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Abstract

A distributed database made up of mutually distrusting nodes would
allow for a single global ledger that records the state of deals and obli-
gations between institutions and people. This would eliminate much of
the manual, time consuming effort currently required to keep disparate
ledgers synchronised with each other. It would also allow for greater lev-
els of code sharing than presently used in the financial industry, reducing
the cost of banking for everyone. We present Corda, a platform which is
designed to achieve these goals. This paper provides a high level intro-
duction intended for the general reader. A forthcoming technical white
paper elaborates on the design and fundamental architectural decisions.
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1 Introduction

At R3, we believe that distributed ledger technology has the potential to trans-
form the financial services industry to the benefit of its clients and participant
firms alike. We envision a future where financial agreements are recorded and
automatically managed without error, where anybody can transact seamlessly
for any contractual purpose without friction. We believe markets will move
towards models where parties to financial agreements record them once and
collaborate to maintain accurate, shared records of these agreements. Dupli-
cations, reconciliations, failed matches and breaks will be things of the past.
Isolated islands of asset representations will be no more.

We aspire to define a shared ledger fabric for financial services use-cases that
can be deployed within existing legal frameworks and which relies on proven
technologies. Our philosophy can be broken down into three categories: engi-
neering for the requirements of institutions, a focus on non-functional require-
ments, and extensibility.

This paper introduces the design features of the Corda platform which we
believe make it an attractive choice for regulated financial institutions.1

2 Context

Banks were amongst the earliest adopters of information technology and, con-
trary to popular belief, they have done a good job in automating previously man-
ual processes and in digitizing previously physical processes. However, there are
significant opportunities to improve the cost and efficiency of the architectures
that emerged.

In particular, each bank maintains its own ledgers, which record that firm’s
view of its agreements and positions with respect to its customer set and its
counterparts. Its counterparts, in turn, maintain their views. This duplication
can lead to inconsistencies, and it drives a need for costly matching, reconcil-
iation and fixing of errors by and among the various parties to a transaction.
To the extent that differences remain between two firms’ views of the same
transaction, this is also a source of risk, some of it potentially systemic.

A plurality of financial institutions drives competition and choice but the
plurality of technology platforms upon which they rely drives complexity and
creates operational risk. However, until recently, this was unavoidable: except
for centralised market infrastructures, there were few effective ways to consoli-
date technology across firms without also consolidating the firms themselves.2

Centralised market infrastructure utilities have gone some way towards in-
creasing the amount of data and business-logic sharing between firms but the
degree of integration achieved in the realm of financial transactions still lags far

1The authors can be reached via email: Richard Gendal Brown (richard@r3cev.com), James
Carlyle (james@r3cev.com), Ian Grigg (iang@r3cev.com), Mike Hearn (mike@r3cev.com)

2Examples of this include the Depository Trust & Clearing Corporation (DTCC) and
Continuous Linked Settlement Group (CLS).
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behind that which has been achieved in the realm of information exchange since
the advent of the web.1

We believe that the maturation of cryptographic techniques, exemplified in
part by “blockchain technology”, provides a new opportunity: the possibility
of authoritative systems of record that are securely shared between firms. This
vision provides the opportunity to transform the economics of financial firms,
particularly but not exclusively in post-trade services, by implementing a new
shared platform for the recording of financial events and processing of business
logic: one where a single global logical ledger is authoritative for all agreements
between firms recorded on it, even though the relationships and obligations
recorded may remain between those firms. This architecture will define a new
shared platform for the industry, upon which incumbents, new entrants and
third parties can compete to deliver innovative new products and services.

Figure 1: In the diagram above, we show a progression from a world where
parties to shared facts record and manage their own records, with associated
discrepancies and duplications (“Bilateral - Reconciliation”) or one where par-
ties delegate control and responsibility over critical processing to centralised
utilities (“Third Party / Market Infrastructure”), to one where they collaborate
to maintain a shared record, assured to be consistent between them, consum-
ing the services of existing and new service providers and market infrastructure
providers on an open and competitive basis (“Shared Ledger Vision”).

We believe that the savings accruing from higher-quality data, fewer dis-
crepancies and quicker agreement of details between firms will be significant.
Moreover, deployment of this common architecture across firms will define a
new platform on which existing and new providers can compete to serve the
needs of clients. Going further, it is possible that such a platform will also
find application within firms, where the problem of multiple systems recording
details of the same trades is also a major driver of cost and complexity.

3 Vision

In the long-term, one can envision a “global logical ledger” with which all eco-
nomic actors will interact and which will allow any parties to record and manage
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agreements between themselves in a secure, consistent, reliable, private and au-
thoritative manner. We say it is global in the sense that everybody sees the
same data that pertains to them and logical in the sense that the physical im-
plementation may be composed differently. As such, a possible end-state is one
in which we have moved from authoritative systems-of-record maintained within
firms to global authoritative systems-of-record shared between firms.

3.1 End-State Principles

Principles underpinning a possible end-state using distributed ledger technology
may include:

• Facts recorded by the ledger are by contract accepted as admissible evi-
dence and legally binding by all parties in any dispute.

• Settlement occurs on the ledger, not through the ledger.

• Once all parties to an agreement have assented, facts recorded on the
ledger are final and immutable; errors, unwinds, etc., must be processed
through a subsequent transaction. Firms will be under pressure to re-
engineer their internal processes to increase accuracy and quality.

• Any authorized actor may, in principle, connect directly to the ledger and
use it to record agreements with its counterparts. No actor is compelled
to deal with any other but we may see a decline in “tiered” or hierarchical
market models.

• By promoting open standards and inclusive access, existing and new ser-
vice providers can connect and compete to offer differentiated services,
promoting choice and competition.

• The only parties who should have access to the details of a financial trans-
action are those parties themselves and others with a legitimate need to
know.

However, the vision encompasses the notion of interim states, focusing first,
perhaps, only on the sharing of business logic. This is intended to acknowledge
the reality that todays systems will be with us for the foreseeable future, re-
quiring co-existence, integration and migration paths as a fundamental part of
the solution design. Less ambitious interim states can also deliver considerable
value whilst legal and other non-technical implications of the longer-term vision
are addressed in parallel.

It should be stressed that the long-term vision of a global logical ledger is
intended to set a direction of travel but that its realization may be in the form
of a multiplicity of ledgers. Perhaps this will take the form of one ledger per
asset class which would be autonomous, loosely coupled, providing functional
and operational independence between different business services.

Architectural and strategic choices underpinning the vision include:
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• Records managed by this system will be accessible only to those actors
with a legitimate interest in the assets and agreements they manage.

• The behavior of agreements managed by the system will be described in
computer code that explicitly refers to and gains its legitimacy from over-
arching legal prose.2

• Support for contract code upgrades and explicit reference to dispute res-
olution procedures will be supported in order to provide certainty in the
presence of failed contracts. This is because contractual disputes can oc-
cur, even in automated settings, as a result of both technical and human
factors.

• Successful delivery of this vision will be through reduction of cost, risk
and regulatory burden (including capital, liquidity and operational obli-
gations) and through enabling of innovative new products and services.

• To gain wide adoption across the financial community, portions of the
system must and will be open: open source, open development process,
open standards.

• Although this vision talks in terms of a “platform” or “system”, our belief
is that the design will actually be multi-layered with different providers
potentially competing/collaborating to deliver different pieces. Readers
should not assume that we envisage a monolithic vertically integrated
approach.

• The vision also includes the possibility that higher-level layers of the stack
can contain IP proprietary to individual firms or groups.

• This system will operate under the assumption of an adversarial security
environment: the growing threat of cybercrime must be taken as a given.

It is believed that the inventions needed to deliver this vision already exist.
These include but are not limited to robust cryptography, global communica-
tions networks, standards for the definition of financial instruments and effective
algorithms to ensure consistency at a global scale.

What makes this vision possible today is that the recent popular interest
in distributed ledger and blockchain systems has created an environment in
which such a vision can be openly discussed and that an alliance through which
multiple banks can act together has been formed. It assumes an identity in-
frastructure between the participants in the network but makes no assumption
as to its sophistication or mode of operation. Regulatory engagement is a key
element of the design process.

From our requirements analysis and assessment of existing distributed ledger
platforms, we concluded that no existing platform met our needs. In essence, the
threat models underpinning the designs of traditional distributed databases were
unsuitable for our use-case of bringing mutually distrusting legal entities into
consensus; and the architectures of existing blockchain systems were unsuitable
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for our requirement of restricted and carefully specified data sharing at the level
of individual legal agreements. As a result we designed and began development
of Corda.

4 Corda

Corda is a distributed ledger platform for recording and processing financial
agreements, designed to implement the vision contained in this document.

The Corda platform supports smart contracts, matching the definition of
Clack, Bakshi, Braine.3 Our smart contract is an agreement whose execution is
both automatable by computer code working with human input and control, and
whose rights and obligations, as expressed in legal prose, are legally enforceable.
The smart contract links business logic and business data to associated legal
prose in order to ensure that the financial agreements on the platform are rooted
firmly in law and can be enforced and that we have a clear path to follow in the
event of ambiguity, uncertainty or dispute.

4.1 Principal Features

Corda is specialized for use with regulated financial institutions. It is heav-
ily inspired by blockchain systems, but without the design choices that make
traditional blockchains inappropriate for many banking scenarios.

Corda provides a framework to run smart contracts with these key activities
and features:

• Recording and managing the evolution of financial agreements and other
shared data between two or more identifiable parties in a way that is
grounded in existing legal constructs and compatible with existing regu-
lation

• Choreographing workflow between firms without a central controller.

• Supporting consensus between firms at the level of individual deals, not a
global system.

• Supporting the inclusion of regulatory and supervisory observer nodes.

• Validating transactions solely between parties to the transaction.

• Supporting a variety of consensus mechanisms.

• Recording explicit links between human-language legal prose documents
and smart contract code.

• Using industry-standard tools.

• Restricting access to the data within an agreement to only those explicitly
entitled or logically privileged to it.
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These features contribute to the design of a platform appropriate for use in
complex, financial services organizations. Note that this design does not use a
native cryptocurrency or impose a global transaction speed limit.

4.2 Concepts

We begin with the idea of a global ledger: a reliable single source. However, in
our model, it is not the case that transactions and ledger entries are globally
visible. In cases where transactions only involve a small subgroup of parties we
strive to keep the relevant data purely within that subgroup.

The foundational object in our concept is a state object, which is a digital
document which records the existence, content and current state of an agreement
between two or more parties. It is intended to be shared only with those who
have a legitimate reason to see it. To ensure consistency in a global, shared
system where not all data is visible to all participants, we rely heavily on secure
cryptographic hashes to identify parties and data. The ledger is defined as a set
of immutable state objects.

We talk and think in terms of the state of agreements and our objective is
to ensure that all parties to the agreement remain in consensus as to this state
as it evolves. One could argue that this is the essence of the blockchain concept:
ensuring that the data held by different actors is, and remains, consistent as
operations are applied to update that data, and that this forms the foundation
on which reliable transactions are built: from simple monetary payments to
sophisticated smart contract transitions.

Figure 2: In the diagram above, we see a State object representing a cash claim
of £100 against a commercial bank, owned by a fictional shipping company.
The state object explicitly refers by hash to its governing legal prose and to the
contract code that governs its transitions.

Our focus on “states” of agreements is in contrast to systems where the data
over which participants much reach consensus is the state of an entire ledger
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or the state of an entire virtual machine. Corda provides three main tools to
achieve global distributed consensus:

• Smart contract logic to ensure state transitions are valid according to the
pre-agreed rules.

• Uniqueness and timestamping services to order transactions temporally
and eliminate conflicts.

• An orchestration framework which simplifies the process of writing com-
plex multi-step protocols between multiple different parties.

4.3 Consensus

In Corda, updates are applied using transactions, which consume existing state
objects and produce new state objects. There are two aspects of consensus:

1. Transaction validity: parties can reach certainty that a proposed update
transaction defining output states is valid by checking that the associated
contract code runs successfully and has all the required signatures; and
that any transactions to which this transaction refers are also valid.

2. Transaction uniqueness: parties can reach certainty that the transaction in
question is the unique consumer of all its input states. That is: there exists
no other transaction, over which we have previously reached consensus
(validity and uniqueness), that consumes any of the same states.

Parties can agree on transaction validity by independently running the same
contract code and validation logic. However, consensus over uniqueness requires
a predetermined observer, which in many cases may be required to be indepen-
dent.
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Figure 3: Consensus over transaction validity is performed only by parties to
the transaction in question. Therefore, data is only shared with those parties
which are required to see it. Other platforms generally reach consensus at the
ledger level. Thus, any given actor in a Corda system sees only a subset of the
overall data managed by the system as a whole. We say a piece of data is “on-
ledger” if at least two actors on the system are in consensus as to its existence
and details and we allow arbitrary combinations of actors to participate in the
consensus process for any given piece of data. Data held by only one actor is
“off-ledger”.

Corda has “pluggable” uniqueness services. This is to improve privacy, scal-
ability, legal-system compatibility4 and algorithmic agility. A single service may
be composed of many mutually untrusting nodes coordinating via a byzantine
fault tolerant algorithm, or could be very simple, like a single machine. In some
cases, like when evolving a state requires the signatures of all relevant parties,
there may be no need for a uniqueness service at all.

It is important to note that these uniqueness services are required only to
attest as to whether the states consumed by a given transaction have previously
been consumed; they are not required to attest as to the validity of the transac-
tion itself, which is a matter for the parties to the transaction. This means that
the uniqueness services are not required to (and, in the general case, will not)
see the full contents of any transactions, significantly improving privacy and
scalability of the system compared with alternative blockchain designs. This
design decision represents an important decision as to the acceptable tradeoffs
in shared ledger architectures and is explored more fully in the forthcoming
technical whitepaper.

4.4 Business Logic

Corda enforces business logic through smart contract code, which is constructed
as a pure function that either accepts or rejects a transaction. The functions
interpret transactions as taking states as inputs and producing output states
through the application of (smart contract) commands, and accept the transac-
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tion if the proposed actions are valid. Contracts define part of the business logic
of the ledger, and they are mobile: nodes will download and run contracts inside
a sandbox without any review in some deployments, although we envisage the
use of signed code for Corda deployments in the regulated sphere.

The virtual machine we have selected for contract execution and validation
is the Java Virtual Machine5, as it has a wealth of existing libraries and a
large skill base, and reusing an industry standard makes it easier for banks
to reuse their existing code inside contracts. However, we augment it with
a custom sandbox that is radically more restrictive than the ordinary JVM
sandbox, and it enforces not only security requirements but also deterministic
execution. Like Ethereum, the choice of standardising a bytecode set rather
than a language enables users to innovate in contract language design, or reuse
well known languages, according to taste. It also makes it easy to directly use
contract code from internal applications, once that contract has been reviewed,
which should simplify app development considerably.

4.5 Core Financial Concepts

Corda’s architecture was heavily influenced by three architecturally-significant
use-cases, deemed to be representative of common problems to which it is likely
to be targeted. These use-cases are: cash, a security instrument and a deriva-
tive contract. In all three cases, we conceive of them as examples of financial
agreements:

• A cash balance (e.g., “MegaBank and I agree that MegaBank owes me $1
million”).

• A security under custody (e.g., “CustodyBank and I agree that I own 1000
MegaCorp shares”).

• A bilateral derivative agreement (e.g., “Banks A and B agree that they are
parties to the following Interest Rate Swap (IRS), which means they agree
to exchange the following cashflows (netted) at predetermined scheduled
times with an agreed payoff formula”).

Taking one of these examples, Corda’s cash model is based on an analysis of the
nature of money. We explicitly model the business reality that there is no such
thing as “money in a bank”, only a cash claim that an owner has with respect
to a named institution.6 So our core Cash contract is extremely simple, but
powerful: we record the legal identity of the cash issuer, the currency, amount,
owner (and other information as to the nature of the claim, with an explicit link
to the legal prose governing the agreement, which is also expected to specify
resolution procedures in the event of dispute) and use that to build up all other
cash-related concepts (payments, netting and so forth).
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Figure 4: In the diagram above, we see one of the simplest Corda transactions:
an issuance transaction. We see the creation of a new Cash state, issued by a
commercial bank to a fictional shipping company. The issuing transaction is
signed by the issuing bank. From this simple model, significantly more com-
plicated transactions, such as payments, delivery-versus-payment contracts and
future-dated obligations can be constructed.

4.6 Summary of the Corda Model

The core concepts in our model are:

• State objects, representing an agreement between two or more parties,
governed by machine-readable Contract Code. This code references, and
is intended to implement, portions of human-readable Legal Prose.

• Transactions, which transition state objects through a lifecycle

• Transaction Protocols or Business Flow, enabling parties to coordinate
actions without a central controller.

Determinism is maximised and the amount of shared state required min-
imized by selectively and decisively restricting the universe of allowable pro-
gramming techniques.

The combination of state objects (data), Contract Code (allowable opera-
tions), Transaction Protocols (business logic choreography), any necessary APIs,
wallet plugins, and UI components can be thought of a Shared Ledger appli-
cation, or Corda Distributed Application (“CorDapp”). This is the core set of
components a contract developer on the platform should expect to build.
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5 Comparisons with Other Distributed Ledger
Platforms

Corda was created from extensive work with financial practitioners and is de-
signed with their requirements in mind. However, its design is also inspired by
previous work, including that introduced in the writings of Todd Boyle and Ian
Grigg on triple entry accounting7, and aspects of existing distributed ledger
platforms such as Bitcoin8 and Ethereum9. So it may be easier for people
unfamiliar with Corda to understand it in terms of these platforms.

5.1 Comparisons to Bitcoin

Corda has some significant similarities to Bitcoin:

• Immutable states that are consumed and created by transactions is the
same.

• Transactions have multiple inputs and outputs. Bitcoin sometimes refers
to the ledger as the unspent transaction output set (UTXO set) as a result.

• A contract is pure function; contracts do not have storage or the ability to
interact with anything. Given the same transaction, a contract’s “verify”
function always yields exactly the same result.

However, a Bitcoin transaction has a single, rigid data format. A “state” in
Bitcoin is always a (quantity of bitcoin, script) pair and cannot hold any other
data. Some people have been known to try and hack around this limitation by
embedding data in semi-standardized places in the contract code so the data can
be extracted through pattern matching but this is a poor approach. By contrast,
our states can include arbitrary typed data. Our transactions invoke not only
input contracts but also the contracts of the outputs. A Bitcoin transaction’s
acceptance is controlled only by the contract code in the consumed input states.
We use the term “contract” to refer to a bundle of business logic that may handle
various different tasks, beyond transaction verification. For instance, currently
our contracts also include code for creating valid transactions (this is often called
“wallet code” in Bitcoin).

A Bitcoin script can only be given a fixed set of byte arrays as the input.
This means there’s no way for a contract to examine the structure of the en-
tire transaction, which severely limits what contracts can do. Our contracts are
Turing-complete and can be written in any ordinary programming language that
targets the JVM. Corda allows arbitrarily-precise time-bounds to be specified in
transactions (which must be attested to by a trusted timestamper) rather than
relying on the time at which a block happens to be mined. This is important
given that many contract types we envisage supporting require precision in tim-
ing and because our primary consensus implementations use block-free conflict
resolution algorithms.
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5.2 Comparisons to Ethereum

Like Ethereum, code runs inside a relatively powerful virtual machine and can
contain complex logic. Non-assembly based programming languages can be used
for contract programming. They are both intended for the modelling of many
different kinds of financial contracts.

However, the term “contract” in Ethereum refers to an instantiation of a
program that is replicated and maintained by every participating node. This
instantiation is very much like an object in an Object Orientated program: it
can receive and send messages, update local storage and so on. In contrast, our
implementation of the smart contract in code refers to a set of functions, only
one of which is a part of keeping the system synchronised (the verify function).
That function is pure and stateless (i.e., it may not interact with any other
part of the system whilst executing). As contracts do not have any kind of
mutable storage, there is no notion of a “message”. Ethereum also claims to
be a platform not only for financial logic, but literally any kind of application
at all. Our platform considers non-financial applications to be out of scope, at
least initially.

6 Roadmap

To arrive at this design, we first simulated and prototyped aspects of Corda
in code to validate aspects of the concept. This is a list of some, but not all,
extensions to the Corda model which are expected to be delivered in the near-
to mid-term.

• Transaction Decomposition and Uniqueness Enhancements: Incorporat-
ing mechanisms to selectively obscure portions of transactions, including
obfuscation from uniqueness services.

• Contract Verification Sandbox: Explicit link-time whitelisting of an ag-
gressively minimal set of Java libraries.

• A plug-in based wallet for position inference.

• Calculation oracles or gateways to proprietary (or other) business logic
executors (e.g., Central Counterparties or valuation agents) that can be
verified on-ledger by participants.

• Using the Corda model to manage identity of users.

• Interoperability and data integration, specifically with respect to FpML,
ISO20022, support for other data formats and integration/interoperability
with other platforms.

• Building applications for reference data.

• Privacy enhancements using technology such as address randomization,
zero-knowledge proofs, asset reissuance schemes.
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• Reference contracts for further financial instruments.

• Native support of portfolio-level business logic, such as aggregations of
state objects.

7 Conclusion

In contrast to most existing distributed ledger platforms today, Corda was built
with the explicit purpose of recording and enforcing business agreements among
registered financial institutions. As such, it takes a unique approach to data
distribution and transaction semantics while maintaining the features of dis-
tributed ledgers which first attracted institutions to projects such as R3, such
as automated, reliable execution of financial agreements in a replicated fashion.
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