bladeRF-wiphy/fpga/vhdl/wlan_tx_controller.vhd

234 lines
6.8 KiB
VHDL
Raw Normal View History

2020-12-31 07:11:59 +00:00
-- This file is part of bladeRF-wiphy.
--
-- Copyright (C) 2020 Nuand, LLC.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License along
-- with this program; if not, write to the Free Software Foundation, Inc.,
-- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;
library work ;
use work.wlan_p.all ;
use work.wlan_tx_p.all ;
entity wlan_tx_controller is
port (
clock : in std_logic ;
reset : in std_logic ;
-- Control from the MAC
tx_vector : in wlan_tx_vector_t ;
tx_vector_valid : in std_logic ;
-- Caculated parameters
params : out wlan_tx_params_t ;
params_valid : out std_logic ;
-- TX status generation
status : out wlan_tx_status_t ;
status_valid : out std_logic ;
-- Encoder from MAC
encoder_start : out std_logic ;
encoder_done : in std_logic ;
-- Short preamble control and status
short_start : out std_logic ;
short_done : in std_logic ;
-- Long preamble control and status
long_done : in std_logic ;
-- Modulator control and status
mod_init : out std_logic ;
mod_end : in std_logic ;
-- TX done
tx_done : in std_logic
) ;
end entity ;
architecture arch of wlan_tx_controller is
type fsm_t is (IDLE, START_TRANSMISSION, START_ENCODING_DATA, WAIT_FOR_PREAMBLE_DONE, WAIT_FOR_TX_DONE) ;
type state_t is record
fsm : fsm_t ;
params : wlan_tx_params_t ;
params_valid : std_logic ;
short_start : std_logic ;
encoder_start : std_logic ;
mod_init : std_logic ;
status_valid : std_logic ;
end record ;
function calculate_params( x : wlan_tx_vector_t ) return wlan_tx_params_t is
variable rv : wlan_tx_params_t ;
begin
rv.datarate := x.datarate ;
rv.length := x.length ;
rv.lfsr_init := "1011101" ;
case x.datarate is
when WLAN_RATE_6 =>
-- BPSK R=1/2
rv.n_bpsc := 1 ;
rv.n_dbps := 24 ;
rv.n_cbps := 48 ;
rv.modulation := WLAN_BPSK ;
when WLAN_RATE_9 =>
-- BPSK R=3/4
rv.n_bpsc := 1 ;
rv.n_dbps := 36 ;
rv.n_cbps := 48 ;
rv.modulation := WLAN_BPSK ;
when WLAN_RATE_12 =>
-- QPSK R=1/2
rv.n_bpsc := 2 ;
rv.n_dbps := 48 ;
rv.n_cbps := 96 ;
rv.modulation := WLAN_QPSK ;
when WLAN_RATE_18 =>
-- QPSK R=3/4
rv.n_bpsc := 2 ;
rv.n_dbps := 72 ;
rv.n_cbps := 96 ;
rv.modulation := WLAN_QPSK ;
when WLAN_RATE_24 =>
-- 16-QAM R=1/2
rv.n_bpsc := 4 ;
rv.n_dbps := 96 ;
rv.n_cbps := 192 ;
rv.modulation := WLAN_16QAM ;
when WLAN_RATE_36 =>
-- 16-QAM R=3/4
rv.n_bpsc := 4 ;
rv.n_dbps := 144 ;
rv.n_cbps := 192 ;
rv.modulation := WLAN_16QAM ;
when WLAN_RATE_48 =>
-- 64-QAM R=2/3
rv.n_bpsc := 6 ;
rv.n_dbps := 192 ;
rv.n_cbps := 288 ;
rv.modulation := WLAN_64QAM ;
when WLAN_RATE_54 =>
-- 64-QAM R=3/4
rv.n_bpsc := 6 ;
rv.n_dbps := 216 ;
rv.n_cbps := 288;
rv.modulation := WLAN_64QAM ;
when others =>
report "Invalid params" severity failure ;
end case ;
case x.bandwidth is
when WLAN_BW_5 =>
null ;
when WLAN_BW_10 =>
null ;
when WLAN_BW_20 =>
null ;
when others =>
report "Invalid bandwidth" severity failure ;
end case ;
return rv ;
end function ;
function NULL_STATE return state_t is
variable rv : state_t ;
begin
rv.fsm := IDLE ;
rv.params_valid := '0' ;
rv.short_start := '0' ;
rv.encoder_start := '0' ;
rv.mod_init := '0' ;
rv.status_valid := '0' ;
return rv ;
end function ;
signal current, future : state_t := NULL_STATE ;
begin
params <= current.params ;
params_valid <= current.params_valid ;
short_start <= current.short_start ;
encoder_start <= current.encoder_start ;
mod_init <= current.mod_init ;
sync : process(clock, reset)
begin
if( reset = '1' ) then
current <= NULL_STATE ;
elsif( rising_edge(clock) ) then
current <= future ;
end if ;
end process ;
comb : process(all)
begin
future <= current ;
future.params_valid <= '0' ;
future.short_start <= '0' ;
future.encoder_start <= '0' ;
future.mod_init <= '0' ;
future.status_valid <= '0' ;
case current.fsm is
when IDLE =>
future.params_valid <= tx_vector_valid ;
if( tx_vector_valid = '1' ) then
future.params <= calculate_params(tx_vector) ;
future.fsm <= START_TRANSMISSION ;
end if ;
when START_TRANSMISSION =>
future.short_start <= '1' ;
future.fsm <= START_ENCODING_DATA ;
when START_ENCODING_DATA =>
future.fsm <= WAIT_FOR_PREAMBLE_DONE ;
when WAIT_FOR_PREAMBLE_DONE =>
if( long_done = '1' ) then
future.fsm <= WAIT_FOR_TX_DONE ;
future.encoder_start <= '1' ;
future.mod_init <= '1' ;
end if ;
when WAIT_FOR_TX_DONE =>
if( tx_done = '1' ) then
future.fsm <= IDLE ;
end if ;
end case ;
end process ;
end architecture ;