ZeroTierOne/node/Topology.hpp

406 lines
11 KiB
C++

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2011-2014 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef ZT_TOPOLOGY_HPP
#define ZT_TOPOLOGY_HPP
#include <stdio.h>
#include <string.h>
#include <map>
#include <set>
#include <vector>
#include <stdexcept>
#include "Constants.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "Peer.hpp"
#include "Mutex.hpp"
#include "InetAddress.hpp"
#include "Utils.hpp"
#include "Packet.hpp"
#include "Logger.hpp"
#include "Dictionary.hpp"
namespace ZeroTier {
class RuntimeEnvironment;
/**
* Database of network topology
*/
class Topology
{
public:
Topology(const RuntimeEnvironment *renv,bool enablePermanentIdCaching);
~Topology();
/**
* Set up supernodes for this network
*
* @param sn Supernodes for this network
*/
void setSupernodes(const std::map< Identity,std::vector< std::pair<InetAddress,bool> > > &sn);
/**
* Set up supernodes for this network
*
* This performs no signature verification of any kind. The caller must
* check the signature of the root topology dictionary first.
*
* @param sn Supernodes dictionary from root-topology
*/
void setSupernodes(const Dictionary &sn);
/**
* Add a peer to database
*
* This will not replace existing peers. In that case the existing peer
* record is returned.
*
* @param peer Peer to add
* @return New or existing peer (should replace 'peer')
*/
SharedPtr<Peer> addPeer(const SharedPtr<Peer> &peer);
/**
* Get a peer from its address
*
* @param zta ZeroTier address of peer
* @return Peer or NULL if not found
*/
SharedPtr<Peer> getPeer(const Address &zta) const;
/**
* Get an identity if cached or available in a peer record
*
* @param zta ZeroTier address
* @return Identity or NULL-identity if not found
*/
Identity getIdentity(const Address &zta);
/**
* Save identity in permanent store, or do nothing if disabled
*
* This is called automatically by addPeer(), so it should not need to be
* called manually anywhere else. The private part of the identity, if
* present, is NOT cached by this.
*
* @param id Identity to save
*/
void saveIdentity(const Identity &id);
/**
* @return Vector of peers that are supernodes
*/
inline std::vector< SharedPtr<Peer> > supernodePeers() const
{
Mutex::Lock _l(_supernodes_m);
return _supernodePeers;
}
/**
* Get the current favorite supernode
*
* @return Supernode with lowest latency or NULL if none
*/
inline SharedPtr<Peer> getBestSupernode() const
{
return getBestSupernode((const Address *)0,0,false);
}
/**
* Get the best supernode, avoiding supernodes listed in an array
*
* This will get the best supernode (lowest latency, etc.) but will
* try to avoid the listed supernodes, only using them if no others
* are available.
*
* @param avoid Nodes to avoid
* @param avoidCount Number of nodes to avoid
* @param strictAvoid If false, consider avoided supernodes anyway if no non-avoid supernodes are available
* @return Supernode or NULL if none
*/
SharedPtr<Peer> getBestSupernode(const Address *avoid,unsigned int avoidCount,bool strictAvoid) const;
/**
* @param zta ZeroTier address
* @return True if this is a designated supernode
*/
inline bool isSupernode(const Address &zta) const
throw()
{
Mutex::Lock _l(_supernodes_m);
return (_supernodeAddresses.count(zta) > 0);
}
/**
* @return Set of supernode addresses
*/
inline std::set<Address> supernodeAddresses() const
{
Mutex::Lock _l(_supernodes_m);
return _supernodeAddresses;
}
/**
* @return True if this node's identity is in the supernode set
*/
inline bool amSupernode() const { return _amSupernode; }
/**
* Clean and flush database
*/
void clean();
/**
* Apply a function or function object to all peers
*
* @param f Function to apply
* @tparam F Function or function object type
*/
template<typename F>
inline void eachPeer(F f)
{
Mutex::Lock _l(_activePeers_m);
for(std::map< Address,SharedPtr<Peer> >::const_iterator p(_activePeers.begin());p!=_activePeers.end();++p)
f(*this,p->second);
}
/**
* Apply a function or function object to all supernode peers
*
* @param f Function to apply
* @tparam F Function or function object type
*/
template<typename F>
inline void eachSupernodePeer(F f)
{
Mutex::Lock _l(_supernodes_m);
for(std::vector< SharedPtr<Peer> >::const_iterator p(_supernodePeers.begin());p!=_supernodePeers.end();++p)
f(*this,*p);
}
#ifdef ZT_FIREWALL_OPENER_DELAY
/**
* Function object to collect peers that need a firewall opener sent
*/
class OpenPeersThatNeedFirewallOpener
{
public:
OpenPeersThatNeedFirewallOpener(const RuntimeEnvironment *renv,uint64_t now) throw() :
_now(now),
_r(renv) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
if ((p->hasDirectPath())&&((_now - std::max(p->lastFirewallOpener(),p->lastDirectSend())) >= ZT_FIREWALL_OPENER_DELAY))
p->sendFirewallOpener(_r,_now);
}
private:
uint64_t _now;
const RuntimeEnvironment *_r;
};
#endif
/**
* Pings all peers that need a ping sent, excluding supernodes
*
* Ordinary peers are pinged if we haven't heard from them recently. Receive
* time rather than send time as OK is returned on success and we want to
* keep trying if a packet is lost. Ordinary peers are subject to a frame
* inactivity timeout. We give up if we haven't actually transferred any
* data to them recently, and eventually Topology purges them from memory.
*/
class PingPeersThatNeedPing
{
public:
PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now) throw() :
_now(now),
_supernodeAddresses(renv->topology->supernodeAddresses()),
_r(renv) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
/* For ordinary nodes we ping if they've sent us a frame recently,
* otherwise they are stale and we let the link die.
*
* Note that we measure ping time from time of last receive rather
* than time of last send in order to only count full round trips. */
if ( (!_supernodeAddresses.count(p->address())) &&
((_now - p->lastFrame()) < ZT_PEER_PATH_ACTIVITY_TIMEOUT) &&
((_now - p->lastDirectReceive()) >= ZT_PEER_DIRECT_PING_DELAY) ) {
p->sendPing(_r,_now);
}
}
private:
uint64_t _now;
std::set<Address> _supernodeAddresses;
const RuntimeEnvironment *_r;
};
/**
* Ping peers that need ping according to supernode rules
*
* Supernodes ping aggressively if a ping is unanswered and they are not
* subject to the activity timeout. In other words: we assume they are
* always there and always try to reach them.
*
* The ultimate rate limit for this is controlled up in the Node main loop.
*/
class PingSupernodesThatNeedPing
{
public:
PingSupernodesThatNeedPing(const RuntimeEnvironment *renv,uint64_t now) throw() :
_now(now),
_r(renv) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
/* For supernodes we always ping even if no frames have been seen, and
* we ping aggressively if pings are unanswered. The limit to this
* frequency is set in the main loop to no more than ZT_STARTUP_AGGRO. */
uint64_t lp = 0;
uint64_t lr = 0;
p->lastPingAndDirectReceive(lp,lr);
if ( (lr < _r->timeOfLastResynchronize) || ((lr < lp)&&((lp - lr) >= ZT_PING_UNANSWERED_AFTER)) || ((_now - lr) >= ZT_PEER_DIRECT_PING_DELAY) )
p->sendPing(_r,_now);
}
private:
uint64_t _now;
const RuntimeEnvironment *_r;
};
/**
* Computes most recent timestamp of direct packet receive over a list of peers
*/
class FindMostRecentDirectReceiveTimestamp
{
public:
FindMostRecentDirectReceiveTimestamp(uint64_t &ts) throw() : _ts(ts) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p) throw() { _ts = std::max(p->lastDirectReceive(),_ts); }
private:
uint64_t &_ts;
};
/**
* Function object to forget direct links to active peers and then ping them indirectly
*/
class ResetActivePeers
{
public:
ResetActivePeers(const RuntimeEnvironment *renv,uint64_t now) throw() :
_now(now),
_supernode(renv->topology->getBestSupernode()),
_supernodeAddresses(renv->topology->supernodeAddresses()),
_r(renv) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
p->clearPaths(false); // false means don't forget 'fixed' paths e.g. supernodes
Packet outp(p->address(),_r->identity.address(),Packet::VERB_NOP);
outp.armor(p->key(),false); // no need to encrypt a NOP
if (_supernodeAddresses.count(p->address())) {
// Send NOP directly to supernodes
p->send(_r,outp.data(),outp.size(),_now);
} else {
// Send NOP indirectly to regular peers if still active, triggering a new RENDEZVOUS
if (((_now - p->lastFrame()) < ZT_PEER_PATH_ACTIVITY_TIMEOUT)&&(_supernode)) {
TRACE("sending reset NOP to %s",p->address().toString().c_str());
_supernode->send(_r,outp.data(),outp.size(),_now);
}
}
}
private:
uint64_t _now;
SharedPtr<Peer> _supernode;
std::set<Address> _supernodeAddresses;
const RuntimeEnvironment *_r;
};
/**
* Function object to collect peers with any known direct path
*/
class CollectPeersWithActiveDirectPath
{
public:
CollectPeersWithActiveDirectPath(std::vector< SharedPtr<Peer> > &v,uint64_t now) throw() :
_now(now),
_v(v) {}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
if (p->hasActiveDirectPath(_now))
_v.push_back(p);
}
private:
uint64_t _now;
std::vector< SharedPtr<Peer> > &_v;
};
/**
* Validate a root topology dictionary against the identities specified in Defaults
*
* @param rt Root topology dictionary
* @return True if dictionary signature is valid
*/
static bool authenticateRootTopology(const Dictionary &rt);
private:
const RuntimeEnvironment *const _r;
void _dumpPeers();
void _loadPeers();
std::string _idCacheBase; // empty if identity caching disabled
std::map< Address,SharedPtr<Peer> > _activePeers;
Mutex _activePeers_m;
std::map< Identity,std::vector< std::pair<InetAddress,bool> > > _supernodes;
std::set< Address > _supernodeAddresses;
std::vector< SharedPtr<Peer> > _supernodePeers;
Mutex _supernodes_m;
// Set to true if my identity is in _supernodes
volatile bool _amSupernode;
};
} // namespace ZeroTier
#endif