;
void * enclave_base_addr;
se_pt_regs_t* p_pt_regs;
tcs_t* tcs;
tcs_sim_t* tcs_sim;
ssa_gpr_t* p_ssa_gpr;
secs_t* secs;
CEnclaveMngr* mngr;
CEnclaveSim* ce;
// xbx contains the address of a TCS
tcs = reinterpret_cast<tcs_t*>(xbx);
// Is TCS pointer page-aligned?
GP_ON_EENTER(!IS_PAGE_ALIGNED(tcs));
mngr = CEnclaveMngr::get_instance();
assert(mngr != NULL);
// Is it really a TCS?
ce = mngr->get_enclave(tcs);
GP_ON_EENTER(ce == NULL);
GP_ON_EENTER(!ce->is_tcs_page(tcs));
// Check the EntryReason
tcs_sim = reinterpret_cast<tcs_sim_t *>(tcs->reserved);
GP_ON_EENTER(tcs_sim->tcs_state != TCS_STATE_INACTIVE);
GP_ON_EENTER(tcs->cssa >= tcs->nssa);
secs = ce->get_secs();
enclave_base_addr = secs->base;
p_ssa_gpr = reinterpret_cast<ssa_gpr_t*>(reinterpret_cast<uintptr_t>(enclave_base_addr) + static_cast<size_t>(tcs->ossa)
+ secs->ssa_frame_size * SE_PAGE_SIZE
- sizeof(ssa_gpr_t));
tcs_sim->saved_aep = xcx;
p_pt_regs = reinterpret_cast<se_pt_regs_t*>(get_bp());
p_ssa_gpr->REG(bp_u) = p_pt_regs->xbp;
p_ssa_gpr->REG(sp_u) = reinterpret_cast<uintptr_t>(p_pt_regs + 1);
xcx = p_pt_regs->xip;
xip = reinterpret_cast<uintptr_t>(enclave_base_addr);
GP_ON_EENTER(xip == 0);
//set the _tls_array to point to the self_addr of TLS section inside the enclave
GP_ON_EENTER(td_mngr_set_td(enclave_base_addr, tcs) == false);
// Destination depends on STATE
xip += (uintptr_t)tcs->oentry;
tcs_sim->tcs_state = TCS_STATE_ACTIVE;
// Link the TCS to the thread
GP_ON_EENTER((secs->attributes.flags & SGX_FLAGS_INITTED) == 0);
// Replace the return address on the stack with the enclave entry,
// so that when we return from this function, we'll enter the enclave.
enclu_regs_t regs;
regs.xax = tcs->cssa;
regs.xbx = reinterpret_cast<uintptr_t>(tcs);
regs.xcx = xcx;
regs.xdx = 0;
regs.xsi = xsi;
regs.xdi = xdi;
regs.xbp = p_ssa_gpr->REG(bp_u);
regs.xsp = p_ssa_gpr->REG(sp_u);
regs.xip = xip;
load_regs(&regs);
// Returning from this function enters the enclave
return;
default:
// There's only 1 ring 3 instruction outside the enclave: EENTER.
GP();
}
}
uintptr_t _SE0(uintptr_t xax, uintptr_t xbx,
uintptr_t xcx, uintptr_t xdx,
uintptr_t xsi, uintptr_t xdi)
{
UNUSED(xsi), UNUSED(xdi);
switch (xax)
{
case SE_ECREATE:
return _ECREATE(reinterpret_cast<page_info_t*>(xbx));
case SE_EADD:
return _EADD(reinterpret_cast<page_info_t*>(xbx),
reinterpret_cast<void*>(xcx));
case SE_EINIT:
return _EINIT(reinterpret_cast<secs_t*>(xbx),
reinterpret_cast<enclave_css_t *>(xcx),
reinterpret_cast<token_t *>(xdx));
case SE_EREMOVE:
return _EREMOVE(reinterpret_cast<void*>(xcx));
default:
GP();
}
return 0;
}