Corda: A distributed ledger

Mike Hearn, Richard Gendal Brown

August 20, 2019

Version 1.0

Abstract

A decentralised database with minimal trust between nodes would al-
low for the creation of a global ledger. Such a ledger would have many use-
ful applications in finance, trade, healthcare and more. We present Corda,
a decentralised global database, and describe in detail how it achieves
the goal of providing a platform for decentralised app development. We
elaborate on the high level description provided in the paper Corda: An
introduction® and provide a detailed technical discussion.



Contents
1 Introduction
2 Overview

3 The peer to peer network

3.1 Overview . . . . . . e
3.2 Theidentity root . . . . . . ... oL
3.3 Thenetworkmap . . . . . .. ... . .
3.4 Message delivery . . . . . ... L
3.5 Serialization . . . . . ... Lo
3.6 Network parameters . . . . . ... .. .. ... ... ...
3.7 Protocol versioning . . . . .. ...
3.8 Business networks . . .. ... L oo

4 Flow framework
4.1 Overview . . . . . .. e e
4.2 Data visibility and dependency resolution . . . .. ... ... ..

5 Identity

5.1 Hierarchical identity . . . . . .. ... ... L.
5.2 Confidential identities . . . . . . . . ... ... ... . ... ...
5.3 Non-verified keys . . . . . . ...
6 Data model
6.1 Transaction structure . . . . . .. ... ... L.
6.2 Composite keys . . . . . . ..o
6.3 Time handling . . . .. ... ... . ... . ... ..
6.4 Attachments and contract bytecodes . . . . . .. ... ... ...
6.5 Contract constraints . . . . . . . . ... 0oL
6.6 Precise naming . . . . . ... ... Lo
6.7 Dispute resolution . . . . .. ... L Lo oL
6.8 Oracles and tear-offs . . . . . ... ... ... .. .........
6.9 Encumbrances . . . ... .. ... ...
6.10 Event scheduling . . . . ... ... ... .. L oL
6.11 Tokens . . . . . . . . . . e e
7 Notaries and consensus
7.1 Comparison to Nakamoto block chains . . . . .. ... ... ...
7.2 Algorithmic agility . . . . .. ... ...
7.3 Validating and non-validating notaries . . . . . .. ... .. ...
8 The node
81 Thevault . .. ... .. ... . . e
8.2 Direct SQL access . . . . .. ..o
8.3 Client RPC and reactive collections . . . . . . . . ... ... ...



9 Deterministic JVM

10 Scalability
10.1 Partial visibility . . . . . .. .. ... ..
10.2 Multiple notaries . . . . . . .. ... ..
10.3 Parallel processing . . . . ... ... ..
10.4 Chain snipping . . . . . . . .. ... ..
10.5 Signatures of validity . . . . . . . .. ..
10.6 JIT compilation . . . . . .. .. ... ..

10.6.1 Optimised and scalable data storage . . . . ... .. ...
10.6.2 Additional scaling and performance techniques . . . . . .

11 Privacy

12 Future work
12.1 Micronodes . . . . .. ... .. .. ...
12.1.1 Secure software update . . . ..
12.2 Social key recovery and key rotation . .
12.3 Domain specific languages . . . . . . . .
12.3.1 Formally verifiable languages . .
12.4 Secure signing devices . . . .. ... ..
12.4.1 Background . . . .. .. ... ..
12.4.2 Confusion attacks . . ... ...
12.4.3 Transaction summaries . . . . . .
12.4.4 Identity substitution . . . . . ..
12.4.5 Multi-lingual support . . . . ..
12.5 Data distribution groups . . . . . . . ..
12.6 Guaranteed data distribution . . . . ..
12.7 Privacy upgrades . . . . . . ... .. ..
12.8 Machine identity . . . .. ... ... ..
12.9 Data streams . . . .. .. ... ... ..
12.10Human interaction . . . . . .. ... ..
12.11Global ledger encryption . . . . . . . ..
12.11.1Intel SGX . . . . ... ... ...
12.11.2 Attestation vs verification models

13 Conclusion
14 Acknowledgements

Bibliography

44

46
46
46
47
48
48
48
49
49

50

50
o1
52
52
53
o4
o4
o4
95
56
o7
o7
o7
60
61
62
63
64
64
65
66

69

70

70



1 Introduction

In many industries significant effort is needed to keep organisation specific
databases in sync with each other. The effort of keeping different databases
synchronised, reconciling them to ensure they actually are synchronised, man-
aging inter-firm workflows to change those databases and resolving the ‘breaks’
that occur when they get out of sync represents a significant fraction of the total
work some organisations actually do.

Why not just use a shared relational database? This would certainly solve a
lot of problems using only existing technology, but it would also raise more
questions than answers:

e Who would run this database? Where would we find a sufficient supply
of incorruptible angels to own it?

e In which countries would it be hosted? What would stop that country
abusing the mountain of sensitive information it would have?

e What if it were hacked?

e Can you actually scale a relational database to fit the entire financial
system?

e What happens if the database needs to go down for maintenance? Does
the economy stop?

e What kind of nightmarish IT bureaucracy would guard schema changes?
e How would you manage access control?

We can imagine many other questions. A decentralised database attempts to
answer them.

In this paper we differentiate between a decentralised database and a distributed
database. A distributed database like BigTable? scales to large datasets and
transaction volumes by spreading the data over many computers. However it
is assumed that the computers in question are all run by a single homogeneous
organisation and that the nodes comprising the database all trust each other
not to misbehave or leak data. In a decentralised database, such as the one
underpinning Bitcoin?, the nodes make much weaker trust assumptions and
actively cross-check each other’s work. Such databases trade performance and
usability for security and global acceptance.

Corda is a decentralised database platform with the following novel features:

e Nodes are arranged in an authenticated peer to peer network. All com-
munication is direct. A gossip protocol is not used.

e New transaction types can be defined using JVM* bytecode. The bytecode
is statically analyzed and rewritten on the fly to be fully deterministic,
and to implement deterministic execution time quotas. This bytecode is



mutually verified by all counterparties relevant to the transaction, ensuring
the validity of ledger updates contained therein.

e Transactions may execute in parallel, on different nodes, without either
node being aware of the other’s transactions.

e There is no block chain®. Transaction races are deconflicted using plug-
gable notaries. A single Corda network may contain multiple notaries
that provide their guarantees using a variety of different algorithms. Thus
Corda is not tied to any particular consensus algorithm. (§7)

e Data is shared on a need-to-know basis. Nodes provide the dependency
graph of a transaction they are sending to another node on demand, but
there is no global broadcast of all transactions.

e Bytecode-to-bytecode transformation is used to allow complex, multi-step
transaction building protocols called flows to be modelled as blocking
code. The code is transformed into an asynchronous state machine, with
checkpoints written to the node’s backing database when messages are
sent and received. A node may potentially have millions of flows active at
once and they may last days, across node restarts and even certain kinds
of upgrade. Flows expose progress information to node administrators
and users and may interact with people as well as other nodes. A library
of flows is provided to enable developers to re-use common protocols such
as notarisation, membership broadcast and so on.

e The data model allows for arbitrary object graphs to be stored in the
ledger. These graphs are called states and are the atomic unit of data.

e Nodes are backed by a relational database and data placed in the ledger
can be queried using SQL as well as joined with private tables. States
can declare a relational mapping using the Java Persistence Architecture
standard (JPA)S®.

e The platform provides a rich type system for the representation of things
like dates, currencies, legal entities and financial entities such as cash,
issuance, deals and so on.

e The network can support rapid bulk data imports from other database
systems without placing load on the network. Events on the ledger are
exposed via an embedded JMS compatible message broker.

e States can declare scheduled events. For example a bond state may declare
an automatic transition to an “in default” state if it is not repaid in time.

e Advanced privacy controls allow users to anonymize identities, and initial
support is provided for running smart contracts inside memory spaces
encrypted and protected by Intel SGX.

Corda follows a general philosophy of reusing existing proven software systems
and infrastructure where possible. Comparisons with Bitcoin and Ethereum will



be provided throughout.



2 Overview

Corda is a platform for the writing and execution of “CorDapps”: applications
that extend the global database with new capabilities. Such apps define new
data types, new inter-node protocol flows and the so-called “smart contracts”
that determine allowed changes.

What is a smart contract? That depends on the model of computation we
are talking about. There are two competing computational models used in
decentralised databases: the virtual computer model and the UTXO model.
The virtual computer model is used by Ethereum® and Hyperledger Fabric. It
models the database as the in-memory state of a global computer with a single
thread of execution determined by the block chain. In the UTXO model, as
used in Bitcoin, the database is a set of immutable rows keyed by (hash:output
index). Transactions define outputs that append new rows and inputs which
consume existing rows. The term “smart contract” has a different meaning in
each model. A deeper discussion of the tradeoffs and terminology in the different

approaches can be found in the Corda introductory paper!.

We use the UTXO model and as a result our transactions are structurally sim-
ilar to Bitcoin transactions: they have inputs, outputs and signatures. Unlike
Bitcoin, Corda database rows can contain arbitrary data, not just a value field.
Because the data consumed and added by transactions is not necessarily a set of
key /value pairs, we don’t talk about rows but rather states. Like Bitcoin, Corda
states are associated with bytecode programs that must accept a transaction for
it to be valid, but unlike Bitcoin, a transaction must satisfy the programs for
both the input and output states at once. Issuance transactions may append
new states to the database without consuming any existing states but unlike
in Bitcoin these transactions are not special. In Bitcoin, issuance transactions
represent value creation and provide a crypto-economic incentive. This, in turn,
motivates validators or miners. In Corda, there is no need for a crypto-economic
incentive and so issuance transactions may be created at any time, by anyone
to issue arbitrary data onto the ledger.

In contrast to both Bitcoin and Ethereum, Corda does not order transactions
using a block chain and by implication does not use miners or proof-of-work.
Instead each state points to a notary, which is a service that guarantees it will
sign a transaction only if all the input states are un-consumed. A transaction
is not allowed to consume states controlled by multiple notaries and thus there
is never any need for two-phase commit between notaries. If a combination of
states would cross notaries then a special transaction type is used to move them
onto a single notary first. See §7 for more information.

The Corda transaction format has various other features which are described in
later sections.



3 The peer to peer network

3.1 Overview

A Corda network consists of the following components:
e Nodes, operated by parties, communicating using AMQP /1.0 over TLS.
e An identity service which runs an X.509 certificate authority.

e A network map service that publishes information about how to connect
to nodes on the network.

e One or more notary services. A notary may be decentralised over a coali-
tion of different parties.

e Zero or more oracle services. An oracle is a well known service that signs
transactions if they state a fact and that fact is considered to be true.
They may also optionally also provide the facts. This is how the ledger
can be connected to the real world, despite being fully deterministic.

Oracles and notaries are covered in later sections.

3.2 The identity root

Taking part in a Corda network as a node requires an identity certificate. These
certificates bind a human readable name to a public key and are signed by the
network operator. Having a signed identity grants the ability to take part in
the top layer of the network, but it’s important to understand that users and
programs can participate in the ledger without having an issued identity. Only a
raw key pair is necessary if a node that does have an identity is willing to route
traffic on your behalf. This structure is similar to the email network, in which
users without servers can take part by convincing a server operator to grant
them an account. How network identities and accounts relate to each other is
discussed in a later section (section §5).

This ‘identity’ does not have to be a legal or true name. In the same way that
an email address is a globally unique pseudonym that is ultimately rooted by
the top of the DNS hierarchy, so too can a Corda network use arbitrary self-
selected usernames. The permissioning service can implement any policy it likes
as long as the identities it signs are globally unique. Thus it’s possible to build
an entirely pseudonymous Corda network.

However, when a network has a way to map identities to some sort of real world
thing that’s difficult to bulk create, many efficient and useful algorithms become
available. Most importantly, all efficient byzantine fault tolerant consensus al-
gorithms require nodes to be usefully distinct such that users can reason about
the likelihood of cluster members going bad simultaneously. In the worst case
where a BFT cluster consists of a single player pretending to be several, the
security of the system is completely voided in an undetectable manner. Useful



privacy techniques like mix networks (see §12.7) and Tor ” also make the assump-
tion of unique, sybil-free identities. For these reasons and more the mainline
Corda network performs identity verification to require that top-level members
be companies, and it’s recommended that all networks do so.

Identity is covered further in section §5.

3.3 The network map

Every network requires a network map. This is similar to Tor’s concept of
directory authorities. The network map service publishes information about
each node such as the set of IP addresses it listens on (multiple IP addresses are
supported for failover and load balancing purposes), the version of the protocol it
speaks, and which identity certificates it hosts. Each data structure describing a
node is signed by the identity keys it claims to host. The network map service is
therefore not trusted to specify node data correctly, only to distribute it.

The network map abstracts the underlying network locations of the nodes to
more useful business concepts like identities and services. Domain names for
the underlying IP addresses may be helpful for debugging but are not required.
User interfaces and APIs always work in terms of identities — there is thus no
equivalent to Bitcoin’s notion of an address (hashed public key), and user-facing
applications rely on auto-completion and search to specify human-readable legal
identities rather than specific public keys — which in the bitcoin ecosystem are
often distributed as QR codes.

It is possible to subscribe to network map changes and registering with the map
is the first thing a node does at startup.

The map is a set of files that may be cached and distributed via HTTP based
content delivery networks. The underlying map infrastructure is therefore not
required to be highly available: if the map service becomes unreachable nodes
may not join the network or change IP addresses, but otherwise things continue
as normal.

3.4 Message delivery

The network is structurally similar to the email network. Nodes are expected to
be long lived but may depart temporarily due to crashes, connectivity interrup-
tions or maintenance. Messages are written to disk and delivery is retried until
the remote node has acknowledged a message, at which point it is expected to
have either reliably stored the message or processed it completely. Connections
between nodes are built and torn down as needed: there is no assumption of
constant connectivity. An ideal network would be entirely flat with high quality
connectivity between all nodes, but Corda recognises that this is not always
compatible with common network setups and thus the message routing compo-
nent of a node can be separated from the rest and run outside the firewall. Being
outside the firewall or in the firewall’s ‘de-militarised zone’ (DMZ) is required



to ensure that nodes can connect to anyone on the network, and be connected
to in turn. In this way a node can be split into multiple sub-services that do
not have duplex connectivity yet can still take part in the network as first class
citizens.

The reference implementation provides this functionality using the Apache Artemis
message broker, through which it obtains journalling, load balancing, flow con-
trol, high availability clustering, streaming of messages too large to fit in RAM
and many other useful features. The network uses the AMQP/1.0® protocol
which is a widely implemented binary messaging standard, combined with TLS
to secure messages in transit and authenticate the endpoints.

3.5 Serialization

All messages are encoded using an extended form of the AMQP/1.0 binary
format (Advanced Message Queue Protocol®). Each message has a UUID set
in an AMQP header which is used as a deduplication key, thus accidentally
redelivered messages will be ignored.

Messages may also have an associated organising 64-bit session ID. Note that
this is distinct from the AMQP notion of a session. Sessions can be long lived
and persist across node restarts and network outages. They exist in order to
group messages that are part of a flow, described in more detail below.

Corda uses AMQP and extends it with more advanced types and embedded
binary schemas, such that all messages are self describing. Because ledger data
typically represents business agreements and data, it may persist for years and
survive many upgrades and infrastructure changes. We require that data is
always interpretable in strongly typed form, even if that data has been stored
to a context-free location like a file, or the clipboard.

Although based on AMQP, Corda’s type system is fundamentally the Java type
system. Java types are mapped to AMQP/1.0 types whenever practical, but
ledger data will frequently contain business types that the AMQP type sys-
tem does not define. Fortunately, AMQP is extensible and supports standard
concepts like polymorphism and interfaces, so it is straightforward to define a
natural Java mapping. Type schemas are hashed to form a compact ‘fingerprint’
that identifies the type, which allows types to be connected to the embedded bi-
nary schemas that describe them and which are useful for caching. The AMQP
type system and schema language supports a form of annotations that we map
to Java annotations.

Object serialization frameworks must always consider security. Corda requires
all types that may appear in serialized streams to mark themselves as safe for
deserialization, and objects are only created via their constructors. Thus any
data invariants that are enforced by constructors or setter methods are also
enforced for deserialized data. Additionally, requests to deserialize an object
specify the expected types. These two mechanisms block gadget-based attacks”.

10



Such attacks frequently affect any form of data deserialization regardless of
format, for example, they have been found not only in Java object serialization
frameworks but also JSON and XML parsers. They occur when a deserialization
framework may instantiate too large a space of types which were not written
with malicious input in mind.

The serialization framework supports advanced forms of data evolution. When
a stream is deserialized Corda attempts to map it to the named Java classes. If
those classes don’t exactly match, a process called ‘evolution’ is triggered, which
automatically maps the data as smoothly as possible. For example, deserializing
an old object will attempt to use a constructor that matches the serialized
schema, allowing default values in new code to fill in the gaps. When old code
reads data from the future, new fields will be discarded if safe to do so. Various
forms of type adaptation are supported, and type-safe enums can have unknown
values mapped to a default enum value as well.

If no suitable class is found at all, the framework performs class synthesis. The
embedded schema data will be used to generate the bytecode for a suitable
holder type and load it into the JVM on the fly. These new classes will then
be instantiated to hold the deserialized data. The new classes will implement
any interfaces the schema is specified as supporting if those interfaces are found
on the Java classpath. In this way the framework supports a form of generic
programming. Tools can work with serialized data without having a copy of
the app that generated it. The returned objects can be accessed either using
reflection, or a simple interface that automates accessing properties by name
and is just a friendlier way to access fields reflectively. Creating genuine object
graphs like this is superior to the typical approach of defining a format specific
generic data holder type (XML’s DOM Element, JSONObject etc) because there
is already a large ecosystem of tools and technologies that know how to work
with objects via reflection. Synthesised object graphs can be fed straight into
JSON or YaML serializers to get back text, inserted into a scripting engine for
usage with dynamic languages like JavaScript or Python, fed to JPA for database
persistence and query or a Bean Validation engine for integrity checking, or
even used to automatically generate GUIs using a toolkit like MetaWidget '° or
ReflectionUT!!.

3.6 Network parameters

In any DLT system there are various tunable parameters whose correct values
may not be known ahead of time, may change, or may be things upon which
reasonable people will always disagree. Corda extracts these into a notion of net-
work parameters. Network parameters are encoded in a data structure, signed
by the network operator and distributed via the same infrastructure as the
network map. All nodes in a network must follow the configuration provided,
otherwise consensus may not be achieved.

Some examples of network parameters are:

11



The list of notaries acceptable for use within the network.

The largest acceptable peer to peer message in bytes.

The largest acceptable transaction size in bytes.

e The event horizon (see below).

e The minimum platform version required to take part in the network.
This list is not exhaustive and new parameters are added from time to time.

The event horizon is the span of time that is allowed to elapse before an of-
fline node is considered to be permanently gone. Once a peer has been offline
for longer than the event horizon, any nodes that have been communicating
with it may kill any outstanding flows and erase knowledge of it from their
databases. Typical values for the event horizon are long, for example, 30 days.
This gives nodes that are only intermittently connected plenty of time to come
online and resynchronise. Shorter values may lead to business processes being
interrupted due to transient infrastructure outages for which repairs are already
in progress.

Flag days vs hard forks. There must be a mechanism for the parameters to
be updated. Each signed parameter structure contains an incrementing integer
epoch. When a new set of parameters is being introduced, it starts to be refer-
enced by hash from the current network map and an activation date is supplied.
Nodes download the new parameters, validate them and then alert the adminis-
trator that the network is changing. For some parameters the administrator is
expected to manually review the change and accept it. Failure to do so before
the activation date (the “flag day”) results in the node shutting down, as it
would no longer be able to fulfil its purpose. Network operators are expected to
communicate and coordinate this process out of band; the protocol allows nodes
to publish what parameters they have accepted so acceptance can be monitored
and the flag day can be changed if so desired. In proof-of-work based block chain
systems a hard fork creates two split views of the ledger that then proceed to
evolve independently, with each side remaining in some strictly technical sense
‘usable’ by parties on each side of the fork. Consensus will only be lost over
transactions where both sides do really disagree and for any transaction that
traces its origin back to a post-fork coinbase transaction. But in Corda, there
is no way to continue past an unacceptable change in the network parameters
and remain on the ‘losing side’. Thus the notion of flag days is subtly different
to the notion of a hard fork.

3.7 Protocol versioning

The network protocol is versioned using a simple incrementing integer version
number. There are no minor or patch versions in the protocol definition itself:
the versioning scheme is based on a commitment for the protocol to always
be backwards compatible. All nodes publish their current highest supported

12



version in their signed NodeInfo structure, so peers can always known ahead of
time which protocol features are available to them before creating or receiving
connections.

The protocol data structures are reflected in the platform API, which is there-
fore versioned in an identical manner. Apps may specify the minimum platform
version they require, such that nodes will refuse to load apps that would need
newer features than are supported. The decision to unify the protocol and API
versions implies that some protocol versions may be effectively identical despite
having different version numbers: this was deemed preferable to requiring de-
velopers to understand and keep track of two similar-but-different versioning
streams.

Mandatory upgrades. The network operator may choose to require that
nodes meet a minimum version number via setting a network parameter.

This is useful because in DLT systems some types of new feature require every-
one in a network to upgrade before anyone can use it. This is usually because
the feature affects how transactions should be validated, and thus any node may
encounter the new data during transaction verification even if no installed app
uses it itself. In this case the API will throw an exception if an attempt is made
to use a new feature on a network where the minimum version number is lower
than the version in which the new feature was introduced. The network can
then use a flag day to increase the minimum platform version and thus activate
the new features. Nodes that aren’t new enough to handle the network’s min-
imum version shut down automatically unless overridden. Because mandatory
upgrades may be difficult to coordinate and enforce, future versions of the plat-
form may support outsourcing of transaction verification to third party nodes
or remote SGX enclaves.

Flag days mark the end of a process: it is the point by which the overwhelming
majority of network participants are expected to have upgraded to some min-
imum version, and whose date is expected to be set by the network operator
to achieve the right balance for their network between meeting the needs of
those who wish to use features that require that version, and those for whom
upgrading is difficult. It should be noted that flag days are expected to be rel-
atively rare once Corda matures. In any case the majority of new features do
not change the data model and so don’t require everybody on the network to
upgrade before they can be used.

Target versioning. The node supports ‘target versioning’, in which the lat-
est version the app was tested against is advertised in its metadata. The node
can use this to activate or deactivate workarounds for buggy apps that may
have accidentally baked in dependencies on undefined platform behaviours, or
to enable the semantics of an API to evolve without breaking backwards com-
patibility. For example, if an API returns a list of elements that happened to
be sorted in previous versions, but then ceases to be sorted due to performance

13



optimisations, this could potentially break apps that assumed a certain value
would always be found at a certain index. Target versioning can be used to keep
apps working even as the platform underneath it evolves.

3.8 Business networks

The infrastructure described so far is sufficient to establish a Corda network
of nodes which can interoperate with each other from a purely technical per-
spective. But application authors frequently require that users of their software
form a different kind of network layered on top; we call this a business network.
Business networks define their own subgroup of nodes, membership of which is
required to interact with the others. The platform provides a notion of member-
ship management via the ‘business network management service’ but otherwise
defines nothing relevant to this concept: it is up to app developers to decide
on the rules for joining a business network and how it will be governed (if at
all).

Business networks are discussed further in section 5.1 of the introductory white
paper.

4 Flow framework

4.1 Overview

It is common in decentralised ledger systems for complex multi-party protocols
to be needed. The Bitcoin payment channel protocol'? involves two parties
putting money into a multi-signature pot, then iterating with your counter-
party a shared transaction that spends that pot, with extra transactions used
for the case where one party or the other fails to terminate properly. Such pro-
tocols typically involve reliable private message passing, checkpointing to disk,
signing of transactions, interaction with the p2p network, reporting progress to
the user, maintaining a complex state machine with timeouts and error cases,
and possibly interacting with internal systems on either side. All this can be-
come quite involved. The implementation of payment channels in the bitcoinj
library is approximately 9000 lines of Java, very little of which involves cryp-
tography.

As another example, the core Bitcoin protocol only allows you to append trans-
actions to the ledger. Transmitting other information that might be useful such
as a text message, refund address, identity information and so on is not sup-
ported and must be handled in some other way — typically by wrapping the raw
ledger transaction bytes in a larger message that adds the desired metadata and
giving responsibility for broadcasting the embedded transaction to the recipient,
as in Bitcoin’s BIP 7013.

In Corda transaction data is not globally broadcast. Instead it is transmitted to
the relevant parties only when they need to see it. Moreover even quite simple

14



use cases — like sending cash — may involve a multi-step negotiation between
counterparties and the involvement of a third party such as a notary. Additional
information that isn’t put into the ledger is considered essential, as opposed to
nice-to-have. Thus unlike traditional block chain systems in which the primary
form of communication is global broadcast, in Corda all communication takes
the form of small multi-party sub-protocols called flows.

The flow framework presents a programming model that looks to the developer
as if they have the ability to run millions of long lived threads which can survive
node restarts. APIs are provided to send and receive serialized object graphs
to and from other identities on the network, embed sub-flows, handle version
evolution and report progress to observers. In this way business logic can be
expressed at a very high level, with the details of making it reliable and efficient
abstracted away. This is achieved with the following components.

Just-in-time state machine compiler. Code that is written in a blocking
manner typically cannot be stopped and transparently restarted later. The first
time a flow’s call method is invoked a bytecode-to-bytecode transformation
occurs that rewrites the classes into a form that implements a resumable state
machine. These state machines are sometimes called coroutines, and the trans-
formation engine Corda uses (Quasar) is capable of rewriting code arbitrarily
deep in the stack on the fly. The developer may thus break his or her logic into
multiple methods and classes, use loops, and generally structure their program
as if it were executing in a single blocking thread. There’s only a small list of
things they should not do: sleeping, accessing the network outside of the frame-
work, and blocking for long periods of time (upgrades require in-flight flows to
finish).

Transparent checkpointing. When a flow wishes to wait for a message from
another party (or input from a human being) the underlying stack frames are
suspended onto the heap, then crawled and serialized into the node’s underlying
relational database (however, the AMQP framework isn’t used in this case). The
written objects are prefixed with small schema definitions that allow some mea-
sure of portability across changes to the layout of objects, although portability
across changes to the stack layout is left for future work. Flows are resumed and
suspended on demand, meaning it is feasible to have far more flows active at
once than would fit in memory. The checkpointing process is atomic with respect
to changes to the database and acknowledgement of network messages.

Identity to IP address mapping. Flows are written in terms of identities.
The framework takes care of routing messages to the right IP address for a given
identity, following movements that may take place whilst the flow is active and
handling load balancing for multi-homed parties as appropriate.

A library of subflows. Flows can invoke sub-flows, and a library of flows is
provided to automate common tasks like notarising a transaction or atomically

15



swapping ownership of two assets.

Progress reporting. Flows can provide a progress tracker that indicates
which step they are up to. Steps can have human-meaningful labels, along
with other tagged data like a progress bar. Progress trackers are hierarchical
and steps can have sub-trackers for invoked sub-flows.

Flow hospital. Flows can pause if they throw exceptions or explicitly request
human assistance. A flow that has stopped appears in the flow hospital where
the node’s administrator may decide to kill the flow or provide it with a solu-
tion. Some flows that end up in the hospital will be retried automatically by
the node itself, for example in case of database deadlocks that require a retry.
Future versions of the framework may add the ability to request manual solu-
tions, which would be useful for cases where the other side isn’t sure why you
are contacting them. For example, if the specified reason for sending a pay-
ment is not recognised, or when the asset used for a payment is not considered
acceptable.

For performance reasons messages sent over flows are protected only with TLS.
This means messages sent via flows are deniable unless explicitly signed by the
application. Automatic signing and recording of flow contents may be added in
future.

Flows are identified using Java class names i.e. reverse DNS notation, and
several are defined by the base protocol. Note that the framework is not required
to implement the wire protocols, it is just a development aid.

4.2 Data visibility and dependency resolution

When a transaction is presented to a node as part of a flow it may need to be
checked. Simply sending you a message saying that I am paying you £1000 is
only useful if you are sure I own the money I'm using to pay you. Checking
transaction validity is the responsibility of the ResolveTransactions flow. This
flow performs a breadth-first search over the transaction graph, downloading any
missing transactions into local storage from the counterparty, and validating
them. The search bottoms out at the issuance transactions. A transaction is
not considered valid if any of its transitive dependencies are invalid.

It is required that a node be able to present the entire dependency graph for a
transaction it is asking another node to accept. Thus there is never any confu-
sion about where to find transaction data and there is never any need to reach
out to dozens of nodes which may or may not be currently available. Because
transactions are always communicated inside a flow, and flows embed the reso-
lution flow, the necessary dependencies are fetched and checked automatically
from the correct peer. Transactions propagate around the network lazily and
there is no need for distributed hash tables.

16



This approach has several consequences. One is that transactions that move
highly liquid assets like cash may end up becoming a part of a very long chain
of transactions. The act of resolving the tip of such a graph can involve many
round-trips and thus take some time to fully complete. How quickly a Corda
network can send payments is thus difficult to characterise: it depends heavily on
usage and distance between nodes. Whilst nodes could pre-push transactions in
anticipation of them being fetched anyway, such optimisations are left for future
work.

Whilst this system is simpler than creating rigid data partitions and clearly
provides better privacy than global broadcast, in the absence of additional pri-
vacy measures it is nonetheless still difficult to reason about who may get to see
transaction data. This uncertainty is mitigated by several factors.

Small-subgraph transactions. Some uses of the ledger do not involve widely
circulated asset states. For example, two institutions that wish to keep their
view of a particular deal synchronised but who are making related payments
off-ledger may use transactions that never go outside the involved parties. A
discussion of on-ledger vs off-ledger cash can be found in a later section.

Transaction privacy techniques. Corda supports a variety of transaction
data hiding techniques. For example, public keys can be randomised to make
it difficult to link transactions to an identity. “Tear-offs” (§6.8) allow some
parts of a transaction to be presented without the others. In future versions
of the system secure hardware and/or zero knowledge proofs could be used to
convince a party of the validity of a transaction without revealing the underlying
data.

State re-issuance. In cases where a state represents an asset that is backed by
a particular issuer, and the issuer is trusted to behave atomically even when the
ledger isn’t forcing atomicity, the state can simply be ‘exited’ from the ledger
and then re-issued. Because there are no links between the exit and reissue
transactions this shortens the chain. In practice most issuers of highly liquid
assets are already trusted with far more sensitive tasks than reliably issuing pairs
of signed data structures, so this approach is unlikely to be an issue.

5 Identity

In all decentralised ledger systems data access is controlled using asymmetric
key pairs. Because public keys are difficult for humans to reliably remember or
write down, a naming layer is added on top based on X.509 certificate hierarchies
rooted at a single certificate authority for each network (see §3.2). This is
beneficial for security. Many large attacks on cryptocurrencies have exploited
the fact that destination addresses are raw (hashes of) public keys, thus all
look the same and it’s up to users or app developers to map these to more

17



natural forms. Phishing attacks, viruses that detect addresses being copied to
the clipboard and substitute them, hacks on web forums to replace addresses and
more have all been reported. By allowing both apps and users to work in terms
of natural language identities, multiple avenues for attack are closed.

More complex notions of identity that may attest to many time-varying at-
tributes are not handled at this layer of the system: the base identity is always
just an X.500 name. Note that even though messaging is always identified,
ledger data itself may contain anonymous public keys that aren’t linked to any
part of the network’s PKI.

In most implementations, the network map will only agree to list nodes that
have a valid identity certificate. Because nodes will only accept connections
from other nodes in the network map by default, this provides a form of abuse
control in which abusive parties can be evicted from the network. ‘Abuse’ in
this context has a technical connotation, for example, mounting application
level denial of service attacks, being discovered using a fraudulently obtained
identity or failing to meet network policy, for example by falling too far behind
the minimum required platform version.

The design attempts to constrain what malicious or compromised network oper-
ators can do. A compromised network operator may decide to delist a node for
reasons that were not previously agreed to. Such an operator can be overridden
locally by providing signed NodeInfo files to a node, which would allow flows
and transactions to continue. It’s possible that in future a way to override the
identity root may also be provided.

An important point is that naming is only used for resolution to public keys or
IP addresses, however, names are not required for this resolution. They’re just
a convenience. The ledger is intended to contain resolved public keys for access
control purposes: this design creates an important limitation on the power of
the naming authority. Maliciously issuing a certificate binding a pre-existing
name to a new key owned by the attacker doesn’t allow them to edit any of
the existing data on the ledger, nor steal assets, as the states contain only keys
which cannot be changed after a state is created. This in turn implies that,
like with all block chain systems, there’s no way to recover from losing your
keys. A future version of the platform may add limited support for key rotation
by having both key owner and identity root sign a key change message, but
the design does not anticipate ever allowing the identity root to unilaterally
re-assign identities to someone else.

An additional impact of this decision is that public keys can be discovered
via alternate means and then used on ledger. QR codes, Bluetooth discovery,
alternate or even competing naming services and direct input are all possible
ways to obtain public keys.

18



5.1 Hierarchical identity

The peer-to-peer network is flat and requires that any node can directly connect
to any other. However it would be useful to extend the network to be multi-
level, such that entities without nodes can nonetheless take part in a limited
way via a proxy or hosting node of some kind. This requires a way to identify
these entities such that they can be linked to their hosting node.

The certificate hierarchy is designed to create a flexible global namespace in
which organisations, individuals, devices and groups can all be bound to public
keys. The standard web PKI uses X.509 path length constraints to prevent hold-
ers of certificates issuing themselves more sub-certificates, but Corda uses X.509
name constraints to enable sub-certificates. A holder of a certificate with a name
like C=US, S=CA, 0=MegaCorp (a company called MegaCorp in California) can
issue certificates for names with additional components, for example, C=US,
S=CA, 0=MegaCorp, CN=user@megacorp.com. These components could reflect
employees, account holders or machines manufactured by the firm. Future ver-
sions of the flow framework will understand how to route flow sessions based
on these names via their controlling organisational nodes by simply finding the
most precise match for the name (after discarding suffixes) in the network map,
thus enabling apps to start structured conversations with those entities.

The identity hierarchy has a single root: the node’s network operator. In effect
there is only one root certificate authority. This may appear different to the web
PKI (in which there are many competing CAs) but is actually the same. On
the web, the identity hierarchy root is your browser or operating system vendor.
These vendors select which certificate authorities are a part of the ‘root store’
and thus trusted to verify identities. Authority is ultimately only delegated
by the software vendors. Corda doesn’t ship a root store, as that would make
the software maintainers be the ultimate identity root of all networks granting
too much power. Consider a software update that added a CA to the trust
store controlled by a rogue developer, for example - this would grant that rogue
developer full read/write access to every Corda network.

Instead, the network operator is the root and may delegate authority as they
see fit. Whilst normally used to delegate authority over the sub-namespace
of a single legal entity, as described above, it is theoretically also possible to
delegate in other ways, for example, along national boundaries, or simply to
grant unconstrained certificate-issuing power to other firms, as is done in the
web PKI. In such a configuration care would have to be taken to ensure only
a single certificate laying claim to a name/key pair was issued, as the platform
at this time cannot handle the ambiguity of multiple live certificates for the
same identity in different parts of the hierarchy. The issues involved in having
multiple certificate issuers for a single network may be addressed in future work,
but would not remove the requirement to have a single coherent set of network
parameters.

19



5.2 Confidential identities

A standard privacy technique in block chain systems is the use of randomised
unlinkable public keys to stand in for actual verified identities. The platform
allows an identity to be obfuscated on the ledger by generating keys not linked
anywhere in the PKI and then using them in the ledger. Ownership of these
pseudonyms may be revealed to a counterparty using a simple interactive pro-
tocol in which Alice selects a random nonce (‘number used once’) and sends it
to Bob, who then signs the nonce with the private key corresponding to the
public key he is proving ownership of. The resulting signature is then checked
and the association between the anonymous key and the primary identity key
is recorded by the requesting node. This protocol is provided to application
developers as a set of subflows they can incorporate into their apps. Resolution
of transaction chains thus doesn’t reveal anything about who took part in the
transaction.

Generating fresh keys for each new deal or asset transfer rapidly results in many
private keys being created. These keys must all be backed up and kept safe,
which poses a significant management problem when done at scale. The canoni-
cal way to resolve this problem is through the use of deterministic key derivation,
as pioneered by the Bitcoin community in BIP 32 ‘Hierarchical Deterministic
Wallets’ 4. Deterministic key derivation allows all private key material needed
to be derived from a single, small pool of entropy (e.g. a carefully protected and
backed up 128 bits of random data). More importantly, when the full BIP 32
technique is used in combination with an elliptic curve that supports it, pub-
lic keys may also be deterministically derived without access to the underlying
private key material. This allows devices to provide fresh public keys to coun-
terparties without being able to sign with those keys, enabling better security
along with operational efficiencies.

There are constraints on the mathematical properties of the digital signature
algorithms parties use, and the protocol signature algorithms for which deter-
ministic derivation isn’t possible. Additionally it’s common for nodes to keep
their private keys in hardware security modules that may also not support de-
terministic derivation. The reference implementation does not support BIP32
at the time of writing, however, other implementations are recommended to use
hierarchical deterministic key derivation when possible.

5.3 Non-verified keys

The ability for nodes to use confidential identities isn’t only useful for anonymis-
ing the node owner. It’s possible to locally mark anonymous keys with private,
randomly generated universally unique identifiers (UUIDs). These UUIDs can
be used for any purpose, but a typical use is to assign keys as owned by some
node user that isn’t otherwise exposed to the ledger. The flow framework under-
stands how to start a flow with a confidential identity if the subflows discussed
above have been used to establish ownership beforehand.

20



There are a variety of uses for non-verified keys:

e Oracles may use them to separate their oracular identity from their main-
line business identity. See §6.8.

e Enclaves (see §12.11.1) and other services exposed by the nodes may re-
quire separated signing authority.

e States may be directly assigned to groups of employees and the keys stored
in off-node hardware. See §12.4.

e The node may act as a host for users with micronodes: nodes that can’t di-
rectly take part in the peer-to-peer network but still wish to have ultimate
control over states. See §12.1.

In the general case, the desire to move signing authority out of a node is to
move from a model whereby an entity external to the node authorises the node
to sign a transaction to a model where the individual (or external entity) signs
for themselves. This is often driven by the observation that, in situations where
the authoriser and the node operator are different entities, there is a power
balance in favour of the operator, since the operator could in fact sign anything
they wanted. So moving signing authority out of the node is often driven by
a desire to reset this power balance and thus to reduce the ability of the node
operator to subvert the interests of the authoriser.

It is important to note that there are subtle tradeoffs involved here. For ex-
ample, if the node loses its ability to sign some sets of transactions then the
responsibility for careful generation, protection and management of the keys
with that power now resides with the external party; if the keys are lost then
the node, by definition, cannot step in to rescue you. Similarly, if the third party
relies on the node to explain to them what a transaction means or to attest to
its validity (or that of its dependencies) then the node operator still retains all
or nearly all the same powers they had beforehand.

So Corda’s design attempts to optimise for scenarios where moving keys out of
nodes creates desirable new power balances.

6 Data model

6.1 Transaction structure

States are the atomic unit of information in Corda. They are never altered:
they are either current (‘unspent’) or consumed (‘spent’) and hence no longer
valid. Transactions read zero or more states (inputs), consume zero or more of
the read states, and create zero or more new states (outputs). Because states
cannot exist outside of the transactions that created them, any state whether
consumed or not can be identified by the identifier of the creating transaction
and the index of the state in the outputs list.

21



A basic need is to represent pointers to data on the ledger. A StateRef
type models the combination of a transaction identifier and an output index.
StateRefs can identify any piece of data on the ledger at any point in its his-
tory in a compact, unified form. The StatePointer type unifies a standard
JVM memory reference with its cryptographic ledger counterpart. There are
two kinds of pointer: static and linear. A static pointer is simply a wrapped
StateRef which can be easily resolved to the pointed-to state if it’s available in
the vault. A linear pointer contains a UUID (universally unique identifier, a 128-
bit random number) that identifies a chain of linear states. Linear states copy
the UUID from input to output, thus allowing you to talk about the latest ver-
sion of a piece of data independent of its hash-based ledger coordinates.

Transactions consist of the following components:

Consuming input references. These are (hash, output index) pairs that point
to the states a transaction is consuming.

Output states. Each state specifies the notary for the new state, the contract(s)
that define its allowed transition functions and finally the data
itself.

Non-consuming input references. These are also (hash, output index) pairs,
however these ‘reference states’ are not consumed by the act of
referencing them. Reference states are useful for importing data
that gives context to a verifying smart contract, but which is
only changed from time to time. Note that the pointed to state
must be unconsumed at the time the transaction is notarised:
if it’s been consumed itself as part of a different transaction,
the referencing transaction will not be notarised. In this way,
non-consuming input references can help prevent the execution
of transactions that rely on out-of-date reference data.

Attachments.  Transactions specify an ordered list of zip file hashes. Each zip
file may contain code and data for the transaction. Contract
code has access to the contents of the attachments when check-
ing the transaction for validity. Attachments have no concept
of ‘spentness’ and are useful for things like holiday calendars,
timezone data, bytecode that defines the contract logic and
state objects, and so on.

Commands. There may be multiple allowed output states from any given in-
put state. For instance an asset can be moved to a new owner
on the ledger, or issued, or exited from the ledger if the asset
has been redeemed by the owner and no longer needs to be
tracked. A command is essentially a parameter to the contract
that specifies more information than is obtainable from exam-
ination of the states by themselves (e.g. data from an oracle
service). Each command has an associated list of public keys.
Like states, commands are object graphs. Commands there-

22



fore define what a transaction does in a conveniently accessible
form.

Signatures. The set of required signatures is equal to the union of the com-
mands’ public keys. Signatures can use a variety of cipher suites
- Corda implements cryptographic agility.

Type. Transactions can either be normal, notary-changing or explicit
upgrades. The validation rules for each are different.

Timestamp. When present, a timestamp defines a time range in which the
transaction is considered to have occurred. This is discussed in
section §6.3.

Network parameters. Specifies the hash and epoch of the network parameters
that were in force at the time the transaction was notarised.
See §3.6 for more details.

The platform provides a TransactionBuilder class which, amongst many other
features, automatically searches the object graph of each state and command to
locate linear pointers, resolve them to the latest known state and add that state
as a non-consumed input, then searches the resolved state recursively. Note that
the ‘latest’ version is determined relative to an individual node’s viewpoint, thus,
it may not be truly the latest version at the time the transaction is built. The
state’s notary cluster will reject the transaction if this occurs, at which point
the node may take some action to discover the latest version of the state and
try again.

Transactions are identified by the root of a Merkle tree computed over the com-
ponents. The transaction format is structured so that it’s possible to deserialize
some components but not others: a filtered transaction is one in which only some
components are retained (e.g. the inputs) and a Merkle branch is provided that
proves the inclusion of those components in the original full transaction. We
say these components have been ‘torn off’. This feature is particularly useful
for keeping data private from notaries and oracles. See §6.8.

Signatures are appended to the end of a transaction thus signature malleability
as seen in the Bitcoin protocol is not a problem. There is never a need to identify
a transaction with its accompanying signatures by hash. Signatures can be both
checked and generated in parallel, and they are not directly exposed to contract
code. Instead contracts check that the set of public keys specified by a command
is appropriate, knowing that the transaction will not be valid unless every key
listed in every command has a matching signature. Public key structures are
themselves opaque. In this way high performance through parallelism is possible
and algorithmic agility is retained. New signature algorithms can be deployed
without adjusting the code of the smart contracts themselves.

This transaction structure is fairly complex relative to competing systems. The
Corda data model is designed for richness, evolution over time and high per-

23



formance. The cost of this is that transactions have more components than in
simpler systems.

Parties to this Agreement

VS oL
] &

_.~’| State of Cash Agreement ID #123/1

Contract Code Contract Whereas:
Code

Reference | |lIssuer: ABC Bank PLC
Issue Date : 1 Jan 2016

|Legal Prose
Lodel Amount : 100

g Currency : GBP

Reference

Cash Issue Transaction #123 e ey
Owner : XYZ Shipping Ltd s

I"NB |-n;;ut- i ~‘, Command : Cash Issue Output Cash
) state 1 State : LI prpreprr
ID #123 AL e e i

Figure 1: An example of a cash issuance transaction

Example. In the diagram above, we see an example of a cash issuance trans-
action. The transaction (shown lower left) contains zero inputs and one output,
a newly issued cash state. The cash state (shown expanded top right) contains
several important pieces of information: 1) details about the cash that has been
issued — amount, currency, issuer, owner and so forth, 2) the contract code whose
verify() function will be responsible for verifying this issuance transaction and
also any transaction which seeks to consume this state in the future, 3) a hash of
a document which may contain overarching legal prose to ground the behaviour
of this state and its contract code in a governing legal context.

The transaction also contains a command, which specifies that the intent of this
transaction is to issue cash and the command specifies a public key. The cash
state’s verify function is responsible for checking that the public key(s) specified
on the command(s) are those of the parties whose signatures would be required
to make this transaction valid. In this case, it means that the verify() function
must check that the command has specified a key corresponding to the identity
of the issuer of the cash state. The Corda framework is responsible for checking
that the transaction has been signed by all keys listed by all commands in the
transaction. In this way, a verify() function only needs to ensure that all parties
who need to sign the transaction are specified in commands, with the framework
responsible for ensuring that the transaction has been signed by all parties listed
in all commands.

24



6.2 Composite keys

The term “public key” in the description above actually refers to a composite
key. Composite keys are trees in which leaves are regular cryptographic public
keys with an accompanying algorithm identifiers. Nodes in the tree specify
both the weights of each child and a threshold weight that must be met. The
validity of a set of signatures can be determined by walking the tree bottom-up,
summing the weights of the keys that have a valid signature and comparing
against the threshold. By using weights and thresholds a variety of conditions
can be encoded, including boolean formulas with AND and OR.

e ~N - ~

/ \
2
! ’
~_ ~
2 1 5

[ anpy | 1
\ (AND) /

Figure 2: Examples of composite keys

Composite keys are useful in multiple scenarios. For example, assets can be
placed under the control of a 2-of-2 composite key where one leaf key is owned by
a user, and the other by an independent risk analysis system. The risk analysis
system refuses to sign if the transaction seems suspicious, like if too much value
has been transferred in too short a time window. Another example involves
encoding corporate structures into the key, allowing a CFO to sign a large
transaction alone but their subordinates are required to work together.

Composite keys are also useful for byzantine fault tolerant notaries. Each par-
ticipant in a distributed notary is represented by a leaf, and the threshold is set
such that some participants can be offline or refusing to sign yet the signature
of the group is still valid.

Whilst there are threshold signature schemes in the literature that allow com-
posite keys and signatures to be produced mathematically, we choose the less
space efficient explicit form in order to allow a mixture of keys using different
algorithms. In this way old algorithms can be phased out and new algorithms
phased in without requiring all participants in a group to upgrade simultane-
ously.

25



6.3 Time handling

Transaction timestamps specify a [start, end] time window within which the
transaction is asserted to have occurred. Timestamps are expressed as windows
because in a distributed system there is no true time, only a large number of
desynchronised clocks. This is not only implied by the laws of physics but also
by the nature of shared transactions - especially if the signing of a transac-
tion requires multiple human authorisations, the process of constructing a joint
transaction could take hours or even days.

It is important to note that the purpose of a transaction timestamp is to com-
municate the transaction’s position on the timeline to the smart contract code
for the enforcement of contractual logic. Whilst such timestamps may also be
used for other purposes, such as regulatory reporting or ordering of events in a
user interface, there is no requirement to use them like that and locally observed
timestamps may sometimes be preferable even if they will not exactly match the
time observed by other parties. Alternatively if a precise point on the timeline
is required and it must also be agreed by multiple parties, the midpoint of the
time window may be used by convention. Even though this may not precisely
align to any particular action (like a keystroke or verbal agreement) it is often
useful nonetheless.

Timestamp windows may be open ended in order to communicate that the
transaction occurred before a certain time or after a certain time, but how much
before or after is unimportant. This can be used in a similar way to Bitcoin’s
nLockTime transaction field, which specifies a happens-after constraint.

Timestamps are checked and enforced by notary services. As the participants
in a notary service will themselves not have precisely aligned clocks, whether
a transaction is considered valid or not at the moment it is submitted to a
notary may be unpredictable if submission occurs right on a boundary of the
given window. However, from the perspective of all other observers the notary’s
signature is decisive: if the signature is present, the transaction is assumed to
have occurred within that time.

Reference clocks. In order to allow for relatively tight time windows to be
used when transactions are fully under the control of a single party, notaries
are expected to be synchronised to international atomic time (TIA). Accurate
feeds of this clock can be obtained from GPS satellites and long-wave radio.
Note that Corda uses the Google/Amazon timeline!'®, which is UTC with a
leap smear from noon to noon across leap second events. Each day thus always
has exactly 86400 seconds.

Timezones. Business agreements typically specify times in local time zones
rather than offsets from midnight UTC on January 1st 1970, although the latter
would be more civilised. Because the Corda type system is the Java type system,
developers can embed java.time.ZonedDateTime in their states to represent

26



a time specified in a specific time zone. This allows ensure correct handling of
daylight savings transitions and timezone definition changes. Future versions
of the platform will allow timezone data files to be attached to transactions, to
make such calculations entirely deterministic.

6.4 Attachments and contract bytecodes

Transactions may have a number of attachments, identified by the hash of the
file. Attachments are stored and transmitted separately to transaction data and
are fetched by the standard resolution flow only when the attachment has not
previously been seen before.

Attachments are always zip files'6. The files within the zips are collapsed to-

gether into a single logical file system and class path.

Smart contracts in Corda are defined using a restricted form of JVM bytecode as
specified in “The Java Virtual Machine Specification SE 8 Edition”*, with some
small differences that are described in a later section. A contract is simply a class
that implements the Contract interface, which in turn exposes a single function
called verify. The verify function is passed a transaction and either throws an
exception if the transaction is considered to be invalid, or returns with no result
if the transaction is valid. The set of verify functions to use is the union of the
contracts specified by each state, which are expressed as a class name combined
with a constraint (see §6.5). Embedding the JVM specification in the Corda
specification enables developers to write code in a variety of languages, use well
developed toolchains, and to reuse code already authored in Java or other JVM
compatible languages. A good example of this feature in action is the ability to
embed the ISDA Common Domain Model!” directly into CorDapps. The CDM
is a large collection of types mapped to Java classes that model derivatives
trading in a standardised way. It is common for industry groups to define such
domain models and for them to have a Java mapping.

Attachments containing bytecode are executed using a deterministic Java byte-
code rewriting system, sometimes called the DJVM. See §9 for more informa-
tion.

The Java standards also specify a comprehensive type system for expressing
common business data. Time and calendar handling is provided by an imple-
mentation of the JSR 310 specification, decimal calculations can be performed
either using portable (‘strictfp’) floating point arithmetic or the provided
bignum library, and so on. These libraries have been carefully engineered by
the business Java community over a period of many years and it makes sense
to build on this investment.

Contract bytecode also defines the states themselves, which may be directed
acyclic object graphs. States may label their properties with a small set of
standardised annotations. These can be useful for controlling how states are
serialized to JSON and XML (using JSR 367 and JSR 222 respectively), for ex-

27



pressing static validation constraints (JSR 349) and for controlling how states
are inserted into relational databases (JSR 338). This feature is discussed fur-
ther in section §8.2. Future versions of the platform may additionally support
cyclic object graphs.

Data files. Attachments may also contain data files that support the contract
code. These may be in the same zip as the bytecode files, or in a different
zip that must be provided for the transaction to be valid. Examples of such
data files might include currency definitions, timezone data and public holiday
calendars. Any public data may be referenced in this way. Attachments are
intended for data on the ledger that many parties may wish to reuse over and
over again. Data files are accessed by contract code using the same APIs as any
file on the classpath would be accessed. The platform imposes some restrictions
on what kinds of data can be included in attachments along with size limits, to
avoid people placing inappropriate files on the global ledger (videos, PowerPoints
ete).

Note that the creator of a transaction gets to choose which files are attached.
Therefore, it is typical that states place constraints on the application JARs
they’re willing to accept. This enables the software that imposes logic on the
ledger to evolve independently of the stored data, whilst still remaining secure
against malicious evolutions that would, for example, allow an adversary to
print money. These mechanisms are discussed in §6.5.

Signing. Attachments may be signed using the JAR signing standard. No
particular certificate is necessary for this: Corda accepts self signed certificates
for JARs. The signatures are useful for two purposes. Firstly, it allows states
to express that they can be satisfied by any attachment signed by a particular
provider. This allows on-ledger code to be upgraded over time. And secondly,
signed JARs may provide classes in ‘claimed packages’, which are discussed
below.

6.5 Contract constraints

In Bitcoin contract logic is embedded inside every transaction. Programs are
small and data is inlined into the bytecode, so upgrading code that’s been added
to the ledger is neither possible nor necessary. There’s no need for a mechanism
to tie code and data together. In Corda contract logic may be far more complex.
It will usually reflect a changing business world which means it may need to be
upgraded from time to time.

The easiest way of tying states to the contract code that defines them is by
hash. This is equivalent to other ledger platforms and is referred to as an hash
constraint. They work well for very simple and stable programs, but more com-
plicated contracts may need to be upgraded. In this case it may be preferable for
states to refer to contracts by the identity of the signer (a signature constraint).

28



Because contracts are stored in zip files, and because a Java Archive (JAR) file
is just a zip with some extra files inside, it is possible to use the standard JAR
signing infrastructure to identify the source of contract code. Simple constraints
such as “any contract of this name signed by these keys” allow for some upgrade
flexibility, at the cost of increased exposure to rogue contract developers. Re-
quiring combinations of signatures helps reduce the risk of a rogue or hacked
developer publishing a bad contract version, at the cost of increased difficulty
in releasing new versions. State creators may also specify third parties they
wish to review contract code. Regardless of which set of tradeoffs is chosen, the
framework can accommodate them.

A contract constraint may use a composite key of the type described in §6.2.
The standard JAR signing protocol allows for multiple signatures from different
private keys, thus being able to satisfy composite keys. The allowed signing
algorithms are SHA256withRSA and SHA256withECDSA. Note that the crypto-
graphic algorithms used for code signing may not always be the same as those
used for transaction signing, as for code signing we place initial focus on being
able to re-use the infrastructure.

6.6 Precise naming

In any system that combines typed data with potentially malicious adversaries,
it’s important to always ensure names are not allowed to become ambiguous or
mixed up. Corda achieves this via a combination of different features.

No overlap rule. Within a transaction, attachments form a Java classpath.
Class names are resolved by locating the defining class file within the set of
attachments and loading them via the deterministic JVM. Unfortunately, out of
the box Java allows different JAR files to define the same class name. Whichever
JAR happens to come first on the classpath is the one that gets used, but
conventionally a classpath is not meant to have an important ordering. This
problem is a frequent source of confusion and bugs in Java software, especially
when different versions of the same module are combined into one program.
On the ledger an adversary can craft a malicious transaction that attempts to
trick a node or application into thinking it does one thing whilst actually doing
another. To prevent attackers from building deliberate classpath conflicts to
change the behaviour of code, a transaction in which two file paths overlap
between attachments is invalid. A small number of files that are expected to
overlap normally, such as files in the META-INF directory, are excluded.

Package namespace ownership. Corda allows parts of the Java package
namespace to be reserved for particular developers within a network, identified
by a public key (which may or may not be linked to an identity). Any JAR
that exports a class in an owned package namespace but which is not signed
by the owning key is considered to be invalid. Reserving a package names-
pace is optional but can simplify the data model and make applications more

29



secure.

The reason for this is related to a mismatch between the way the ledger names
code and the way programming languages do. In the distributed ledger world
a bundle of code is referenced by hash or signing key, but in source code
English-like module names are used. In the Java ecosystem these names are
broken into components separated by dots, and there’s a strong convention
that names are chosen to start with the reversed domain name of the devel-
oper’s website. For example a developer who works for MegaCorp may use
com.megacorp.superproduct . submodule as a prefix for the names used in that
specific product and submodule.

However this is only a convention. Nothing prevents anyone from publishing
code that uses MegaCorp’s package namespace. Normally this isn’t a problem
as developers learn the correct names via some secure means, like browsing an
encrypted website of good reputation. But on a distributed ledger data can
be encountered which was crafted by a malicious adversary, usually a trading
partner who hasn’t been extensively verified or who has been compromised.
Such an adversary could build a transaction with a custom state and attachment
that defined classes with the same name as used by a real app. Whilst the core
ledger can differentiate between the two applications, if data is serialized or
otherwise exposed via APIs that rely on ordinary types and class names the
hash or signer of the original attachment can easily get lost.

For example, if a state is serialized to JSON at any point then any type that
has the same shape can appear legitimate. In Corda serialization types are
ultimately identified by class name, as is true for all other forms of serialization.
Thus deserializing data and assuming the data represents a state only reachable
by the contract logic would be risky if the developer forgot to check that the
original smart contract was the intended contract and not one violating the
naming convention.

By enforcing the Java naming convention cryptographically and elevating it to

the status of a consensus rule, developers can assume that a com.megacorp.superproduct .DealState
type always obeys the rules enforced by the smart contract published by that

specific company. They cannot get confused by a mismatch between the human

readable self-assigned name and the cryptographic but non-human readable

hash or key based name the ledger really uses.

6.7 Dispute resolution

Decentralised ledger systems often differ in their underlying political ideology
as well as their technical choices. The Ethereum project originally promised
“unstoppable apps” which would implement “code as law”. After a prominent
smart contract was hacked'®, an argument took place over whether what had
occurred could be described as a hack at all given the lack of any non-code
specification of what the program was meant to do. The disagreement eventually
led to a split in the community.

30



As Corda contracts are simply zip files, it is easy to include a PDF or other docu-
ments describing what a contract is meant to actually do. A @LegalProseReference
annotation is provided which by convention contains a URL or URI to a spec-
ification document. There is no requirement to use this mechanism, and there

is no requirement that these documents have any legal weight. However in
financial use cases it’s expected that they would be legal contracts that take
precedence over the software implementations in case of disagreement.

It is technically possible to write a contract that cannot be upgraded. If such a
contract governed an asset that existed only on the ledger, like a cryptocurrency,
then that would provide an approximation of “code as law”. We leave discussion
of the wisdom of this concept to political scientists and reddit.

6.8 Oracles and tear-offs

It is sometimes convenient to reveal a small part of a transaction to a coun-
terparty in a way that allows them to both check and create signatures over
the entire transaction. One typical use case for this is an oracle, defined as a
network service that is trusted to sign transactions containing statements about
the world outside the ledger only if the statements are true. Another use case
is to outsource signing to small devices that can’t or won’t process the entire
transaction, which can potentially get very large for multi-party transactions.
To make this safe additional infrastructure is required, described in §12.4.

Here are some example statements an oracle might check:
e The price of a stock at a particular moment was X.
e An agreed upon interest rate at a particular moment was Y.
e If a specific organisation has declared bankruptcy.
e Weather conditions in a particular place at a particular time.

It is worth asking why a smart contract cannot simply fetch this information
from some internet server itself: why do we insist on this notion of an oracle.
The reason is that all calculations on the ledger must be deterministic. Everyone
must be able to check the validity of a transaction and arrive at exactly the same
answer, at any time (including years into the future), on any kind of computer. If
a smart contract could do things like read the system clock or fetch arbitrary web
pages then it would be possible for some computers to conclude a transaction
was valid, whilst others concluded it was not (e.g. if the remote server had gone
offline). Solving this problem means all the data needed to check the transaction
must be in the ledger, which in turn implies that we must accept the point of
view of some specific observer. That way there can be no disagreement about
what happened.

One way to implement oracles would be to have them sign a small data structure
which is then embedded somewhere in a transaction (in a state or command).
We take a different approach in which oracles sign the entire transaction, and

31



data the oracle doesn’t need to see is “torn off” before the transaction is sent.
This is done by structuring the transaction as a Merkle hash tree so that the hash
used for the signing operation is the root. By presenting a counterparty with
the data elements that are needed along with the Merkle branches linking them
to the root hash, as seen in the diagrams below, that counterparty can sign
the entire transaction whilst only being able to see some of it. Additionally,
if the counterparty needs to be convinced that some third party has already
signed the transaction, that is also straightforward. Typically an oracle will be
presented with the Merkle branches for the command or state that contains the
data, and the timestamp field, and nothing else. If an oracle also takes part
in the ledger as a direct participant it should therefore derive a separate key
for oracular usage, to avoid being tricked into blind-signing a transaction that
might also affect its own states.

Merkle root and
transaction ID

H(5+6)

4
H(H(g) + H(h))

1 2 3
H(H(a) + H(b)) H(H(c) + H(d)) H(H(e) + H()

Input refs Outputs Attachment  Command and
Timestamp

Figure 3: How the transaction’s identifier hash is calculated

32



Merkle root and
transaction ID

H(1+5)

Provided

H(2 + H() H(H(g) + H(h))
2
G’rovid99 ( H(f) ) ( H(g))
Input refs Outputs Attachment  Command and
Timestamp

Figure 4: Construction of a Merkle branch

There are several reasons to take this more indirect approach. One is to keep
a single signature checking code path. By ensuring there is only one place in
a transaction where signatures may be found, algorithmic agility and paral-
lel/batch verification are easy to implement. When a signature may be found in
any arbitrary location in a transaction’s data structures, and where verification
may be controlled by the contract code itself (as in Bitcoin), it becomes harder
to maximise signature checking efficiency. As signature checks are often one
of the slowest parts of a block chain system, it is desirable to preserve these
capabilities.

Another reason is to provide oracles with a business model. If oracles just signed
statements and nothing else then it would be difficult to run an oracle in which
there are only a small number of potential statements, but determining their
truth is very expensive. People could share the signed statements and reuse them
in many different transactions, meaning the cost of issuing the initial signatures
would have to be very high, perhaps unworkably high. Because oracles sign
specific transactions, not specific statements, an oracle that is charging for its
services can amortise the cost of determining the truth of a statement over many
users who cannot then share the signature itself (because it covers a one-time-use
structure by definition).

A final reason is that by signing transactions, the signature automatically cov-
ers the embedded time window, as discussed in §6.3. This provides a theo-
retically robust method of anchoring the oracle’s statement into the ledger’s
timeline.

33



6.9 Encumbrances

Each state in a transaction specifies a contract (boolean function) that is invoked
with the entire transaction as input. All contracts must accept in order for the
transaction to be considered valid. Sometimes we would like to compose the
behaviours of multiple different contracts. Consider the notion of a “time lock”
— a restriction on a state that prevents it being modified (e.g. sold) until a
certain time. This is a general piece of logic that could apply to many kinds
of assets. Whilst such logic could be implemented in a library and then called
from every contract that might want to benefit from it, that requires all contract
authors to think ahead and include the functionality. It would be better if we
could mandate that the time lock logic ran along side the contract that governs
the locked state.

Consider an asset that is supposed to remain frozen until a time is reached.
Encumbrances allow a state to specify another state that must be present in
any transaction that consumes it. For example, a time lock contract can define
a state that contains the time at which the lock expires, and a simple contract
that just compares that time against the transaction timestamp. The asset
state can be included in a spend-to-self transaction that doesn’t change the
ownership of the asset but does include a time lock state in the outputs. Now if
the asset state is used, the time lock state must also be used, and that triggers
the execution of the time lock contract.

Encumbered states can only point to one encumbrance state, but that state can
itself point to another and so on, resulting in a chain of encumbrances all of
which must be satisfied.

An encumbrance state must be present in the same transaction as the encum-
bered state, as states refer to each other by index alone.

6.10 Event scheduling

State classes may request flows to be started at given times. When a state
is considered relevant by the vault and the implementing CorDapp is installed
and whitelisted by the administrator, the node may react to the passage of
time by starting new interactions with other nodes, people, or internal systems.
As financial contracts often have a notion of time in them this feature can be
useful for many kinds of state transitions, for example, expiry of an option
contract, management of a default event, re-fixing of an interest rate swap and
SO on.

To request scheduled events, a state may implement the SchedulableState
interface and then return a request from the nextScheduledActivity function.
The state will be queried when it is committed to the vault and the scheduler
will ensure the relevant flow is started at the right time.

34



6.11 Tokens

Some basic concepts occur in many kinds of application, regardless of what
industry or use case it is for. The platform provides a comprehensive type
system for modelling of tokens: abstract countable objects highly suited to
representing value.

Tokens can be used to model agreements with an issuer, like fiat money, securi-
ties, derivatives, debts and other financial instruments. They could also be used
to model any sort of claim on physical resources, like CPU time, network band-
width, barrels of oil and so on. Finally, as a special case tokens can be used to
implement cryptocurrencies (this is modelled as a claim on a null issuer).

We define the notion of an OwnableState, implemented as an interface which
any state may conform to. Ownable states are required to have an owner field
which is a composite key (see §6.2). This is utilised by generic code in the vault
(see §8.1) to manipulate ownable states.

From OwnableState we derive a FungibleState concept to represent an ag-
gregation in which units are sufficiently similar to be represented together in
a single ledger state. Making that concrete, pound notes are a fungible asset:
regardless of whether you represent £10 as a single £10 note or two notes of £5
each the total value is the same. Other kinds of fungible asset could be barrels
of Brent Oil (but not all kinds of crude oil worldwide, because oil comes in
different grades which are not interchangeable), litres of clean water, kilograms
of bananas, units of a stock and so on.

Quantities are represented with an Amount<T> type which defines an integer
amount parameterised by some other type, usually a singleton object. To sup-
port tokens that have a fractional part, as some national currencies do, the
“display token size” is tracked explicitly. Amount<T> provides operator over-
loads to allow addition, subtraction and multiplication with safety checks to
prevent different tokens being combined together and to catch integer over-
flow/underflow. These conditions normally indicate a programmer error or at-
tack attempt. Amounts may not be negative as in many critical contexts a
negative quantity is undefined and reachable only through an error condition.
Transfers of value are modelled explicitly with an AmountTransfer type that
encodes direction.

Token SDK. On top of these universal core types, Corda provides a dedicated
‘token software development kit’ module that extends the type system with more
sophisticated concepts.

35



CORDA CORE ISSUING TOKENS CREATING TOKEN TYPES

interface
—
ContractState
Interface
—>
interface interface TokenizableAssetinfo
FungibleState LinearState

y

TOKEN SDK

TO POINTER

dass interface [ sbstract dess ronren |
‘ EvolvableTokenType |[*™"
class.
NonFungibleToken

class
TokenPointer

class
TokenType

CORDAPP

TokenType
Stock Bond sub-classes

Figure 5: Class hierarchy diagram showing the relationships between different
state types

TokenType refers to a “type of thing” as opposed to the vehicle which is used to
assign units of a token to a particular owner. For that we use the NonFungibleToken
state for assigning non-fungible tokens to a holder and the FungibleToken state
for assigning amounts of some fungible token to a holder. Because tokens fre-
quently represent claims on an issuer the IssuedTokenType class links a to-
ken type with an issuing party. Whilst static token types never change, an
EvolvableTokenType is an abstract linear state that contains data defining the
rules of the token or reference data related to it. For example a token type
representing a stock may include various metadata about that stock, such as
regional identifiers. Token states are linked to their defining token type states
(when evolvable) using linear pointers (see §6.1). This enables reference data
about a token to be evolved such that everyone always uses the latest version,
ensuring a ‘golden source’. The lack of such global yet evolvable definitions is a
frequent problem in industry. Tokens with an issuer are not fungible with each
other: two pools of pound sterling are considered to be separate types of token
if they come from different issuers. This is to avoid commingling and losing
track of counterparty risk.

The token SDK provides APIs and flows to do standard tasks for UTXO based
ledgers, such as moving tokens between parties, issuing tokens, updating the
definition of an evolvable token and efficient coin selection. This is the task
of selecting a group of states from the vault that add up to a certain value
whilst minimising fragmentation, transaction size and optimising other desirable
characteristics. Although the term “coin selection” is an anachronistic holdover
from Bitcoin, Corda continues to use it due to the wealth of published literature
exploring algorithms for the task under this name.

Together, this functionality provides Corda’s equivalent of the Ethereum ERC-

36



20 standard '°.

Having defined various kinds of abstract token, the SDK defines Money and
FiatCurrency types. Interop with the JSR 354 standard for representing finan-
cial amounts is left to future work.

7 Notaries and consensus

Corda does not organise time into blocks. This is sometimes considered strange,
given that it can be described as a block chain system or ‘block chain inspired’.
Instead a Corda network has one or more notary clusters that provide transac-
tion ordering and timestamping services, thus abstracting the role miners play
in other systems into a pluggable component.

A notary is expected to be composed of multiple mutually distrusting parties
who use a crash or byzantine fault tolerant consensus algorithm. Notaries are
identified by and sign with composite public keys (§6.2)that conceptually follow
the Interledger Crypto-Conditions specification??. Note that whilst it would be
conventional to use a BFT algorithm for a notary service, there is no requirement
to do so and in cases where the legal system is sufficient to ensure protocol
compliance a higher performance algorithm like Raft?' or ordinary database
replication may be used. Because multiple notaries can co-exist a single network
may provide a single global BE'T notary for general use and region-specific Raft
notaries for lower latency trading within a unified regulatory area, for example
London or New York.

Notaries accept transactions submitted to them for processing and either re-
turn a signature over the transaction, or a rejection error that states that a
double spend has occurred. The presence of a notary signature from the state’s
chosen notary indicates transaction finality. An app developer triggers notarisa-
tion by invoking the Finality flow on the transaction once all other necessary
signatures have been gathered. Once the finality flow returns successfully, the
transaction can be considered committed to the database.

7.1 Comparison to Nakamoto block chains

Bitcoin organises the timeline into a chain of blocks, with each block pointing
to a previous block the miner has chosen to build upon. Blocks also contain a
rough timestamp. Miners can choose to try and extend the block chain from any
previous block, but are incentivised to build on the most recently announced
block by the fact that other nodes in the system only recognise a block if it’s
a part of the chain with the most accumulated proof-of-work. As each block
contains a reward of newly issued bitcoins, an unrecognised block represents a
loss and a recognised block typically represents a profit.

Bitcoin uses proof-of-work because it has a design goal of allowing an unlimited
number of identityless parties to join and leave the consensus forming process

37



at will, whilst simultaneously making it hard to execute Sybil attacks (attacks
in which one party creates multiple identities to gain undue influence over the
network). This is an appropriate design to use for a peer to peer network
formed of volunteers who can’t/won’t commit to any long term relationships
up front, and in which identity verification is not done. Using proof-of-work
then leads naturally to a requirement to quantise the timeline into chunks, due
to the probabilistic nature of searching for a proof. The chunks must then be
ordered relative to each other. The incentive to build on the most recently
announced proof of work is in tension with the reality that it takes time for a
proof to circulate around the network. This means it is desirable that proofs
are produced at a rate that is slow enough that very few are circulating at the
same time. Given that transactions are likely to be produced at a higher rate
than this, it implies a need for the proofs to consolidate multiple transactions.
Hence the need for blocks.

A Corda network is email-like in the sense that nodes have long term stable
identities, which they can prove ownership of to others. Sybil attacks are blocked
by the network entry process. This allows us to discard proof-of-work along with
its multiple unfortunate downsides:

e Energy consumption is excessively high for such a simple task, being com-
parable at the time of writing to the electricity consumption of an entire
country?2. At a time when humanity needs to use less energy rather than
more this is ecologically undesirable.

e High energy consumption forces concentration of mining power in regions
with cheap or free electricity. This results in unpredictable geopolitical
complexities that many users would rather do without.

e Identityless participants mean all transactions must be broadcast to all
network nodes, as there’s no reliable way to know who the miners are.
This worsens privacy.

e The algorithm does not provide finality, only a probabilistic approxima-

tion, which is a poor fit for existing business and legal assumptions. 23

e It is theoretically possible for large numbers of miners or even all min-
ers to drop out simultaneously without any protocol commitments being
violated.

Once proof-of-work is disposed of there is no longer any need to quantise the
timeline into blocks because there is no longer any need to slow the publication
of conflict resolution proposals, and because the parties asserting the correctness
of the ordering are known ahead of time regular signatures are sufficient.

7.2 Algorithmic agility

Consensus algorithms are a hot area of research and new algorithms are fre-
quently developed that improve upon the state of the art. Unlike most dis-

38



tributed ledger systems Corda does not tightly integrate one specific approach.
This is not only to support upgrades as new algorithms are developed, but also
to reflect the fact that different tradeoffs may make sense for different situations
and networks.

As a simple example, a notary that uses Raft between nodes that are all within
the same city will provide extremely good performance and latency, at the cost
of being more exposed to malicious attacks or errors by whichever node has been
elected leader. In situations where the members making up a distributed notary
service are all large, regulated institutions that are not expected to try and cor-
rupt the ledger in their own favour trading off security to gain performance may
make sense. In other situations where existing legal or trust relationships are less
robust, slower but byzantine fault tolerant algorithms like BFT-SMaRT 24 may
be preferable. Alternatively, hardware security features like Intel SGX@®may
be used to convert non-BFT algorithms into a more trusted form using remote
attestation and hardware protection.

Being able to support multiple notaries in the same network has other advan-
tages:

e It is possible to phase out notaries (i.e. sets of participants) that no longer
wish to provide that service by migrating states.

e The scalability of the system can be increased by bringing online new
notaries that run in parallel. As long as access to the ledger has some
locality (i.e. states aren’t constantly being migrated between notaries)
this allows for the scalability limits of common consensus algorithms or
node hardware to be worked around.

e In some but not all cases, regulatory constraints on data propagation can
be respected by having jurisdictionally specific notaries. This would not
work well when two jurisdictions have mutually incompatible constraints
or for assets that may frequently travel around the world, but it can work
when using the ledger to track the state of deals or other facts that are
inherently region specific.

e Notaries can compete on their availability and performance.
e Users can pick between validating and non-validating notaries. See below.

e In some models for how these technologies will be adopted, it is possible
that issuers of assets will find it convenient to ’self-notarise’ transactions
that pertain to assets they have issued and this necessarily requires sup-
port for multiple notaries in the same network. Such a model is likely
to be a transitional state, not least because such a model is inherently
limited in the range of operations that can be supported.

e Separate networks can start independent and be merged together later
(see below).

39



7.3 Validating and non-validating notaries

Validating notaries resolve and fully check transactions they are asked to de-
conflict. Thus in the degenerate case of a network with just a single notary
and without the use of any privacy features, they gain full visibility into every
transaction. Non-validating notaries assume transaction validity and do not re-
quest transaction data or their dependencies beyond the list of states consumed.
With such a notary it is possible for the ledger to become ‘wedged’, as anyone
who knows the hash and index of a state may consume it without checks. If
the cause of the problem is accidental, the incorrect data can be presented to
a non-validating notary to convince it to roll back the commit, but if the error
is malicious then states controlled by such a notary may become permanently
corrupted.

Tt is therefore possible for users to select their preferred point on a privacy/security
spectrum for each state individually depending on how they expect the data to
be used. When the states are unlikely to live long or propagate far and the only
entities who will learn their transaction hashes are somewhat trustworthy, the
user may select to keep the data from the notary. For liquid assets a validat-
ing notary should always be used to prevent value destruction and theft if the
transaction identifiers leak.

8 The node

Corda comes with an open source reference implementation of the node. A
more advanced ‘Corda Enterprise’ node is available on a commercial basis from
R3. The node acts as an application server which loads JARs containing Cor-
Dapps and provides them with access to the peer-to-peer network, signing keys,
a relational database that may be used for any purpose, and a ‘vault’ that
stores states. Although the open source reference implementation is a single
server, more advanced nodes may be decomposed into multiple cooperating
services. For example, the commercial node from R3 offers a cryptographic fire-
wall component that separates the node from the internet and terminates/relays
connections through the organisation’s DMZ. The message queue broker plays
an integral role in connecting different services together in this kind of multi-
component architecture.

An occasional source of confusion is related to whether the open source nature
of the node has any implications for ledger integrity. It doesn’t, because as with
all DLT systems, Corda nodes cross check each other’s transactions. When
executing well written applications a node owner cannot gain any advantage by
corrupting their node’s code or state. A future version of Corda may provide
a formal protocol specification, easing the task of creating alternatives to the
reference implementation.

This guarantee does not presently extend to apps installed in a node attacking
each other. The reference implementation provides no inter-app isolation: it is

40



assumed that (outside of contract logic) code executing in the node was installed
by the administrator and is trusted. Applications are granted access to the
underlying relational database and can thus read each others states directly.
Nodes capable of sandboxing potentially malicious flows and in-process services
whilst still enabling application interop are a topic for future work. The platform
is built with a combination of JVM-level type security sandboxing and process
isolation in mind; a plausible candidate architecture is one in which flows are
load balanced by the MQ broker between multiple flow workers that can run on
different machines and in different firewall zones.

8.1 The vault

In any block chain based system most nodes have a wallet, or as we call it, a
vault.

The vault contains data extracted from the ledger that is considered relevant
to the node’s owner, stored in a form that can be easily queried and worked
with. It also contains private key material that is needed to sign transactions
consuming states in the vault. Like with a cryptocurrency wallet, the Corda
vault understands how to create transactions that send value to someone else
by combining asset states and possibly adding a change output that makes the
values balance. This process is usually referred to as ‘coin selection’. Coin
selection can be a complex process. In Corda there are no per transaction net-
work fees, which is a significant source of complexity in other systems. However
transactions must respect the fungibility rules in order to ensure that the issuer
and reference data is preserved as the assets pass from hand to hand.

Advanced vault implementations may also perform splitting and merging of
states in the background. The purpose of this is to increase the amount of
transaction creation parallelism supported. Because signing a transaction may
involve human intervention (see §12.4) and thus may take a significant amount
of time, it can become important to be able to create multiple transactions in
parallel. The vault must manage state ‘soft locks’ to prevent multiple trans-
actions trying to use the same output simultaneously. Violation of a soft lock
would result in a double spend being created and rejected by the notary. If a
vault were to contain the entire cash balance of a user in just one state, there
could only be a single transaction being constructed at once and this could im-
pose unacceptable operational overheads on an organisation. By automatically
creating send-to-self transactions that split the big state into multiple smaller
states, the number of transactions that can be created in parallel is increased.
Alternatively many tiny states may need to be consolidated into a smaller num-
ber of more valuable states in order to avoid hitting transaction size limits.
Finally, in some cases the vault may send asset states back to the issuer for
re-issuance, thus pruning long transaction chains and improving privacy.

The vault is also responsible for managing scheduled events requested by node-
relevant states when the implementing app has been installed (see §6.10).

41



8.2 Direct SQL access

A distributed ledger is ultimately just a shared database, albeit one with some
unique features. The following features are therefore highly desirable for im-
proving the productivity of app developers:

e Ability to store private data linked to the semi-public data in the ledger.
e Ability to query the ledger data using widely understood tools like SQL.

e Ability to perform joins between entirely app-private data (like customer
notes) and ledger data.

e Ability to define relational constraints and triggers on the underlying ta-
bles.

e Ability to do queries at particular points in time e.g. midnight last night.
e Re-use of industry standard and highly optimised database engines.

e Independence from any particular database engine, without walling off too
many useful features.

Corda states are defined using a subset of the JVM bytecode language which
includes annotations. The vault recognises annotations from the JPA specifi-
cation defined in JSR 338°. These annotations define how a class maps to a
relational table schema including which member is the primary key, what SQL
types to map the fields to and so on. When a transaction is submitted to the
vault by a flow, the vault finds states it considers relevant (i.e. which contains
a key owned by the node) and the relevant CorDapp has been installed into the
node as a plugin, the states are fed through an object relational mapper which
generates SQL UPDATE and INSERT statements. Note that data is not deleted
when states are consumed, however a join can be performed with a dedicated
metadata table to eliminate consumed states from the dataset. This allows data
to be queried at a point in time, with rows being evicted to historical tables
using external tools.

Nodes come with an embedded database engine out of the box, but may also be
configured to point to a separate RDBMS. The node stores not only state data
but also all node working data in the database, including flow checkpoints. Thus
the state of a node and all communications it is engaged in can be backed up by
simply backing up the database itself. The JPA annotations are independent
of any particular database engine or SQL dialect and thus states cannot use
any proprietary column types or other features, however, because the ORM is
only used on the write paths users are free to connect to the backing database
directly and issue SQL queries that utilise any features of their chosen database
engine that they like. They can also create their own tables and create merged
views of the underlying data for end user applications, as long as they don’t
impose any constraints that would prevent the node from syncing the database
with the actual contents of the ledger.

42



States are arbitrary object graphs. Whilst nothing stops a state from containing
multiple classes intended for different tables, it is typical that the relational
representation will not be a direct translation of the object-graph representation.
States are queried by the vault for the ORM mapped class to use, which will
often skip ledger-specific data that’s irrelevant to the user like opaque public
keys and may expand single fields like an Amount<Issued<Currency>> type into
multiple database columns.

It’s worth noting here that although the vault only responds to JPA annota-
tions it is often useful for states to be annotated in other ways, for instance to
customise its mapping to XML/JSON, or to impose validation constraints?°.
These annotations won’t affect the behaviour of the node directly but may be
useful when working with states in surrounding software.

8.3 Client RPC and reactive collections

Any realistic deployment of a distributed ledger faces the issue of integration
with an existing ecosystem of surrounding tools and processes. Ideally, programs
that interact with the node will be loosely coupled, authenticated, robust against
transient node outages and restarts, and speed differences (e.g. production of
work being faster than completion of work) will be handled transparently.

To meet these needs, Corda nodes expose a simple RPC mechanism that has
a couple of unusual features. The underlying transport is message queues
(AMQP) and methods can return object graphs that contain ReactiveX ob-
servables?® which may in turn emit more observables.

It is a common pattern for RPCs to return a snapshot of some data structure,
along with an observable that emits objects representing a delta on that data
structure. The client library has functionality to reconstruct the snapshot +
diffs into a observable collections of the type that can be bound directly to a
JavaFX user interface. In this way, rendering data structures in the global ledger
in a rich client app that stays fresh becomes a straightforward operation that
requires minimal work from the developer: simply wiring the pieces together
in a functional way is sufficient. Reactive transforms over these observable
collections such as mappings, filterings, sortings and so on make it easy to build
user interfaces in a functional programming style.

It can be asked why Corda does not use the typical REST+JSON approach to
communicating with the node. The reasons are:

e A preference for binary protocols over textual protocols, as text based
protocols tend to be more susceptible to escaping and other buffer man-
agement problems that can lead to security issues.

e Message queue brokers provide significant amounts of infrastructure for
building reliable apps which plain HTTP does not such as backpressure
management, load balancing, queue browsing, management of speed dif-
ferences and so on.

43



e REST based protocols have multiple conventions for streaming of results
back to the client, none of which are ideal for the task.

Being able to connect live data structures directly to Ul toolkits also contributes
to the avoidance of XSS exploits, XSRF exploits and similar security problems
based on losing track of buffer boundaries.

9 Deterministic JVM

It is important that all nodes that process a transaction always agree on whether
it is valid or not. Because transaction types are defined using JVM bytecode,
this means the execution of that bytecode must be fully deterministic. Out of
the box a standard JVM is not fully deterministic, thus we must make some
modifications in order to satisfy our requirements. Non-determinism could come
from the following sources:

e Sources of external input e.g. the file system, network, system properties,
clocks.

e Random number generators.
e Different decisions about when to terminate long running programs.

e Object.hashCode(), which is typically implemented either by returning
a pointer address or by assigning the object a random number. This can
surface as different iteration orders over hash maps and hash sets.

e Differences in hardware floating point arithmetic.

e Multi-threading.

e Differences in API implementations between nodes.
e Garbage collector callbacks.

To ensure that the contract verify function is fully pure even in the face of
infinite loops we construct a new type of JVM sandbox. It utilises a set of
bytecode static analyses and rewriting passes. Classes are rewritten the first
time they are loaded.

The bytecode analysis and rewrite performs the following tasks:

e Inserts calls to an accounting object before expensive bytecodes. The
goal of this rewrite is to deterministically terminate code that has run for
an unacceptably long amount of time or used an unacceptable amount
of memory. Expensive bytecodes include method invocation, allocation,
backwards jumps and throwing exceptions.

e Prevents exception handlers from catching Throwable, Error or ThreadDeath.

e Adjusts constant pool references to relink the code against a ‘shadow’
JDK, which duplicates a subset of the regular JDK but inside a dedicated

44



sandbox package. The shadow JDK is missing functionality that contract
code shouldn’t have access to, such as file IO or external entropy. It can
be loaded into an IDE like Intell] IDEA to give developers interactive
feedback whilst coding, so they can avoid non-deterministic code.

e Sets the strictfp flag on all methods, which requires the JVM to do
floating point arithmetic in a hardware independent fashion. Whilst we
anticipate that floating point arithmetic is unlikely to feature in most
smart contracts (big integer and big decimal libraries are available), it is
available for those who want to use it.

e Forbids invokedynamic bytecode except in special cases, as the libraries
that support this functionality have historically had security problems and
it is primarily needed only by scripting languages. Support for the specific
lambda and string concatenation metafactories used by Java code itself are
allowed.

e Forbids native methods.
e Forbids finalizers.

The cost instrumentation strategy used is a simple one: just counting bytecodes
that are known to be expensive to execute. Method size is limited and jumps
count towards the budget, so such a strategy is guaranteed to eventually ter-
minate. However it is still possible to construct bytecode sequences by hand
that take excessive amounts of time to execute. The cost instrumentation is
designed to ensure that infinite loops are terminated and that if the cost of
verifying a transaction becomes unexpectedly large (e.g. contains algorithms
with complexity exponential in transaction size) that all nodes agree precisely
on when to quit. It is mot intended as a protection against denial of service
attacks. If a node is sending you transactions that appear designed to simply
waste your CPU time then simply blocking that node is sufficient to solve the
problem, given the lack of global broadcast.

Opcode budgets are separated into a few categories, so there is no unified cost
model. Additionally the instrumentation is high overhead. A more sophisticated
design would be to statically calculate bytecode costs as much as possible ahead
of time, by instrumenting only the entry point of ‘accounting blocks’, i.e. runs
of basic blocks that end with either a method return or a backwards jump.
Because only an abstract cost matters (this is not a profiler tool) and because
the limits are expected to bet set relatively high, there is no need to instrument
every basic block. Using the max of both sides of a branch is sufficient when
neither branch target contains a backwards jump. This sort of design will be
investigated if the per category opcode-at-a-time accounting turns out to be
insufficient.

A further complexity comes from the need to constrain memory usage. The
sandbox imposes a quota on bytes allocated rather than bytes retained in order
to simplify the implementation. This strategy is unnecessarily harsh on smart

45



contracts that churn large quantities of garbage yet have relatively small peak
heap sizes and, again, it may be that in practice a more sophisticated strategy
that integrates with the garbage collector is required in order to set quotas to
a usefully generic level.

10 Scalability

Scalability of block chains and block chain inspired systems has been a constant
topic of discussion since Nakamoto first proposed the technology in 2008. Corda
provides much better scalability than other competing systems, via a variety
of choices and tradeoffs that affect and ensure scalability. Scalability can be
measured in many different dimensions, extending even to factors like how many
apps the ecosystem can handle.

The primary techniques used to scale better than classical systems are as fol-
lows.

10.1 Partial visibility

Nodes only encounter transactions if they are involved in some way, or if the
transactions are dependencies of transactions that involve them in some way.
This loosely connected design means that it is entirely possible for most nodes to
never see most of the transaction graph, and thus they do not need to process
it. This makes direct scaling comparisons with other distributed and decen-
tralised database systems difficult, as they invariably measure performance in
transactions/second per network rather than per node, but Corda nodes scale
depending on how much business relevant work they do.

Because of this, a group of businesses doing high-throughput traffic between each
other won'’t affect the load on other nodes belonging to unrelated businesses.
Nodes can handle large numbers of transactions per second. As of the time
of writing, a node has been demonstrated doing a sustained 800 transactions
per second and an independent test has demonstrated a multi-notary network
processing over 20,000 transactions per second?”. Very few businesses directly
generate such large quantities of traffic - all of PayPal does only about 320
transactions per second on average?®, so we believe this is sufficient to enable
virtually all business use cases, especially as one transaction can update many
parts of the ledger simultaneously.

10.2 Multiple notaries

The primary bottleneck on ledger update speed is how fast notaries can commit
transactions to resolve conflicts. Whereas most blockchain systems provide a
single shard and a single consensus mechanism, Corda allows multiple shards (in
our lingo, notary clusters), which can run potentially different consensus algo-
rithms, all simultaneously in the same interoperable network (see §7). Therefore

46



it is possible to increase scalability in some cases by bringing online additional
notary clusters. States can be moved between notaries if necessary to rebalance
them.

Note that this only adds capacity if the transaction graph has underlying ex-
ploitable structure (e.g. geographical biases), as a purely random transaction
graph would end up constantly crossing notaries and the additional transac-
tions to move states from one notary to another would negate the benefit. In
real trading however the transaction graph is not random at all, and thus this
approach may be helpful.

The primary constraint on this technique is that all notaries must be equally
trusted by participants. If a Corda network were to contain one very robust,
large byzantine fault tolerant notary and additionally a small notary which used
non-BFT algorithms, the trustworthiness of the network’s consensus would be
equal to the weakest link, as states are allowed to migrate between notaries.
Therefore a network operator must be careful to ensure that new notary clusters
or the deployment of new algorithms don’t undermine confidence in the existing
clusters.

10.3 Parallel processing

A classic constraint on the scalability of blockchain systems is their nearly non-
existent support for parallelism. The primary unit of parallelism in Corda is the
flow. Many flows and thus ledger updates can be running simultaneously; some
node implementations can execute flows on multiple CPU cores concurrently and
the potential for sharding them across a multi-server node also exists. In such a
design the MQ broker would take responsibility for load balancing inbound pro-
tocol messages and scheduling them to provide flow affinity; the checkpointing
mechanism allows flows to migrate across flow workers transparently as workers
are added and removed. Notary clusters can commit transactions in batches,
and multiple independent notary clusters may be processing transactions in
parallel.

Not only updates (writes) are concurrent. Transactions may also be verified in
parallel. Because transactions are not globally ordered but rather only ordered
relative to each other via the input list, dependencies of a transaction don’t
depend on each other and may be verified simultaneously. Corda transaction
identifiers are the root of a Merkle tree calculated over its contents excluding sig-
natures. This has the downside that a signed and partially signed transaction
cannot be distinguished by their canonical identifier, but means that signa-
tures can easily be verified using multiple CPU cores and modern elliptic curve
batching techniques. Signature verification has in the past been a bottleneck
for verifying block chains, so this is a significant win. Corda smart contracts are
deliberately isolated from the underlying cryptography: they are run after sig-
nature verification has taken place and don’t execute at all if required signatures
are missing. This ensures that signatures for a single transaction can be checked

47



concurrently even though the smart contract code for the transaction itself must
be fully deterministic and thus doesn’t have access to threading.

10.4 Chain snipping

In the case where the issuer of an asset is both trustworthy and online, they
may exit and re-issue an asset state back onto the ledger with a new reference
field. This effectively truncates the dependency graph of that asset which both
improves privacy and scalability, at the cost of losing atomicity - it is possible
for the issuer to exit the asset but not re-issue it, either through incompetence or
malice. However, usually the asset issuer is trusted in much more fundamental
ways than that, e.g. to not steal the money, and thus this doesn’t seem likely
to be a big problem in practice.

Although the platform doesn’t do this today, a node implementation could po-
tentially snip chains automatically once they cross certain lengths or complexity
costs - assuming the issuer is online. Because they’re optional, an extended out-
age at the issuer would simply mean the snip happens later.

10.5 Signatures of validity

The overhead of checking a transaction for validity before it is notarised is likely
to be the main overhead for both notaries and nodes. In the case where raw
throughput is more important than ledger integrity it is possible to use a non-
validating notary which doesn’t do these checks. See §7.3.

Using Intel SGX it’s possible to reduce the load on notaries without compro-
mising robustness by having the node itself verify its own transaction using
an enclave. The resulting ‘signature of validity’ can then be checked using re-
mote attestation by the notary cluster, to ensure the verification work was done
correctly. See §12.11.1.

This outsourcing technique can also be used to run nodes on smaller devices
that don’t have any way to directly check the ledger themselves. If a transac-
tion is signed by a fully or semi-validating notary, or has an enclave signature
of validity on it, the transaction can be accepted as valid and the outputs pro-
cessed directly. This can be considered a more efficient equivalent to Bitcoin’s
‘simplified payment verification’ mode, as described in the original Bitcoin white

paper.

10.6 JIT compilation

It is common for blockchain systems to execute smart contract logic very slowly
due to the lack of efficient optimising compilers for their custom programming
languages. Because Corda runs smart contract logic on a JVM it benefits auto-
matically from just-in-time compilation to machine code of contract logic. After
a contract has been encountered a few times it will be scheduled for conversion

48



to machine code, yielding speedups of many orders of magnitude. Contract
logic only executed a few times will be run interpreted, avoiding the overhead of
compilation for rarely used business logic. The process is entirely transparent to
developer, thus as JVMs improve over time the throughput of nodes automati-
cally gets better too. JVMs have over thousands of accumulated man-years of
work put into their optimising compilers already, and are still improving. The
upgrade from Java 8 to Java 11 resulted in an immediate 20% performance
boost to the throughput of one node implementation. Because JVMs are multi-
language runtimes, these benefits also apply to a variety of non-Java languages
that can also execute on it, thus this benefit isn’t invalidated by the use of DSLs
as long as they compile to bytecode.

10.6.1 Optimised and scalable data storage

It’s standard for classical DLT platforms to place all data in simple key/value
stores. This is especially true for Ethereum derivatives. This makes it difficult
or impossible to do sophisticated queries, let alone do such queries with good
performance and in parallel. App developers are expected to handle data query
implementation on their own.

Corda’s extensive support for mapping strongly typed on-ledger data into rela-
tional database tables makes available the decades of optimisations for querying
data in scalable storage, including but not limited to:

e Query planners, which use continual profiling and statistical analysis to
optimise the usage of 10 resources like disk seeks.

e Multi-server databases with read replicas, enabling read throughput to be
scaled to arbitrarily levels by adding more hardware (writes of course must
go through the ledger infrastructure, the scalability of which is discussed
above).

e Multi-column indexing, JIT compilation of SQL to machine code, excellent
monitoring and diagnostics tools.

10.6.2 Additional scaling and performance techniques

Corda also utilises a variety of smaller techniques that significantly improve
scalability and optimise cost:

e Hardware accelerated AES/GCM encryption used for peer to peer traffic,
when the CPU supports it.

e Extremely modern and fast elliptic curve cryptography, using the carefully
tuned Ed25519 curve.

e Checkpoint elimination when flows are known to be idempotent and safely
replayable. Corda is crash-safe by default (something alternative plat-
forms sometimes lack), but crash-safety can be optimised out when anal-
ysis shows it is safe to do so.

49



e Network map data is distributable via caching content delivery networks,
and only changed entries are fetched by nodes. This ensures the network
map data for a Corda network can be easily distributed around the world,
making it hard to take down using denial-of-service attacks and cheap to
serve.

11 Privacy

Privacy is not a standalone feature in the way that many other aspects de-
scribed in this paper are, so this section summarises features described else-
where. Corda exploits multiple techniques to improve user privacy over other
distributed ledger systems:

Partial data visibility. Transactions are not globally broadcast as in many
other systems. See §4.2 and §10.1.

Transaction tear-offs. Transactions are structured as Merkle trees, and may
have individual subcomponents be revealed to parties who already know the
Merkle root hash. Additionally, they may sign the transaction without being
able to see all of it. See §6.8

Key randomisation. The node’s key management service generates and uses
random keys that are unlinkable to an identity. See §8.1.

Graph pruning. Large transaction graphs that involve liquid assets can be
‘pruned’ by requesting the asset issuer to re-issue the asset onto the ledger with
a new reference field. This operation is not atomic, but effectively unlinks the
new version of the asset from the old, meaning that nodes won’t attempt to
explore the original dependency graph during verification. See §11.

Global ledger encryption. However the primary privacy effort revolves
around encrypting the entire ledger and validating it using secure hardware
enclaves. This can provide the benefits of homomorphic encryption and zero
knowledge proofs, but without sacrificing scalability /performance or (crucially)
auditability in case of failure. See §12.11.1.

12 Future work

Corda has a long term roadmap with many planned extensions. In this section
we propose a variety of possible upgrades that solve common technical or busi-
ness problems. These designs are not fixed in stone and will evolve over time as
the community learns more about the best way to utilise the technology.

50



12.1 Micronodes

A micronode is a program that performs some but not all of the functions of
a regular node. Micronodes may be suitable for deployment on smartphones
to enable consumer e-cash applications, or embedded in devices which wish to
trade with other machines autonomously.

A typical micronode avoids the resource and connectivity requirements of a full
node by making the following compromises:

1. Connectivity. A micronode relies on another node’s message queue bro-
ker to provide internet connectivity, network map presence and querying,
and message buffering.

2. Verification. A micronode doesn’t fully resolve transactions. Instead it
relies on signatures by other entities that have verified the transactions,
such as a fully verifying notary or SGX enclave (see §12.11.1).

3. Dynamic loading. A micronode has CorDapps baked into it when it’s
distributed. States and contracts from other apps are ignored.

4. Limited flow support. A micronode may not support features like
flow checkpointing, full relational database access from inside flows or
scheduled states.

Because of these limits, apps must be specifically written to support running in
a micronode environment. In cases where that isn’t possible micronode-targeted
variants of an app must be written, much as mobile apps may share some code
with desktop apps but otherwise are separate codebases.

In return for accepting these limitations, a micronode would provide several
benefits:

e AOT compilation. A micronode could be compiled ahead of time to
native code, yielding very small and efficient binaries. The native-image
tool® can produce native code binaries with no JVM dependencies and no
JIT compilation.

e Much reduced resources. The SubstrateVM JVM that native-image
uses generally needs around 10x less memory, starts around 10x faster
than a normal Java program and can produce binaries as small as a few
megabytes in size even for quite complex programs. A micronode’s vault
is called a wallet and would store only keys, states, directly relevant trans-
actions (without dependencies) and potentially app specific private data.
This is plenty sufficient for many embedded use cases, although some de-
manding applications may desire even smaller footprints.

e Transiency. Micronodes can be mostly offline rather than mostly online
and can automatically encrypt and back up their wallets to hosting nodes.

2A component of the GraalVM, see https://www.graalvm.org for more information

o1


https://www.graalvm.org

For example, a micronode could be embedded in a desktop or mobile app.
This would achieve a new balance of power, different to that offered by a full
node. In the new balance the user relies more heavily on the trustworthyness
of the nodes or enclaves that actually verify the transactions, as any breach
of that trust would allow someone to present an arbitrary view of the ledger
e.g. forging payments of tokens that aren’t backed by any actual deposits, or
changing the name on a record to their own. The micronode could choose to
rely on multiple sources of verification and compare them to reduce this risk.
Even with compromised verification, the ability to change the database from
the perspective of full nodes is not obtained because the micronode will not
sign transactions or reveal data without user approval.

Making micronodes usable and safe would require significant work in at least
three areas: key recovery (§12.2), secure software update and the ability to move
between hosting nodes. It would also require designs for how users on a global
Corda network can find each other without directly exchanging public keys or
key hashes, as is done in cryptocurrencies.

12.1.1 Secure software update

A micronode embedded into a mobile e-payments app doesn’t automatically
make the system decentralised. Rather, it shifts all power to whoever controls
the code signing key for the application itself. If that key is compromised the
adversary can push an update to the app that implants a back door in it. That
back door could steal people’s private keys, or sign transactions with the keys
that e.g. sends the users tokens to the attacker whilst presenting a fake view
of the ledger indicating that no such transfer has occurred. Alternatively the
legitimate developer of the app may be pressured, legally or extra-legally, to
seize funds or block users/geographies.

To resolve this multi-party threshold software updates are required. Corda
already implements this for on-ledger code via signature constraints (see §6.5),
and Android supports multi-signed updates (but not threshold updates) from
Android 9 onwards. iOS does not, however it may be possible to retrofit this
capability using Shoup’s threshold RSA algorithm 2°.

As an illustrative example, one of the required signers may be an auditor who
reads the source code and verifies the natural language description of the ap-
plication matches what it really does. The auditor may be under agreement
to refuse to sign an update that would cause the app to violate its ‘constitu-
tion’.

12.2 Social key recovery and key rotation

In all blockchain systems loss of a private key is fatal. There is no global admin-
istrator who can restore access to the system, and the difficulty of coordinating
with all possible counterparties means there is no practical way to replace a
private key that has been destroyed.

92



Whilst this constraint may be viable for professionally run IT organisations it
is infeasible for consumers, who can be expected to lose keys regularly. Backing
up their key to the hosting node simply means the hosting node controls the
identity and thus those parts of the ledger completely, making the micronode
useless. Instead the key may be split using Shamir’s secret sharing scheme3°
and then distributed to a group of parties the user trusts. This may be the
user’s friends or family, or alternatively a coalition of nodes which are assumed
to not collaborate against the user (e.g. notary nodes that agreed to take on
this additional function). In case of key loss the user must approach enough of
the holders of the shards and ask them to send back the fragments; the holders
must verify the user’s identity sufficiently well to prevent an imposter fooling
them.

Key rotation. If it’s suspected that a key may be lost or compromised ahead
of time, a backup key may be generated and a key rotation message may be
signed using the primary key. In case of loss of the primary key, the backup key
and rotation message may be retrieved from storage. The rotation message must
be countersigned by the network operator after (re)performing ID verification,
to ensure that compromised storage can’t be used to rotate the live key to the
adversary. It can then be announced to the network, so nodes can treat the new
key as being equivalent to the old key.

12.3 Domain specific languages

Domain specific languages for the expression of financial contracts are a popular
area of research. A seminal work is ‘Composing contracts’ by Peyton-Jones,
Seward and Eber [PJSE20003!] in which financial contracts are modelled with
a small library of Haskell combinators. These models can then be used for
valuation of the underlying deals. Block chain systems use the term ‘contract’
in a slightly different sense to how PJSE do but the underlying concepts can
be adapted to our context as well. The platform provides an experimental
universal contract that builds on the language extension features of the Kotlin
programming language. To avoid linguistic confusion it refers to the combined
code/data bundle as an ‘arrangement’ rather than a contract. A European FX
call option expressed in this language looks like this:

val european_fx_option = arrange {
actions {
acmeCorp may {
"exercise" anytime {
actions {
(acmeCorp or highStreetBank) may {

"execute".givenThat (after("2017-09-01")) {
highStreetBank.owes (acmeCorp, 1.M, EUR)
acmeCorp.owes (highStreetBank, 1200.K, USD)

93



}
}
highStreetBank may {
"expire".givenThat (after("2017-09-01")) {
zero

}

The programmer may define arbitrary ‘actions’ along with constraints on when
the actions may be invoked. The zero token indicates the termination of the
deal.

As can be seen, this DSL combines both what is allowed and deal-specific data
like when and how much is allowed, therefore blurring the distinction the core
model has between code and data. It builds on prior work to enable not only
valuation/cash flow calculations, but also direct enforcement of the contract’s
logic at the database level as well.

12.3.1 Formally verifiable languages

Corda contracts can be upgraded. However, given the coordination problems
inherent in convincing many participants in a large network to accept a new
version of a contract, a frequently cited desire is for formally verifiable languages
to be used to try and guarantee the correctness of the implementations.

We do not attempt to tackle this problem ourselves. However, because Corda
focuses on deterministic execution of any JVM bytecode, formally verifiable
languages that target this instruction set are usable for the expression of smart
contracts. A good example of this is the Whiley language by Dr David Pearce?2,
which checks program-integrated proofs at compile time. By building on industry-
standard platforms, we gain access to cutting edge research from the computer
science community outside of the distributed systems world.

12.4 Secure signing devices
12.4.1 Background

A common feature of digital financial systems and block chain-type systems
in particular is the use of secure client-side hardware to hold private keys and
perform signing operations with them. Combined with a zero tolerance approach
to transaction rollbacks, this is one of the ways they reduce overheads: by
attempting to ensure that transaction authorisation is robust and secure, and
thus that signatures are reliable.

It can be useful to move signing keys into hardware controlled directly by au-
thorising users. This ensures that if a node is compromised, only private data
leaks and the integrity of the ledger is maintained.

o4



Many networks have rolled out two factor authenticators to their employees
which allow logins to online services using a challenge /response protocol, usually
to a smartcard. These devices are cheap but tend to have small or non-existent
screens and so can be subject to confusion attacks if there is malware on the
PC, e.g. if the malware convinces the user they are performing a login challenge
whereas in fact they are authorising a payment to a new account. The primary
advantage is that the signing key is held in a robust and cheap object that refuses
to reveal the contained keys, so a stolen authenticator can’t be cloned.

The state-of-the-art in this space are devices like the TREZOR?33 by Satoshi
Labs or the Ledger Blue. These were developed by and for the Bitcoin com-
munity. They are more expensive than ordinary two-factor devices and feature
better screens with USB or Bluetooth connections to eliminate typing. These
devices differ from other forms of hardware authenticator device in another
respect: instead of signing challenge numbers, they actually understand the na-
tive transaction format of the network to which they’re specialised and parse the
transaction to figure out the message to present to the user, who then confirms
that they wish to perform the action printed on the screen by simply pressing
a button. The transaction is then signed internally before being passed back to
the PC.

As there is no smartcard equivalent the private key can be exported off the
device by writing it down in the form of “wallet words”: 12 random words
derived from the contents of the key. Because elliptic curve private keys are
small (256 bits), this is not as tedious as it would be with the much larger RSA
keys that were standard until recently.

12.4.2 Confusion attacks

The biggest problem facing anyone wanting to integrate smart signing devices
into a distributed ledger system is how the device processes transactions. For
Bitcoin it’s straightforward for devices to process transactions directly because
their format is very small and simple (in theory — in practice a fixable quirk
of the Bitcoin protocol significantly complicates how these devices must work).
Thus turning a Bitcoin transaction into a human meaningful confirmation screen
is quite easy:

Confirm payment of 1.23 BTC to 1AbCd0123456.......

This confirmation message is susceptible to confusion attacks because the opaque
payment address is unpredictable. A sufficiently smart virus/attacker could have
swapped out a legitimate address of a legitimate counterparty you are expecting
to pay with one of their own, thus you’d pay the right amount to the wrong
place. The same problem can affect financial authenticators that verify IBANs
and other account numbers: the user’s source of the IBAN may be an email
or website they are viewing through the compromised machine. The BIP 703
protocol was designed to address this attack by allowing a certificate chain to be
presented that linked a target key with a stable, human meaningful and verified

99



identity.

For a generic ledger we are faced with the additional problem that transactions
may be of many different types, including new types created after the device was
manufactured. Thus creating a succinct confirmation message inside the device
would become an ever-changing problem requiring frequent firmware updates.
As firmware upgrades are a potential weak point in any secure hardware scheme,
it would be ideal to minimise their number.

12.4.3 Transaction summaries

To solve this problem we add a top level summaries field to the transaction
format (joining inputs, outputs, commands, attachments etc). This new top
level field is a list of strings. Smart contracts get a new responsibility. They
are expected to generate an English message describing what the transaction is
doing, and then check that it is present in the transaction. The platform ensures
no unexpected messages are present. The field is a list of strings rather than
a single string because a transaction may do multiple things simultaneously in
advanced use cases.

Because the calculation of the confirmation message has now been moved to the
smart contract itself, and is a part of the transaction, the transaction can be
sent to the signing device: all it needs to do is extract the messages and print
them to the screen with YES/NO buttons available to decide whether to sign
or not. Because the device’s signature covers the messages, and the messages
are checked by the contract based on the machine readable data in the states,
we can know that the message was correct and legitimate.

The design above is simple but has the issue that large amounts of data are sent
to the device which it doesn’t need. As it’s common for signing devices to have
constrained memory, it would be unfortunate if the complexity of a transaction
ended up being limited by the RAM available in the users’ signing devices. To
solve this we can use the tear-offs mechanism (see §6.8) to present only the
summaries and the Merkle branch connecting them to the root. The device can
then sign the entire transaction contents having seen only the textual summaries,
knowing that the states will trigger the contracts which will trigger the summary
checks, thus the signature covers the machine-understandable version of the
transaction as well.

Note, we assume here that contracts are not themselves malicious. Whilst a
malicious user could construct a contract that generated misleading messages,
for a user to see states in their vault and work with them requires the accom-
panying CorDapp to be loaded into the node as a plugin and thus whitelisted.
There is never a case where the user may be asked to sign a transaction involv-
ing contracts they have not previously approved, even though the node may
execute such contracts as part of verifying transaction dependencies.

96



12.4.4 Identity substitution

Contract code only works with opaque representations of public keys. Because
transactions in a chain of custody may need to be anonymised, it isn’t possible
for a contract to access identity information from inside the sandbox. Therefore
it cannot generate a complete message that includes human meaningful identity
names even if the node itself does have this information.

To solve this the transaction is provided to the device along with the X.509
certificate chains linking the pseudonymous public keys to the long term identity
certificates, which for transactions involving the user should always be available
(as they by definition know who their trading counterparties are). The device
can verify those certificate chains to build up a mapping of index to human
readable name. The messages placed inside a transaction may contain numeric
indexes of the public keys required by the commands using backslash syntax, and
the device must perform the message substitution before rendering. Care must
be taken to ensure that the X.500 names issued to network participants do not
contain text chosen to deliberately confuse users, e.g. names that contain quote
marks, partial instructions, special symbols and so on. This can be enforced at
the network permissioning level.

12.4.5 Multi-lingual support

The contract is expected to generate a human readable version of the trans-
action. This should be in English, by convention. In theory, we could define
the transaction format to support messages in different languages, and if the
contract supported that the right language could then be picked by the signing
device. However, care must be taken to ensure that the message the user sees
in alternative languages is correctly translated and not subject to ambiguity or
confusion, as otherwise exploitable confusion attacks may arise.

12.5 Data distribution groups

By default, distribution of transaction data is defined by app-provided flows
(see §4). Flows specify when and to which peers transactions should be sent.
Typically these destinations will be calculated based on the content of the states
and the available identity lookup certificates, as the intended use case of financial
data usually contains the identities of the relevant parties within it. Sometimes
though, the set of parties that should receive data isn’t known ahead of time
and may change after a transaction has been created. For these cases partial
data visibility is not a good fit and an alternative mechanism is needed.

A data distribution group (DDG) is created by generating a keypair and a self-
signed certificate for it. Groups are identified internally by their public key
and may be given string names in the certificate, but nothing in the software
assumes the name is unique: it’s intended only for human consumption and it
may conflict with other independent groups. In case of conflict user interfaces

o7



disambiguate by appending a few characters of the base58 encoded public key
to the name like so: "My popular group name (a4T)”. As groups are not
globally visible anyway, it is unlikely that conflicts will be common or require
many code letters to deconflict, and some groups may not even be intended for
human consumption at all.

Once a group is created other nodes can be invited to join it by using an invita-
tion flow. Membership can be either read only or read/write. To add a node as
read-only, the certificate i.e. pubkey alone is sent. To add a node as read/write
the certificate and private key are sent. A future elaboration on the design may
support giving each member a separate private key which would allow tracing
who added transactions to a group, but this is left for future work. In either
case the node records in its local database which other nodes it has invited to
the group once they accept the invitation.

When the invite is received the target node runs the other side of the flow as
normal, which may either automatically accept membership if it’s configured to
trust the inviting node, or send a message to a message queue for processing
by an external system, or kick it up to a human administrator for approval.
Invites to groups the node is already a member of are rejected. The accepting
node also records which node invited it. So, there ends up being a two-way
recorded relationship between inviter and invitee stored in their vaults. Finally
the inviter side of the invitation flow pushes a list of all the transaction IDs that
exist in the group and the invitee side resolves all of them. The end result is
that all the transactions that are in the group are sent to the new node (along
with all dependencies).

Note that this initial download is potentially infinite if transactions are added
to the group as fast or faster than the new node is downloading and checking
them. Thus whilst it may be tempting to try and expose a notion of ‘doneness’
to the act of joining a group, it’s better to see the act of joining as happening at
a specific point in time and the resultant flood of transaction data as an ongoing
stream, rather than being like a traditional file download.

When a transaction is sent to the vault, it always undergoes a relevancy test,
regardless of whether it is in a group or not (see §8.1). This test is extended to
check also for the signatures of any groups the node is a member of. If there’s
a match then the transaction’s states are all considered relevant. In addition,
the vault looks up which nodes it invited to this group, and also which nodes
invited it, removes any nodes that have recently sent us this transaction and
then kicks off a PropagateTransactionToGroup flow with each of them. The
other side of this flow checks if the transaction is already known, if not requests
it, checks that it is indeed signed by the group in question, resolves it and then
assuming success, sends it to the vault. In this way a transaction added by any
member of the group propagates up and down the membership tree until all
the members have seen it. Propagation is idempotent — if the vault has already
seen a transaction before then it isn’t processed again.

98



The structure we have so far has some advantages and one big disadvantage.
The advantages are:

Simplicity The core data model is unchanged. Access control is handled using existing
tools like signatures, certificates and flows.

Privacy It is possible to join a group without the other members being aware that
you have done so. It is possible to create groups without non-members
knowing the group exists.

Scalability Groups are not registered in any central directory. A group that exists
between four parties imposes costs only on those four.

Performance Groups can be created as fast as you can generate keypairs and invite
other nodes to join you.

Responsibility For every member of the group there is always a node that has a respon-
sibility for sending you new data under the protocol (the inviting node).
Unlike with Kademlia style distributed hash tables, or Bitcoin style global
broadcast, you can never find yourself in a position where you didn’t re-
ceive data yet nobody has violated the protocol. There are no points at
which you pick a random selection of nodes and politely ask them to do
something for you, hoping that they’ll choose to stick around.

The big disadvantage is that it’s brittle. If you have a membership tree and a
node goes offline for a while, then propagation of data will split and back up
in the outbound queues of the parents and children of the offline node until it
comes back.

To strengthen groups we can add a new feature, membership broadcasts. Mem-
bers of the group that have write access may choose to sign a membership
announcement and propagate it through the tree. These announcements are
recorded in the local database of each node in the group. Nodes may include
these announced members when sending newly added transactions. This con-
verts the membership tree to a graph that may contain cycles, but infinite
propagation loops are not possible because nodes ignore announcements of new
transactions/attachments they’ve already received. Whether a group prefers
privacy or availability may be hinted in the certificate that defines it: if avail-
ability is preferred, this is a signal that members should always announce them-
selves (which would lead to a mesh).

The resulting arrangement may appear similar to a gossip network. However
the underlying membership tree structure remains. Thus when all nodes are
online (or online enough) messages are guaranteed to propagate to everyone in
the network. You can’t get situations where a part of the group has become split
from the rest without anyone being aware of that fact; an unlikely but possible
occurrence in a gossip network. It also isn’t like a distributed hash table where
data isn’t fully replicated, so we avoid situations where data has been added to
the group but stops being available due to node outages. It is always possible

99



to reason about the behaviour of the network and always possible to assign
responsibility if something goes wrong.

Note that it is not possible to remove members after they have been added to
a group. We could provide a remove announcement but it’d be advisory only:
nothing stops nodes from ignoring it. It is also not possible to enumerate mem-
bers of a group because there is no requirement to do a membership broadcast
when you join and no way to enforce such a requirement.

12.6 Guaranteed data distribution

In any global consensus system the user is faced with the question of whether
they have the latest state of the database. Programmers working with block
chains often make the simplifying assumption that because there is no formal
map of miner locations and thus transactions are distributed to miners via
broadcast, that they can listen to the stream of broadcasts and learn if they have
the latest data. Alas, nothing stops someone privately providing a miner who
has a known location with a transaction that they agree not to broadcast. The
first time the rest of the network finds out about this transaction is when a block
containing it is broadcast. When used to do double spending fraud this type
of attack is known as a Finney Attack®?. Proof-of-work based systems rely on
aligned incentives to discourage such attacks: to quote the Bitcoin white paper,
“He ought to find it more profitable to play by the rules ... than to undermine the
system and the validity of his own wealth.” In practice this approach appears
to work well enough most of the time, given that miners typically do not accept
privately submitted transactions.

In a system without global broadcast things are very different: the notary clus-
ters must accept transactions directly and there is no mechanism to ensure
that everyone sees that the transaction is occurring. Sometimes this doesn’t
matter: most transactions are irrelevant for you and having to download them
just wastes resources. But occasionally you do wish to become aware that the
ledger state has been changed by someone else. A simple example is an option
contract in which you wish to expire the option unless the counterparty has
already exercised it. Their exercising the option must not require the seller to
sign off on it, as it may be advantageous for the seller to refuse if it would cause
them to lose money. Whilst the seller would discover if the buyer had exercised
the option when they attempted to expire it, due to the notary informing them
that their expiry transaction was a double spend, it is preferable to find out
immediately.

The obvious way to implement this is to give notaries the responsibility for en-
suring all interested parties find out about a transaction. However, this would
require the notaries to know who the involved parties actually are, which would
create an undesirable privacy leak. It would also place extra network load on
the notaries who would frequently be sending transaction data to parties that
may already have it, or may simply not care. In many cases there may be no

60



requirement for the notary to act as a trusted third party for data distribu-
tion purposes, as game-theoretic assumptions or legal assurances are sufficiently
strong that peers can be trusted to deliver transaction data as part of their
regular flows.

To solve this, app developers can choose whether to request transaction distri-
bution by the notary or not. This works by simply piggybacking on the standard
identity lookup flows (see §5). If a node wishes to be informed by the notary
when a state is consumed, it can send the certificates linking the random keys in
the state to the notary cluster, which then stores it in the local databases as per
usual. Once the notary cluster has committed the transaction, key identities are
looked up and any which resolve successfully are sent copies of the transaction.
In normal operation the notary is not provided with the certificates linking the
random keys to the long term identity keys and thus does not know who is
involved with the operation (assuming source IP address obfuscation would be
implemented, see §12.7).

12.7 Privacy upgrades

Corda has been designed with the future integration of additional privacy tech-
nologies in mind. Of all potential upgrades, three are particularly worth a
mention.

Secure hardware. Although we narrow the scope of data propagation to only
nodes that need to see that data, ‘need’ can still be an unintuitive concept in
a decentralised database where often data is required only to perform security
checks. We have successfully experimented with running contract verification
inside a secure enclave protected JVM using Intel SGX™ , an implementation of
the ‘trusted computing’ concept>®, and this work is now being integrated with
the platform. See §12.11.

Mix networks. Some nodes may be in the position of learning about transac-
tions that aren’t directly related to trades they are doing, for example notaries
or regulator nodes. Even when key randomisation is used these nodes can still
learn valuable identity information by simply examining the source IP addresses
or the authentication certificates of the nodes sending the data for notarisation.
The traditional cryptographic solution to this problem is a miz network36. The
most famous mix network is Tor, but a more appropriate design for Corda would
be that of an anonymous remailer. In a mix network a message is repeatedly
encrypted in an onion-like fashion using keys owned by a small set of randomly
selected nodes. Each layer in the onion contains the address of the next ‘hop’.
Once the message is delivered to the first hop, it decrypts it to reveal the next
encrypted layer and forwards it onwards. The return path operates in a simi-
lar fashion. Adding a mix network to the Corda protocol would allow users to
opt-in to a privacy upgrade, at the cost of higher latencies and more exposure
to failed network nodes.

61



Zero knowledge proofs. The holy grail of privacy in decentralised database
systems is the use of zero knowledge proofs to convince a peer that a transaction
is valid, without revealing the contents of the transaction to them. Although
these techniques are not yet practical for execution of general purpose smart
contracts, enormous progress has been made in recent years and we have de-
signed our data model on the assumption that we will one day wish to migrate
to the use of zero knowledge succinct non-interactive arguments of knowledge3”
(‘zkSNARKS’). These algorithms allow for the calculation of a fixed-size math-
ematical proof that a program was correctly executed with a mix of public
and private inputs. Programs can be expressed either directly as a system of
low-degree multivariate polynomials encoding an algebraic constraint system,
or by execution on a simple simulated CPU (‘vnTinyRAM’) which is itself im-
plemented as a large pre-computed set of constraints. Because the program
is shared the combination of an agreed upon function (i.e. a smart contract)
along with private input data is sufficient to verify correctness, as long as the
prover’s program may recursively verify other proofs, i.e. the proofs of the
input transactions. The BCTV zkSNARK algorithms rely on recursive proof
composition for the execution of viTinyRAM opcodes, so this is not a problem.
The most obvious integration with Corda would require tightly written assem-
bly language versions of common smart contracts (e.g. cash) to be written by
hand and aligned with the JVM versions. Less obvious but more powerful in-
tegrations would involve the addition of a vi'TinyRAM backend to an ahead of
time JVM bytecode compiler, such as Graal®®, or a direct translation of Graal’s
graph based intermediate representation into systems of constraints. Direct
translation of an SSA-form compiler IR to constraints would be best integrated
with recent research into ‘scalable probabilistically checkable proofs’3?, and is
an open research problem.

12.8 Machine identity

On-ledger transactions may sometimes be intimately connected to the state
of physical objects. Consider the example of an electric car being plugged
into a recharging port. The owner of the port wishes to bill the owner of the
vehicle for consumed power, but in a manner that minimises trust. Minimising
trust is useful as it allows the owner of the recharging port to do without any
expensive brand-building and keeps enrollment overheads for the vehicle owners
low. The result would be an open access charging network. To achieve this
various security and privacy requirements should be met, for example:

e The recharging port may over-bill the vehicle owner.

e The vehicle owner may misreport their identity, in order that someone else
incurs the costs.

e The machine being plugged in might not be a vehicle at all, which could be
problematic if the business model of the port owner assumes a temporary
stop by the driver (for instance, nearby shops may be subsidising power).

62



e The vehicle owner may not pay.

e Vehicle manufacturers should not learn anything about where the drivers
are going.

Solving this requires authenticated data from identified sensors to be integrated
with the flows and states of an application. One way to do this would be for
the manufacturer to embed a key pair into the sensors and then issuing a sub-
certificate at the factory which chains to the manufacturer’s identity. Device-
specific connectivity to the manufacturer node would allow the sensors to be
reached via the flow framework, and they can then act as oracles for the state
of the physical system e.g. how much power has flowed through the recharg-
ing cable. The identity framework solves the question of device authenticity,
filtered transactions solve the question of how to check and sign transactions
on lower power devices, and the flow framework solves the challenge of having
nodes contact sensors or vice-versa across potentially multiple layers of routers,
proxies, message queues etc. Because the Corda protocol is built on top of stan-
dard AMQP, a subset of it can be implemented in C++ for lightweight devices
without much CPU power. A prototype of such a library already exists.

12.9 Data streams

Transaction attachments are available to contract logic during verification. As a
result they suffer from various constraints: they must be ZIP files, they must fit
in memory on all nodes, they must obey various security properties, they must
be propagated everywhere the transaction itself is, and so on. Sometimes it’s
desirable to attach raw data files to transactions that are not used in forming
consensus, but rather are only included for audit trail and signing purposes.
This can be done today by just including the hash of a data file in a state but
it would be convenient if the protocol took care of sending the underlying data
between nodes and making it available to application developers. Data streams
are a proposed feature that allows Java InputStream objects to be added to
transactions. The RPC client library is enhanced to support sending streams
across RPC/MQ connections, and the node incrementally hashes the contents
of the stream and stores it locally, embedding the final hash into the transaction
where it will be covered by a signature. The data is then streamed across the
peer-to-peer network without ever being stored fully in memory, and the stream
is checked against the included transaction hash to ensure it matches.

Importantly, the stream is transmitted only one hop: it isn’t copied as part of
transaction resolution. This makes the feature ideal for various kinds of file that
would be inappropriate to place in attachments, such as:

e Large PDFs, like scans of paper documents.

e Audio recordings of employee conversations for compliance with trader
surveillance rules.

e Spreadsheets containing underlying trade models.

63



e Photos, videos or 3D models of the items being transacted, for later use
in dispute resolution.

12.10 Human interaction

As well as multi-party protocols, a common need is to model flows with higher
level business processes which may include human interaction. This would be
helpful for:

e Gaining approval to proceed with a ledger change if it meets certain cri-
teria, like being too large to automatically authorise.

e Requesting simple pieces of information from users, like files, prices, quan-
tities etc.

e Notifying people of work they need to do.

Today such tasks can be achieved by splitting a flow up and having UI logic
update shared database tables. However, this would be much more convenient
if flows could send and receive messages with people and not just other nodes.
Whilst no replacement for a full GUI, many common tasks could be handled in
this way.

We propose a design based on message queues. The flow API would be extended
to support sending and receiving serialised objects (or raw strings) on internal
queues. A library of adapter processes can then be configured to listen on these
queues and take requests from them, with the responses (if required) being
placed back on a dedicated response queue. These adapters could, for example,
create tickets in an internal ticketing system, push notifications to a smartphone
app, update in-house applications, post to shared chatrooms and so on.

Individuals and groups of individuals within an organisation could be modelled
as parties that can be looked up via a directory service, similar to how parties
can be resolved from the network map. Note that there’d be no requirement
for users to have keys in this scheme: whether a user has a key and signs
transactions or whether they just instruct the app about what to do is up to
the application developer.

12.11 Global ledger encryption

All distributed ledger systems require nodes to cross-check each others changes
to the ledger by verifying transactions, but this inherently exposes data to peers
that would be best kept private. Scenario specific ‘ad-hoc’ techniques can re-
duce leakage by homomorphically encrypting amounts and obfuscating identities
(see §5.2), but they impose great complexity on application developers and don’t
provide a universal solution: most research has focused on tokens and provides
limited or no value to non-token states.

64



This section outlines a design for a platform upgrade which encrypts all trans-
action data, leaving only individual states exposed to authorised parties. The
encrypted transactions are still verified and thus ledger integrity is still assured.
This section provides details on the design which is being implemented at the
moment.

12.11.1 Intel SGX

Intel Software Guard Extensions®® is a new feature supported in the latest

generation of Intel CPUs. It allows applications to create so-called enclaves.
Enclaves have the following useful properties:

e They have isolated memory spaces which are accessible to nothing except
code running in the enclave itself.

e Enclave RAM is encrypted and decrypted on the fly by the CPU core,
which has anti-tamper circuitry in it. Thus physical access to the hardware
is not sufficient to be able to read enclave memory.

e Enclaves have an identity, being either the hash of the code that is loaded
into them at creation time or the public key that signed the enclave.

e This identity can be reported over a network to third parties via a process
named remote attestation. The CPU generates a data structure signed by
a key that can be traced back to Intel’s fabrication plants.

e Enclaves can deterministically derive secret keys that mix together a unique,
hidden per-CPU key and the enclave identity itself; by implication enclaves
can derive keys that no other software on the system can access. These
keys can be bound to remote attestations.

Combining these features enables enclaves to act almost like secure self-defending
computers embedded inside other untrusted hosts. A client (“Alice”) can chal-
lenge an untrusted host machine (“Bob”) to create an enclave with a pre-agreed
code hash or code signer. Bob can then prove to Alice the enclave is running by
showing her a remote attestation ‘report’: a data structure which includes both
her challenge and an enclave key, collectively signed by an Intel approved key.
Alice and the enclave can now execute a key agreement protocol like Elliptic
Curve Diffie-Hellman to compute a shared AES key that Bob doesn’t know,
and in this way establish an encrypted channel to the enclave. Other parties
can repeat this procedure and thus end up with a secure shared computational
space in which they can collaborate together.

SGX enclaves are secure as long as the SGX implementation in the CPU is
secure, the software running inside the enclave is secure (e.g. no buffer overflows)
and as long as side-channel attacks are sufficiently mitigated. Other software
and hardware running on the host such as the operating system, other apps,
the BIOS, video chips and so on are considered to be untrusted. By implication
enclaves can’t access the operating system or any hardware directly: they may

65



communicate only by sending messages to the untrusted host software which ask
it to do work. Enclaves thus need to encrypt and sign any data entering/leaving
the enclave.

SGX is designed with a sophisticated versioning scheme that allows it to be
re-secured in case flaws in the technology are found; as of writing this “T'CB

recovery” process has been used several times®.

A remote attestation report can be attached to a piece of data to create a
signature of attestation (SoA). Such a signature is conceptually like a normal
digital signature and in fact may contain a regular digital signature as part of its
structure, however, whereas a normal digital signature proves a particular party
signed the message, a signature of attestation proves that a piece of software
signed the message. Thus a SoA transmits arbitrary semantic meaning that
would otherwise need to be obtained via trusting a third party, such as an
oracle.

An objection may be raised that there’s still a third party involved in this
scheme, namely Intel. But this is not a worrying problem because in any soft-
ware system you implicitly trust the CPU to calculate results correctly anyway,
and modern CPUs certainly have sufficient flexibility in their microcode archi-
tecture to detect particular code sequences and calculate the wrong answer when
found. Thus minimising the number of trusted parties to only the CPU vendor
is still a major step forward from the status quo.

12.11.2 Attestation vs verification models

SGX enclaves can be used in two different ways to provide ledger privacy.
We name these different approaches the attestation model and the verifica-
tion model, after what desirable attribute you lose if the enclave’s security is
breached.

Consider a scenario in which Alice wishes to transfer a state to Bob. Alice has
herself received the state from Zack, a third party Bob should not learn anything
about. The state contains complex structured business data thus rendering
token-specific privacy techniques insufficient.

Attestation model. The simplest way to use SGX is for Alice to create an
enclave on her own computer that knows how to deserialize and verify trans-
actions. Enclaves produce signatures of validity, which are signatures of attes-
tation by an enclave binary marked as trusted by the Corda network operator
and which sign over the Merkle root of the verified transaction. This implies
the enclave must include a small SGX compatible JVM (such a JVM has been
built). Alice feeds a transaction to the enclave along with signatures of validity
for each of the transaction’s inputs, and a new signature of validity is produced

bSee slide 18 in this presentation for more information on TCB recovery.

66


https://www.slideshare.net/DesmondYuen/intel-software-guard-extension

by the enclave which can be checked by any third party to convince themselves
that a genuine Corda verification enclave was used.

In the attestation model transaction data doesn’t move between peers at all.
Only signatures of validity are transmitted over the peer-to-peer network. This
has the following advantages:

e Some countries have regulations that forbid transmission of financial data,
even encrypted, outside their own borders. The attestation model can
handle such cases.

e Transaction resolution and verification becomes much faster, as only one
transaction must be checked instead of an arbitrarily deep dependency
graph.

e It becomes possible for nodes to check transactions ‘from the future’ and
thus maybe survive mandatory software upgrades imposed by the network
operator, as transaction verification can be outsourced to third party en-
claves.

e Side channel attacks on the verification enclave are much less serious,
because Alice would only be attacking her own transaction. She never has
other party’s transaction data.

e Signatures of validity allow a non-validating notary to be upgraded to be-
ing ‘semi-validating’, thus blocking denial-of-state attacks without leaking
private data to the notary.

e It is relatively simple to implement.

Unfortunately the attestation model has one large disadvantage that makes it
undesirable to support as the only available model: if a flaw in the enclave or
SGX itself is found, it becomes possible for an attacker to edit the ledger as they
see fit. Because nodes aren’t actually cross checking each other any more, but
placing full confidence in the enclave to assert validity, anyone who can forge
signatures of validity could create money out of thin air. This security model is
thus the same as for zero knowledge proofs, for which algorithmic failures are
also unauditable.

In practice both a verification enclave and SGX itself are complex systems that
are unlikely to be bug free. Flaws will be found and fixed over the lifetime of the
system, and the design of SGX anticipates that. Indeed, such flaws have already
been found. In the attestation model the ledger cannot recover from a discovered
flaw: doubt over the integrity of the database would persist permanently.

This problem motivates the desire for a second model.

Verification model. This model is significantly more complex. In it, Bob
uses remote attestation to convince Alice that he is running an enclave that can
verify third party transaction data without leaking it to him. Once convinced,

67



Alice encrypts Zack’s transaction to the enclave and sends it to Bob’s computer.
Bob then feeds the encrypted transaction to the enclave, and the enclave signals
to Bob that it believes the transaction to be valid.

The complexity stems from the recursive nature of this process. Alice received
the transaction from Zack, who may in turn have obtained the state via a trans-
action with Yvonne, thus neither Alice nor Zack may actually have a cleartext
copy of the transaction Bob needs. Moreover Bob must be able to verify the
chain of custody leading through Alice, Zack and Yvonne using the regular
transaction resolution process (see section §4.2). Thus Alice, Zack and Yvonne
must all have enclaves themselves or be using an outsourced third party enclave,
as with SGX it theoretically doesn’t matter who owns the actual hardware on
which they run. These enclaves establish encrypted channels between each other
along the chain of custody and also save encrypted transactions to their local
storage.

A simplified version of the protocol looks like this:

1. Alice constructs a new transaction consuming a state she previously re-
ceived and outputting a new state, newly involving Bob, with arbitrary
adjustments to the state in question. The transaction input points to the
transaction Alice received the state in from Zack.

2. Bob checks the inputs to see if he already knows about the chain of custody.
He doesn’t, so he instantiates his enclave and sends a remote attestation
of it to Alice. The attestation includes an enclave specific encryption key.

3. Alice checks the attestation and sees that the enclave Bob is running is one
agreed beforehand to be usable for transaction checking. Typically this
agreement would occur via the network parameters mechanism as it must
be acceptable to every node in the network (the set of allowed enclaves is
a consensus rule).

4. Alice now instructs her own enclave to load the requested transaction
ID from her encrypted local storage and re-encrypt it to the key of Bob’s
enclave. She sends the newly re-encrypted version to Bob, who then stores
it. This process iteratively repeats until the dependency graph is fully
explored and Bob has encrypted versions of all the transactions in the
chains of custody.

5. Bob now feeds these encrypted transactions to his enclave, oldest first.
The enclave runs the contract logic and does all the other tasks involved
in verifying transaction validity, until the dependencies of Alice’s new
transaction are fully verified. Bob can now verify Alice’s transaction and
be convinced it is valid. Bob stores the new transaction locally so it can
be encrypted to the next enclave in the chain.

The above description is incomplete in many ways. A real implementation will
hide all transactions and expose only states via the node’s API - the head of
the chain is never special in such a design. Enclaves need to store data locally

68



under different keys than the ones used for communication, implying another
re-encryption step. Unlike the attestation model the verification model doesn’t
improve the speed or scaling of the resolution process, and encrypted data still
moves between nodes. And side channel attacks must be mitigated, as Bob
could attempt to learn things about the contents of encrypted transactions by
taking careful measurements of the enclave’s execution as it validates the chain
of custody.

Despite these disadvantages, the verification model comes with a major improve-
ment: breaches of enclave security allow private data to be accessed but do not
grant any special write privileges. As data gets progressively less valuable as
it ages this means recovery from breaches happens naturally and organically;
eventually none of the data exposed by a breach matters much any more, and
at any rate, a breach only reverts the system to the level of security it had
pre-SGX. Therefore trading can continue even in the event of a zero-day exploit
being discovered. In contrast, if data integrity is lost there is no way to recover
it (illegally minted money may continue to circulate for years).

Mixed mode. The two modes can be combined in the same network. For
example, the attestation model can be used if data were to cross borders with
verification being the default for when data would stay within a country. Semi-
validating notaries could operate in a network for which other nodes are running
verification. The exact blend of security tradeoffs a group of nodes may tolerate
can be set by the network operator via its usual governance processes. Mixed
mode is also useful during incremental rollout of ledger encryption to an already
live Corda network.

Other uses. Enclaves can provide neutral meeting grounds in which shared
calculations or negotiations can occur. By integrating enclave messaging and
remote attestation with the flow and identity frameworks, enclave programming
becomes significantly easier. With this type of framework integration enclaves
would be exposed to CorDapp developers as, essentially, deterministic program-
matic organisations. Enclaves would be able to communicate with counter-
parties, sign transactions, keep secrets, hold assets and potentially even move
themselves around between generic hosting providers, whilst convincing human-
operated organisations that they will behave honestly. Autonomous agents run-
ning inside node enclaves may also be trusted to have access to the globally
encrypted ledger in order to derive economic statistics, detect trading optimi-
sations and potentially speculate on the markets directly.

13 Conclusion
We have presented Corda, a decentralised database designed for industrial use

cases. It allows for a consistent data set to be decentralised amongst many mu-
tually distrusting nodes, with smart contracts running on the JVM providing

69



access control and schema definitions. A novel continuation-based persistence
framework assists developers with coordinating the flow of data across the net-
work. An identity management system ensures that parties always know who
they are interacting with. Notaries ensure algorithmic agility with respect to dis-
tributed consensus systems, and the system operates without mining or chains
of blocks.

A standard type system is provided for the modelling of business logic. The de-
sign considers security throughout: it supports the integration of secure signing
devices for transaction authorisation, secure enclaves for transaction process-
ing, composite keys for expressing complex authorisation policies, and is based
on binary protocols with length-prefixed buffers throughout for the systematic
avoidance of common buffer management exploits. Users may analyse ledger
data relevant to them by issuing ordinary SQL queries against mature database
engines, and may craft complex multi-party transactions with ease in program-
ming languages that are already familiar to them.

Finally, we have laid out a roadmap of future work intended to enhance the
platform’s privacy, security, robustness and flexibility.

14 Acknowledgements

The authors would like to thank James Carlyle, Shams Asari, Rick Parker, An-
dras Slemmer, Ross Nicoll, Andrius Dagys, Matthew Nesbit, Jose Coll, Katarzyna
Streich, Clinton Alexander, Patrick Kuo, Richard Green, Ian Grigg, Mark Old-
field and Roger Willis for their insights and contributions to this design. We
would also like to thank Sofus Mortesen for his work on the universal con-
tract DSL, and the numerous architects and subject matter experts at financial
institutions around the world who contributed their knowledge, requirements
and ideas. Thanks also to the authors of the many frameworks, protocols and
components we have built upon.

Finally, we would like to thank Satoshi Nakamoto. Without him none of it
would have been possible.

Bibliography

[1] Brown, Carlyle, Grigg, & Hearn. Corda: An Introduction. https://docs.
corda.net/_static/corda-introductory-whitepaper.pdf, 2016.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):4:1-4:26, June 2008.

[3] Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://
bitcoin.org/bitcoin.pdf, 2008.

70


https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[4]

=)

[16]

[17]
[18]

[19]

[20]

Lindholm, Yellin, Bracha, & Buckley. The Java Virtual Machine Speci-
fication Java SE 8 Edition. https://docs.oracle.com/javase/specs/
jvms/se8/jvms8.pdf, 2015.

Jsr 338:  Java persistence api. http://download.oracle.com/
otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.
pdf?AuthParam=1478095024_77b7362£d5bd185ebf8d2cd2a071a14d,
2013.

Buterin et al. A Next-Generation Smart Contract and Decentral-
ized Application Platform. https://github.com/ethereum/wiki/wiki/
%5BEnglishy,5D-White-Paper, 2014.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21-21, Berkeley, CA,
USA, 2004. USENIX Association.

OASIS. Advanced message queuing protocol (amqp) version 1.0, 2012.

Lawrence and Frohoft. http://frohoff.github.io/
appseccali-marshalling-pickles/, 2016.

http://wuw.metawidget.org/, 2018.
http://javacollection.net/reflectionui/, 2018.

Mike Hearn. Bitcoin micropayment channels. https://bitcoinj.github.
io/working-with-micropayments, 2014.

Mike Hearn, Gavin Andresen. Bitcoin payment protocol. https://github.
com/bitcoin/bips/blob/master/bip-0070.mediawiki, 2013.

Pieter Wiulle. Hierarchical deterministic wallets. https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki, 2013.

Google. Google public ntp leap smear. https://developers.google.com/
time/smear.

PKWARE. Zip file format. https://pkware.cachefly.net/webdocs/
casestudies/APPNOTE. TXT, 1989.

ISDA. https://portal.cdm.rosetta-technology.io/, 2018.

David Siegel. http://www.coindesk.com/
understanding-dao-hack-journalists/, 2016.

Vitalik Buterin Fabian Vogelsteller. https://eips.ethereum.org/EIPS/
eip-20, 2015.

Stefan Thomas. Crypto-conditions. https://interledger.org/
five-bells-condition/spec.html, 2016.

71


https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
http://frohoff.github.io/appseccali-marshalling-pickles/
http://frohoff.github.io/appseccali-marshalling-pickles/
http://www.metawidget.org/
http://javacollection.net/reflectionui/
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://developers.google.com/time/smear
https://developers.google.com/time/smear
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://portal.cdm.rosetta-technology.io/
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://interledger.org/five-bells-condition/spec.html
https://interledger.org/five-bells-condition/spec.html

[21]

Diego Ongaro and John Ousterhout. In search of an understandable consen-
sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, pages 305-320, Berkeley,
CA, USA, 2014. USENIX Association.

Christopher Malmo. http://motherboard.vice.com/read/
bitcoin-is-unsustainable, 2015.
Tim Swanson. http://tabbforum.com/opinions/

settlement-risks-involving-public-blockchains, 2016.

Alysson Bessani, Joao Sousa, and Eduardo E. P. Alchieri. State machine
replication for the masses with bft-smart. In Proceedings of the 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 14, pages 355-362, Washington, DC, USA, 2014. IEEE
Computer Society.

Jsr 349: Bean validation constraints. https://www.jcp.org/en/jsr/
detail?id=349, 2013.

Reactivex. https://www.reactivex.io, 2016.

DTCC. Study on dlt scalability. http://www.dtcc.com/news/2018/
october/16/dtcc-unveils-groundbreaking-study-on-dlt, 2018.

Craig Smith. 100 amazing paypal statistics and facts (2019). https://
expandedramblings.com/index.php/paypal-statistics/, 2019.

Victor Shoup. Practical threshold signatures. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 207—
220. Springer, 2000.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613,
November 1979.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing con-
tracts: An adventure in financial engineering (functional pearl). SIGPLAN
Not., 35(9):280-292, September 2000.

David J. Pearce and Lindsay Groves. Designing a verifying compiler:
Lessons learned from developing whiley. Science of Computer Program-
ming, 113, Part 2:191 — 220, 2015. Formal Techniques for Safety-Critical
Systems.

Bitcoin trezor device. https://bitcointrezor.com/, 2016.

Hal Finney. Best practice for fast transaction acceptance - how high is the
risk? https://bitcointalk.org/index.php?topic=3441.msg48384#
msg48384.

72


http://motherboard.vice.com/read/bitcoin-is-unsustainable
http://motherboard.vice.com/read/bitcoin-is-unsustainable
http://tabbforum.com/opinions/settlement-risks-involving-public-blockchains
http://tabbforum.com/opinions/settlement-risks-involving-public-blockchains
https://www.jcp.org/en/jsr/detail?id=349
https://www.jcp.org/en/jsr/detail?id=349
https://www.reactivex.io
http://www.dtcc.com/news/2018/october/16/dtcc-unveils-groundbreaking-study-on-dlt
http://www.dtcc.com/news/2018/october/16/dtcc-unveils-groundbreaking-study-on-dlt
https://expandedramblings.com/index.php/paypal-statistics/
https://expandedramblings.com/index.php/paypal-statistics/
https://bitcointrezor.com/
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384

[35]

[36]

[37]

C. Mitchell and Institution of Electrical Engineers. Trusted Computing.
Computing and Networks Series. Institution of Engineering and Technol-
ogy, 2005.

David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84-90, February 1981.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. In
28rd USENIX Security Symposium (USENIX Security 14), pages 781-796,
San Diego, CA, August 2014. USENIX Association.

Graal research compiler. http://openjdk.java.net/projects/graal/,
2016.

Eli Ben-Sasson, Iddo Ben-Tov, Alessandro Chiesa, Ariel Gabizon, Daniel
Genkin, Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Sil-
berstein, Eran Tromer, and Madars Virza. Computational integrity with
a public random string from quasi-linear pcps. Cryptology ePrint Archive,
Report 2016/646, 2016. http://eprint.iacr.org/2016/646.

Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. In-
novative technology for cpu based attestation and sealing, 2013.

73


http://openjdk.java.net/projects/graal/
http://eprint.iacr.org/2016/646

	Introduction
	Overview
	The peer to peer network
	Overview
	The identity root
	The network map
	Message delivery
	Serialization
	Network parameters
	Protocol versioning
	Business networks

	Flow framework
	Overview
	Data visibility and dependency resolution

	Identity
	Hierarchical identity
	Confidential identities
	Non-verified keys

	Data model
	Transaction structure
	Composite keys
	Time handling
	Attachments and contract bytecodes
	Contract constraints
	Precise naming
	Dispute resolution
	Oracles and tear-offs
	Encumbrances
	Event scheduling
	Tokens

	Notaries and consensus
	Comparison to Nakamoto block chains
	Algorithmic agility
	Validating and non-validating notaries

	The node
	The vault
	Direct SQL access
	Client RPC and reactive collections

	Deterministic JVM
	Scalability
	Partial visibility
	Multiple notaries
	Parallel processing
	Chain snipping
	Signatures of validity
	JIT compilation
	Optimised and scalable data storage
	Additional scaling and performance techniques


	Privacy
	Future work
	Micronodes
	Secure software update

	Social key recovery and key rotation
	Domain specific languages
	Formally verifiable languages

	Secure signing devices
	Background
	Confusion attacks
	Transaction summaries
	Identity substitution
	Multi-lingual support

	Data distribution groups
	Guaranteed data distribution
	Privacy upgrades
	Machine identity
	Data streams
	Human interaction
	Global ledger encryption
	Intel SGX
	Attestation vs verification models


	Conclusion
	Acknowledgements
	Bibliography

