corda/src/process.cpp

299 lines
7.0 KiB
C++
Raw Normal View History

/* Copyright (c) 2008-2011, Avian Contributors
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
There is NO WARRANTY for this software. See license.txt for
details. */
#include "process.h"
using namespace vm;
namespace {
unsigned
mangledSize(int8_t c)
{
switch (c) {
case '_':
case ';':
case '[':
return 2;
case '$':
return 6;
default:
return 1;
}
}
unsigned
mangle(int8_t c, char* dst)
{
switch (c) {
case '/':
dst[0] = '_';
return 1;
case '_':
dst[0] = '_';
dst[1] = '1';
return 2;
case ';':
dst[0] = '_';
dst[1] = '2';
return 2;
case '[':
dst[0] = '_';
dst[1] = '3';
return 2;
case '$':
memcpy(dst, "_00024", 6);
return 6;
default:
dst[0] = c;
return 1;
}
}
unsigned
jniNameLength(Thread* t, object method, bool decorate)
{
2009-05-03 20:57:11 +00:00
unsigned size = 0;
object className = ::className(t, methodClass(t, method));
for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) {
size += mangledSize(byteArrayBody(t, className, i));
}
++ size;
object methodName = ::methodName(t, method);
for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) {
size += mangledSize(byteArrayBody(t, methodName, i));
}
if (decorate) {
size += 2;
object methodSpec = ::methodSpec(t, method);
for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1
and byteArrayBody(t, methodSpec, i) != ')'; ++i)
{
size += mangledSize(byteArrayBody(t, methodSpec, i));
}
}
return size;
}
void
2009-05-03 20:57:11 +00:00
makeJNIName(Thread* t, const char* prefix, unsigned prefixLength, char* name,
object method, bool decorate)
{
2009-05-03 20:57:11 +00:00
memcpy(name, prefix, prefixLength);
name += prefixLength;
object className = ::className(t, methodClass(t, method));
for (unsigned i = 0; i < byteArrayLength(t, className) - 1; ++i) {
name += mangle(byteArrayBody(t, className, i), name);
}
*(name++) = '_';
object methodName = ::methodName(t, method);
for (unsigned i = 0; i < byteArrayLength(t, methodName) - 1; ++i) {
name += mangle(byteArrayBody(t, methodName, i), name);
}
if (decorate) {
*(name++) = '_';
*(name++) = '_';
object methodSpec = ::methodSpec(t, method);
for (unsigned i = 1; i < byteArrayLength(t, methodSpec) - 1
and byteArrayBody(t, methodSpec, i) != ')'; ++i)
{
name += mangle(byteArrayBody(t, methodSpec, i), name);
}
}
*(name++) = 0;
}
void*
resolveNativeMethod(Thread* t, const char* undecorated, const char* decorated)
{
for (System::Library* lib = t->m->libraries; lib; lib = lib->next()) {
void* p = lib->resolve(undecorated);
if (p) {
return p;
} else {
p = lib->resolve(decorated);
if (p) {
return p;
}
}
}
return 0;
}
void*
2009-05-03 20:57:11 +00:00
resolveNativeMethod(Thread* t, object method, const char* prefix,
unsigned prefixLength, int footprint UNUSED)
{
2009-05-03 20:57:11 +00:00
unsigned undecoratedSize = prefixLength + jniNameLength(t, method, false);
// extra 6 is for code below:
rework VM exception handling; throw OOMEs when appropriate This rather large commit modifies the VM to use non-local returns to throw exceptions instead of simply setting Thread::exception and returning frame-by-frame as it used to. This has several benefits: * Functions no longer need to check Thread::exception after each call which might throw an exception (which would be especially tedious and error-prone now that any function which allocates objects directly or indirectly might throw an OutOfMemoryError) * There's no need to audit the code for calls to functions which previously did not throw exceptions but later do * Performance should be improved slightly due to both the reduced need for conditionals and because undwinding now occurs in a single jump instead of a series of returns The main disadvantages are: * Slightly higher overhead for entering and leaving the VM via the JNI and JDK methods * Non-local returns can make the code harder to read * We must be careful to register destructors for stack-allocated resources with the Thread so they can be called prior to a non-local return The non-local return implementation is similar to setjmp/longjmp, except it uses continuation-passing style to avoid the need for cooperation from the C/C++ compiler. Native C++ exceptions would have also been an option, but that would introduce a dependence on libstdc++, which we're trying to avoid for portability reasons. Finally, this commit ensures that the VM throws an OutOfMemoryError instead of aborting when it reaches its memory ceiling. Currently, we treat the ceiling as a soft limit and temporarily exceed it as necessary to allow garbage collection and certain internal allocations to succeed, but refuse to allocate any Java objects until the heap size drops back below the ceiling.
2010-12-27 22:55:23 +00:00
THREAD_RUNTIME_ARRAY(t, char, undecorated, undecoratedSize + 1 + 6);
makeJNIName(t, prefix, prefixLength, RUNTIME_ARRAY_BODY(undecorated) + 1,
method, false);
2009-05-03 20:57:11 +00:00
unsigned decoratedSize = prefixLength + jniNameLength(t, method, true);
// extra 6 is for code below:
rework VM exception handling; throw OOMEs when appropriate This rather large commit modifies the VM to use non-local returns to throw exceptions instead of simply setting Thread::exception and returning frame-by-frame as it used to. This has several benefits: * Functions no longer need to check Thread::exception after each call which might throw an exception (which would be especially tedious and error-prone now that any function which allocates objects directly or indirectly might throw an OutOfMemoryError) * There's no need to audit the code for calls to functions which previously did not throw exceptions but later do * Performance should be improved slightly due to both the reduced need for conditionals and because undwinding now occurs in a single jump instead of a series of returns The main disadvantages are: * Slightly higher overhead for entering and leaving the VM via the JNI and JDK methods * Non-local returns can make the code harder to read * We must be careful to register destructors for stack-allocated resources with the Thread so they can be called prior to a non-local return The non-local return implementation is similar to setjmp/longjmp, except it uses continuation-passing style to avoid the need for cooperation from the C/C++ compiler. Native C++ exceptions would have also been an option, but that would introduce a dependence on libstdc++, which we're trying to avoid for portability reasons. Finally, this commit ensures that the VM throws an OutOfMemoryError instead of aborting when it reaches its memory ceiling. Currently, we treat the ceiling as a soft limit and temporarily exceed it as necessary to allow garbage collection and certain internal allocations to succeed, but refuse to allocate any Java objects until the heap size drops back below the ceiling.
2010-12-27 22:55:23 +00:00
THREAD_RUNTIME_ARRAY(t, char, decorated, decoratedSize + 1 + 6);
makeJNIName(t, prefix, prefixLength, RUNTIME_ARRAY_BODY(decorated) + 1,
method, true);
void* p = resolveNativeMethod(t, RUNTIME_ARRAY_BODY(undecorated) + 1,
RUNTIME_ARRAY_BODY(decorated) + 1);
if (p) {
return p;
}
#ifdef PLATFORM_WINDOWS
// on windows, we also try the _%s@%d and %s@%d variants
if (footprint == -1) {
footprint = methodParameterFootprint(t, method) + 1;
if (methodFlags(t, method) & ACC_STATIC) {
++ footprint;
}
}
*RUNTIME_ARRAY_BODY(undecorated) = '_';
vm::snprintf(RUNTIME_ARRAY_BODY(undecorated) + undecoratedSize + 1, 5, "@%d",
footprint * BytesPerWord);
*RUNTIME_ARRAY_BODY(decorated) = '_';
vm::snprintf(RUNTIME_ARRAY_BODY(decorated) + decoratedSize + 1, 5, "@%d",
footprint * BytesPerWord);
p = resolveNativeMethod(t, RUNTIME_ARRAY_BODY(undecorated),
RUNTIME_ARRAY_BODY(decorated));
if (p) {
return p;
}
// one more try without the leading underscore
p = resolveNativeMethod(t, RUNTIME_ARRAY_BODY(undecorated) + 1,
RUNTIME_ARRAY_BODY(decorated) + 1);
if (p) {
return p;
}
#endif
return 0;
}
object
2009-05-05 01:04:17 +00:00
resolveNativeMethod(Thread* t, object method)
2009-05-03 20:57:11 +00:00
{
2011-01-21 23:14:21 +00:00
void* p = resolveNativeMethod(t, method, "Avian_", 6, 3);
2009-05-03 20:57:11 +00:00
if (p) {
return makeNative(t, p, true);
2009-05-03 20:57:11 +00:00
}
2011-01-21 23:14:21 +00:00
p = resolveNativeMethod(t, method, "Java_", 5, -1);
2009-05-03 20:57:11 +00:00
if (p) {
return makeNative(t, p, false);
2009-05-03 20:57:11 +00:00
}
return 0;
}
2010-09-27 23:12:08 +00:00
} // namespace
namespace vm {
void
resolveNative(Thread* t, object method)
{
PROTECT(t, method);
assert(t, methodFlags(t, method) & ACC_NATIVE);
initClass(t, methodClass(t, method));
rework VM exception handling; throw OOMEs when appropriate This rather large commit modifies the VM to use non-local returns to throw exceptions instead of simply setting Thread::exception and returning frame-by-frame as it used to. This has several benefits: * Functions no longer need to check Thread::exception after each call which might throw an exception (which would be especially tedious and error-prone now that any function which allocates objects directly or indirectly might throw an OutOfMemoryError) * There's no need to audit the code for calls to functions which previously did not throw exceptions but later do * Performance should be improved slightly due to both the reduced need for conditionals and because undwinding now occurs in a single jump instead of a series of returns The main disadvantages are: * Slightly higher overhead for entering and leaving the VM via the JNI and JDK methods * Non-local returns can make the code harder to read * We must be careful to register destructors for stack-allocated resources with the Thread so they can be called prior to a non-local return The non-local return implementation is similar to setjmp/longjmp, except it uses continuation-passing style to avoid the need for cooperation from the C/C++ compiler. Native C++ exceptions would have also been an option, but that would introduce a dependence on libstdc++, which we're trying to avoid for portability reasons. Finally, this commit ensures that the VM throws an OutOfMemoryError instead of aborting when it reaches its memory ceiling. Currently, we treat the ceiling as a soft limit and temporarily exceed it as necessary to allow garbage collection and certain internal allocations to succeed, but refuse to allocate any Java objects until the heap size drops back below the ceiling.
2010-12-27 22:55:23 +00:00
if (methodRuntimeDataNative(t, getMethodRuntimeData(t, method)) == 0) {
2010-09-27 23:12:08 +00:00
object native = resolveNativeMethod(t, method);
if (UNLIKELY(native == 0)) {
rework VM exception handling; throw OOMEs when appropriate This rather large commit modifies the VM to use non-local returns to throw exceptions instead of simply setting Thread::exception and returning frame-by-frame as it used to. This has several benefits: * Functions no longer need to check Thread::exception after each call which might throw an exception (which would be especially tedious and error-prone now that any function which allocates objects directly or indirectly might throw an OutOfMemoryError) * There's no need to audit the code for calls to functions which previously did not throw exceptions but later do * Performance should be improved slightly due to both the reduced need for conditionals and because undwinding now occurs in a single jump instead of a series of returns The main disadvantages are: * Slightly higher overhead for entering and leaving the VM via the JNI and JDK methods * Non-local returns can make the code harder to read * We must be careful to register destructors for stack-allocated resources with the Thread so they can be called prior to a non-local return The non-local return implementation is similar to setjmp/longjmp, except it uses continuation-passing style to avoid the need for cooperation from the C/C++ compiler. Native C++ exceptions would have also been an option, but that would introduce a dependence on libstdc++, which we're trying to avoid for portability reasons. Finally, this commit ensures that the VM throws an OutOfMemoryError instead of aborting when it reaches its memory ceiling. Currently, we treat the ceiling as a soft limit and temporarily exceed it as necessary to allow garbage collection and certain internal allocations to succeed, but refuse to allocate any Java objects until the heap size drops back below the ceiling.
2010-12-27 22:55:23 +00:00
throwNew(t, Machine::UnsatisfiedLinkErrorType, "%s.%s%s",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0),
&byteArrayBody(t, methodSpec(t, method), 0));
2010-09-27 23:12:08 +00:00
}
PROTECT(t, native);
object runtimeData = getMethodRuntimeData(t, method);
// ensure other threads only see the methodRuntimeDataNative field
// populated once the object it points to has been populated:
2010-09-27 23:12:08 +00:00
storeStoreMemoryBarrier();
set(t, runtimeData, MethodRuntimeDataNative, native);
2010-09-27 23:12:08 +00:00
}
}
int
findLineNumber(Thread* t, object method, unsigned ip)
{
if (methodFlags(t, method) & ACC_NATIVE) {
return NativeLine;
}
// our parameter indicates the instruction following the one we care
// about, so we back up first:
-- ip;
object code = methodCode(t, method);
object lnt = codeLineNumberTable(t, code);
if (lnt) {
unsigned bottom = 0;
unsigned top = lineNumberTableLength(t, lnt);
for (unsigned span = top - bottom; span; span = top - bottom) {
unsigned middle = bottom + (span / 2);
uint64_t ln = lineNumberTableBody(t, lnt, middle);
if (ip >= lineNumberIp(ln)
and (middle + 1 == lineNumberTableLength(t, lnt)
or ip < lineNumberIp(lineNumberTableBody(t, lnt, middle + 1))))
{
return lineNumberLine(ln);
} else if (ip < lineNumberIp(ln)) {
top = middle;
} else if (ip > lineNumberIp(ln)) {
bottom = middle + 1;
}
}
if (top < lineNumberTableLength(t, lnt)) {
return lineNumberLine(lineNumberTableBody(t, lnt, top));
} else {
return UnknownLine;
}
} else {
return UnknownLine;
}
}
} // namespace vm