mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-04 12:14:09 +00:00
359 lines
11 KiB
C++
359 lines
11 KiB
C++
/*
|
|
* Based on public domain code available at: http://cr.yp.to/snuffle.html
|
|
*
|
|
* Modifications and C-native SSE macro based SSE implementation by
|
|
* Adam Ierymenko <adam.ierymenko@zerotier.com>.
|
|
*
|
|
* Since the original was public domain, this is too.
|
|
*/
|
|
|
|
#include "Constants.hpp"
|
|
#include "Salsa20.hpp"
|
|
|
|
#define ROTATE(v,c) (((v) << (c)) | ((v) >> (32 - (c))))
|
|
#define XOR(v,w) ((v) ^ (w))
|
|
#define PLUS(v,w) ((uint32_t)((v) + (w)))
|
|
|
|
// Set up laod/store macros with appropriate endianness (we don't use these in SSE mode)
|
|
#ifndef ZT_SALSA20_SSE
|
|
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
|
|
#ifdef ZT_NO_TYPE_PUNNING
|
|
// Slower version that does not use type punning
|
|
#define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
|
|
static inline void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }
|
|
#else
|
|
// Fast version that just does 32-bit load/store
|
|
#define U8TO32_LITTLE(p) (*((const uint32_t *)((const void *)(p))))
|
|
#define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = (v)
|
|
#endif // ZT_NO_TYPE_PUNNING
|
|
|
|
#else // __BYTE_ORDER == __BIG_ENDIAN (we don't support anything else... does MIDDLE_ENDIAN even still exist?)
|
|
|
|
#ifdef __GNUC__
|
|
|
|
// Use GNUC builtin bswap macros on big-endian machines if available
|
|
#define U8TO32_LITTLE(p) __builtin_bswap32(*((const uint32_t *)((const void *)(p))))
|
|
#define U32TO8_LITTLE(c,v) *((uint32_t *)((void *)(c))) = __builtin_bswap32((v))
|
|
|
|
#else // no __GNUC__
|
|
|
|
// Otherwise do it the slow, manual way on BE machines
|
|
#define U8TO32_LITTLE(p) ( ((uint32_t)(p)[0]) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24) )
|
|
static inline void U32TO8_LITTLE(uint8_t *const c,const uint32_t v) { c[0] = (uint8_t)v; c[1] = (uint8_t)(v >> 8); c[2] = (uint8_t)(v >> 16); c[3] = (uint8_t)(v >> 24); }
|
|
|
|
#endif // __GNUC__ or not
|
|
|
|
#endif // __BYTE_ORDER little or big?
|
|
|
|
#endif // !ZT_SALSA20_SSE
|
|
|
|
// Statically compute and define SSE constants
|
|
#ifdef ZT_SALSA20_SSE
|
|
class _s20sseconsts
|
|
{
|
|
public:
|
|
_s20sseconsts()
|
|
{
|
|
maskLo32 = _mm_shuffle_epi32(_mm_cvtsi32_si128(-1), _MM_SHUFFLE(1, 0, 1, 0));
|
|
maskHi32 = _mm_slli_epi64(maskLo32, 32);
|
|
}
|
|
__m128i maskLo32,maskHi32;
|
|
};
|
|
static const _s20sseconsts _S20SSECONSTANTS;
|
|
#endif
|
|
|
|
namespace ZeroTier {
|
|
|
|
void Salsa20::init(const void *key,unsigned int kbits,const void *iv,unsigned int rounds)
|
|
throw()
|
|
{
|
|
#ifdef ZT_SALSA20_SSE
|
|
const uint32_t *k = (const uint32_t *)key;
|
|
|
|
_state.i[0] = 0x61707865;
|
|
_state.i[3] = 0x6b206574;
|
|
_state.i[13] = k[0];
|
|
_state.i[10] = k[1];
|
|
_state.i[7] = k[2];
|
|
_state.i[4] = k[3];
|
|
if (kbits == 256) {
|
|
k += 4;
|
|
_state.i[1] = 0x3320646e;
|
|
_state.i[2] = 0x79622d32;
|
|
} else {
|
|
_state.i[1] = 0x3120646e;
|
|
_state.i[2] = 0x79622d36;
|
|
}
|
|
_state.i[15] = k[0];
|
|
_state.i[12] = k[1];
|
|
_state.i[9] = k[2];
|
|
_state.i[6] = k[3];
|
|
_state.i[14] = ((const uint32_t *)iv)[0];
|
|
_state.i[11] = ((const uint32_t *)iv)[1];
|
|
_state.i[5] = 0;
|
|
_state.i[8] = 0;
|
|
#else
|
|
const char *constants;
|
|
const uint8_t *k = (const uint8_t *)key;
|
|
|
|
_state.i[1] = U8TO32_LITTLE(k + 0);
|
|
_state.i[2] = U8TO32_LITTLE(k + 4);
|
|
_state.i[3] = U8TO32_LITTLE(k + 8);
|
|
_state.i[4] = U8TO32_LITTLE(k + 12);
|
|
if (kbits == 256) { /* recommended */
|
|
k += 16;
|
|
constants = "expand 32-byte k";
|
|
} else { /* kbits == 128 */
|
|
constants = "expand 16-byte k";
|
|
}
|
|
_state.i[5] = U8TO32_LITTLE(constants + 4);
|
|
_state.i[6] = U8TO32_LITTLE(((const uint8_t *)iv) + 0);
|
|
_state.i[7] = U8TO32_LITTLE(((const uint8_t *)iv) + 4);
|
|
_state.i[8] = 0;
|
|
_state.i[9] = 0;
|
|
_state.i[10] = U8TO32_LITTLE(constants + 8);
|
|
_state.i[11] = U8TO32_LITTLE(k + 0);
|
|
_state.i[12] = U8TO32_LITTLE(k + 4);
|
|
_state.i[13] = U8TO32_LITTLE(k + 8);
|
|
_state.i[14] = U8TO32_LITTLE(k + 12);
|
|
_state.i[15] = U8TO32_LITTLE(constants + 12);
|
|
_state.i[0] = U8TO32_LITTLE(constants + 0);
|
|
#endif
|
|
|
|
_roundsDiv2 = rounds / 2;
|
|
}
|
|
|
|
void Salsa20::encrypt(const void *in,void *out,unsigned int bytes)
|
|
throw()
|
|
{
|
|
uint8_t tmp[64];
|
|
const uint8_t *m = (const uint8_t *)in;
|
|
uint8_t *c = (uint8_t *)out;
|
|
uint8_t *ctarget = c;
|
|
unsigned int i;
|
|
|
|
#ifndef ZT_SALSA20_SSE
|
|
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
|
|
uint32_t j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
|
|
#endif
|
|
|
|
if (!bytes)
|
|
return;
|
|
|
|
#ifndef ZT_SALSA20_SSE
|
|
j0 = _state.i[0];
|
|
j1 = _state.i[1];
|
|
j2 = _state.i[2];
|
|
j3 = _state.i[3];
|
|
j4 = _state.i[4];
|
|
j5 = _state.i[5];
|
|
j6 = _state.i[6];
|
|
j7 = _state.i[7];
|
|
j8 = _state.i[8];
|
|
j9 = _state.i[9];
|
|
j10 = _state.i[10];
|
|
j11 = _state.i[11];
|
|
j12 = _state.i[12];
|
|
j13 = _state.i[13];
|
|
j14 = _state.i[14];
|
|
j15 = _state.i[15];
|
|
#endif
|
|
|
|
for (;;) {
|
|
if (bytes < 64) {
|
|
for (i = 0;i < bytes;++i)
|
|
tmp[i] = m[i];
|
|
m = tmp;
|
|
ctarget = c;
|
|
c = tmp;
|
|
}
|
|
|
|
#ifdef ZT_SALSA20_SSE
|
|
__m128i X0 = _mm_loadu_si128((const __m128i *)&(_state.v[0]));
|
|
__m128i X1 = _mm_loadu_si128((const __m128i *)&(_state.v[1]));
|
|
__m128i X2 = _mm_loadu_si128((const __m128i *)&(_state.v[2]));
|
|
__m128i X3 = _mm_loadu_si128((const __m128i *)&(_state.v[3]));
|
|
__m128i X0s = X0;
|
|
__m128i X1s = X1;
|
|
__m128i X2s = X2;
|
|
__m128i X3s = X3;
|
|
|
|
for (i=0;i<_roundsDiv2;++i) {
|
|
__m128i T = _mm_add_epi32(X0, X3);
|
|
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
|
|
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
|
|
T = _mm_add_epi32(X1, X0);
|
|
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
|
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
|
T = _mm_add_epi32(X2, X1);
|
|
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
|
|
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
|
|
T = _mm_add_epi32(X3, X2);
|
|
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
|
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
|
|
|
X1 = _mm_shuffle_epi32(X1, 0x93);
|
|
X2 = _mm_shuffle_epi32(X2, 0x4E);
|
|
X3 = _mm_shuffle_epi32(X3, 0x39);
|
|
|
|
T = _mm_add_epi32(X0, X1);
|
|
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
|
|
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
|
|
T = _mm_add_epi32(X3, X0);
|
|
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
|
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
|
T = _mm_add_epi32(X2, X3);
|
|
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
|
|
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
|
|
T = _mm_add_epi32(X1, X2);
|
|
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
|
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
|
|
|
X1 = _mm_shuffle_epi32(X1, 0x39);
|
|
X2 = _mm_shuffle_epi32(X2, 0x4E);
|
|
X3 = _mm_shuffle_epi32(X3, 0x93);
|
|
}
|
|
|
|
X0 = _mm_add_epi32(X0s,X0);
|
|
X1 = _mm_add_epi32(X1s,X1);
|
|
X2 = _mm_add_epi32(X2s,X2);
|
|
X3 = _mm_add_epi32(X3s,X3);
|
|
|
|
{
|
|
__m128i k02 = _mm_or_si128(_mm_slli_epi64(X0, 32), _mm_srli_epi64(X3, 32));
|
|
k02 = _mm_shuffle_epi32(k02, _MM_SHUFFLE(0, 1, 2, 3));
|
|
__m128i k13 = _mm_or_si128(_mm_slli_epi64(X1, 32), _mm_srli_epi64(X0, 32));
|
|
k13 = _mm_shuffle_epi32(k13, _MM_SHUFFLE(0, 1, 2, 3));
|
|
__m128i k20 = _mm_or_si128(_mm_and_si128(X2, _S20SSECONSTANTS.maskLo32), _mm_and_si128(X1, _S20SSECONSTANTS.maskHi32));
|
|
__m128i k31 = _mm_or_si128(_mm_and_si128(X3, _S20SSECONSTANTS.maskLo32), _mm_and_si128(X2, _S20SSECONSTANTS.maskHi32));
|
|
|
|
const float *const mv = (const float *)m;
|
|
float *const cv = (float *)c;
|
|
|
|
_mm_storeu_ps(cv,_mm_castsi128_ps(_mm_xor_si128(_mm_unpackhi_epi64(k02,k20),_mm_castps_si128(_mm_loadu_ps(mv)))));
|
|
_mm_storeu_ps(cv + 4,_mm_castsi128_ps(_mm_xor_si128(_mm_unpackhi_epi64(k13,k31),_mm_castps_si128(_mm_loadu_ps(mv + 4)))));
|
|
_mm_storeu_ps(cv + 8,_mm_castsi128_ps(_mm_xor_si128(_mm_unpacklo_epi64(k20,k02),_mm_castps_si128(_mm_loadu_ps(mv + 8)))));
|
|
_mm_storeu_ps(cv + 12,_mm_castsi128_ps(_mm_xor_si128(_mm_unpacklo_epi64(k31,k13),_mm_castps_si128(_mm_loadu_ps(mv + 12)))));
|
|
}
|
|
|
|
if (!(++_state.i[8])) {
|
|
++_state.i[5]; // state reordered for SSE
|
|
/* stopping at 2^70 bytes per nonce is user's responsibility */
|
|
}
|
|
#else
|
|
x0 = j0;
|
|
x1 = j1;
|
|
x2 = j2;
|
|
x3 = j3;
|
|
x4 = j4;
|
|
x5 = j5;
|
|
x6 = j6;
|
|
x7 = j7;
|
|
x8 = j8;
|
|
x9 = j9;
|
|
x10 = j10;
|
|
x11 = j11;
|
|
x12 = j12;
|
|
x13 = j13;
|
|
x14 = j14;
|
|
x15 = j15;
|
|
|
|
for(i=0;i<_roundsDiv2;++i) {
|
|
x4 = XOR( x4,ROTATE(PLUS( x0,x12), 7));
|
|
x8 = XOR( x8,ROTATE(PLUS( x4, x0), 9));
|
|
x12 = XOR(x12,ROTATE(PLUS( x8, x4),13));
|
|
x0 = XOR( x0,ROTATE(PLUS(x12, x8),18));
|
|
x9 = XOR( x9,ROTATE(PLUS( x5, x1), 7));
|
|
x13 = XOR(x13,ROTATE(PLUS( x9, x5), 9));
|
|
x1 = XOR( x1,ROTATE(PLUS(x13, x9),13));
|
|
x5 = XOR( x5,ROTATE(PLUS( x1,x13),18));
|
|
x14 = XOR(x14,ROTATE(PLUS(x10, x6), 7));
|
|
x2 = XOR( x2,ROTATE(PLUS(x14,x10), 9));
|
|
x6 = XOR( x6,ROTATE(PLUS( x2,x14),13));
|
|
x10 = XOR(x10,ROTATE(PLUS( x6, x2),18));
|
|
x3 = XOR( x3,ROTATE(PLUS(x15,x11), 7));
|
|
x7 = XOR( x7,ROTATE(PLUS( x3,x15), 9));
|
|
x11 = XOR(x11,ROTATE(PLUS( x7, x3),13));
|
|
x15 = XOR(x15,ROTATE(PLUS(x11, x7),18));
|
|
x1 = XOR( x1,ROTATE(PLUS( x0, x3), 7));
|
|
x2 = XOR( x2,ROTATE(PLUS( x1, x0), 9));
|
|
x3 = XOR( x3,ROTATE(PLUS( x2, x1),13));
|
|
x0 = XOR( x0,ROTATE(PLUS( x3, x2),18));
|
|
x6 = XOR( x6,ROTATE(PLUS( x5, x4), 7));
|
|
x7 = XOR( x7,ROTATE(PLUS( x6, x5), 9));
|
|
x4 = XOR( x4,ROTATE(PLUS( x7, x6),13));
|
|
x5 = XOR( x5,ROTATE(PLUS( x4, x7),18));
|
|
x11 = XOR(x11,ROTATE(PLUS(x10, x9), 7));
|
|
x8 = XOR( x8,ROTATE(PLUS(x11,x10), 9));
|
|
x9 = XOR( x9,ROTATE(PLUS( x8,x11),13));
|
|
x10 = XOR(x10,ROTATE(PLUS( x9, x8),18));
|
|
x12 = XOR(x12,ROTATE(PLUS(x15,x14), 7));
|
|
x13 = XOR(x13,ROTATE(PLUS(x12,x15), 9));
|
|
x14 = XOR(x14,ROTATE(PLUS(x13,x12),13));
|
|
x15 = XOR(x15,ROTATE(PLUS(x14,x13),18));
|
|
}
|
|
|
|
x0 = PLUS(x0,j0);
|
|
x1 = PLUS(x1,j1);
|
|
x2 = PLUS(x2,j2);
|
|
x3 = PLUS(x3,j3);
|
|
x4 = PLUS(x4,j4);
|
|
x5 = PLUS(x5,j5);
|
|
x6 = PLUS(x6,j6);
|
|
x7 = PLUS(x7,j7);
|
|
x8 = PLUS(x8,j8);
|
|
x9 = PLUS(x9,j9);
|
|
x10 = PLUS(x10,j10);
|
|
x11 = PLUS(x11,j11);
|
|
x12 = PLUS(x12,j12);
|
|
x13 = PLUS(x13,j13);
|
|
x14 = PLUS(x14,j14);
|
|
x15 = PLUS(x15,j15);
|
|
|
|
U32TO8_LITTLE(c + 0,XOR(x0,U8TO32_LITTLE(m + 0)));
|
|
U32TO8_LITTLE(c + 4,XOR(x1,U8TO32_LITTLE(m + 4)));
|
|
U32TO8_LITTLE(c + 8,XOR(x2,U8TO32_LITTLE(m + 8)));
|
|
U32TO8_LITTLE(c + 12,XOR(x3,U8TO32_LITTLE(m + 12)));
|
|
U32TO8_LITTLE(c + 16,XOR(x4,U8TO32_LITTLE(m + 16)));
|
|
U32TO8_LITTLE(c + 20,XOR(x5,U8TO32_LITTLE(m + 20)));
|
|
U32TO8_LITTLE(c + 24,XOR(x6,U8TO32_LITTLE(m + 24)));
|
|
U32TO8_LITTLE(c + 28,XOR(x7,U8TO32_LITTLE(m + 28)));
|
|
U32TO8_LITTLE(c + 32,XOR(x8,U8TO32_LITTLE(m + 32)));
|
|
U32TO8_LITTLE(c + 36,XOR(x9,U8TO32_LITTLE(m + 36)));
|
|
U32TO8_LITTLE(c + 40,XOR(x10,U8TO32_LITTLE(m + 40)));
|
|
U32TO8_LITTLE(c + 44,XOR(x11,U8TO32_LITTLE(m + 44)));
|
|
U32TO8_LITTLE(c + 48,XOR(x12,U8TO32_LITTLE(m + 48)));
|
|
U32TO8_LITTLE(c + 52,XOR(x13,U8TO32_LITTLE(m + 52)));
|
|
U32TO8_LITTLE(c + 56,XOR(x14,U8TO32_LITTLE(m + 56)));
|
|
U32TO8_LITTLE(c + 60,XOR(x15,U8TO32_LITTLE(m + 60)));
|
|
|
|
if (!(++j8)) {
|
|
++j9;
|
|
/* stopping at 2^70 bytes per nonce is user's responsibility */
|
|
}
|
|
#endif
|
|
|
|
if (bytes <= 64) {
|
|
if (bytes < 64) {
|
|
for (i = 0;i < bytes;++i)
|
|
ctarget[i] = c[i];
|
|
}
|
|
|
|
#ifndef ZT_SALSA20_SSE
|
|
_state.i[8] = j8;
|
|
_state.i[9] = j9;
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
bytes -= 64;
|
|
c += 64;
|
|
m += 64;
|
|
}
|
|
}
|
|
|
|
} // namespace ZeroTier
|