ZeroTierOne/ext/libpqxx-7.7.3/install/ubuntu22.04/include/pqxx/params.hxx
2022-06-24 10:12:36 -07:00

384 lines
13 KiB
C++

/* Helpers for prepared statements and parameterised statements.
*
* See the connection class for more about such statements.
*
* Copyright (c) 2000-2022, Jeroen T. Vermeulen.
*
* See COPYING for copyright license. If you did not receive a file called
* COPYING with this source code, please notify the distributor of this
* mistake, or contact the author.
*/
#ifndef PQXX_H_PARAMS
#define PQXX_H_PARAMS
#if !defined(PQXX_HEADER_PRE)
# error "Include libpqxx headers as <pqxx/header>, not <pqxx/header.hxx>."
#endif
#include <array>
#include "pqxx/internal/concat.hxx"
#include "pqxx/internal/statement_parameters.hxx"
#include "pqxx/types.hxx"
/// @deprecated The new @ref params class replaces all of this.
namespace pqxx::prepare
{
/// Pass a number of statement parameters only known at runtime.
/** @deprecated Use @ref params instead.
*
* When you call any of the `exec_params` functions, the number of arguments
* is normally known at compile time. This helper function supports the case
* where it is not.
*
* Use this function to pass a variable number of parameters, based on a
* sequence ranging from `begin` to `end` exclusively.
*
* The technique combines with the regular static parameters. You can use it
* to insert dynamic parameter lists in any place, or places, among the call's
* parameters. You can even insert multiple dynamic sequences.
*
* @param begin A pointer or iterator for iterating parameters.
* @param end A pointer or iterator for iterating parameters.
* @return An object representing the parameters.
*/
template<typename IT>
[[deprecated("Use the params class instead.")]] constexpr inline auto
make_dynamic_params(IT begin, IT end)
{
return pqxx::internal::dynamic_params(begin, end);
}
/// Pass a number of statement parameters only known at runtime.
/** @deprecated Use @ref params instead.
*
* When you call any of the `exec_params` functions, the number of arguments
* is normally known at compile time. This helper function supports the case
* where it is not.
*
* Use this function to pass a variable number of parameters, based on a
* container of parameter values.
*
* The technique combines with the regular static parameters. You can use it
* to insert dynamic parameter lists in any place, or places, among the call's
* parameters. You can even insert multiple dynamic containers.
*
* @param container A container of parameter values.
* @return An object representing the parameters.
*/
template<typename C>
[[deprecated("Use the params class instead.")]] constexpr inline auto
make_dynamic_params(C const &container)
{
using IT = typename C::const_iterator;
#include "pqxx/internal/ignore-deprecated-pre.hxx"
return pqxx::internal::dynamic_params<IT>{container};
#include "pqxx/internal/ignore-deprecated-post.hxx"
}
/// Pass a number of statement parameters only known at runtime.
/** @deprecated Use @ref params instead.
*
* When you call any of the `exec_params` functions, the number of arguments
* is normally known at compile time. This helper function supports the case
* where it is not.
*
* Use this function to pass a variable number of parameters, based on a
* container of parameter values.
*
* The technique combines with the regular static parameters. You can use it
* to insert dynamic parameter lists in any place, or places, among the call's
* parameters. You can even insert multiple dynamic containers.
*
* @param container A container of parameter values.
* @param accessor For each parameter `p`, pass `accessor(p)`.
* @return An object representing the parameters.
*/
template<typename C, typename ACCESSOR>
[[deprecated("Use the params class instead.")]] constexpr inline auto
make_dynamic_params(C &container, ACCESSOR accessor)
{
using IT = decltype(std::begin(container));
#include "pqxx/internal/ignore-deprecated-pre.hxx"
return pqxx::internal::dynamic_params<IT, ACCESSOR>{container, accessor};
#include "pqxx/internal/ignore-deprecated-post.hxx"
}
} // namespace pqxx::prepare
namespace pqxx
{
/// Generate parameter placeholders for use in an SQL statement.
/** When you want to pass parameters to a prepared statement or a parameterised
* statement, you insert placeholders into the SQL. During invocation, the
* database replaces those with the respective parameter values you passed.
*
* The placeholders look like `$1` (for the first parameter value), `$2` (for
* the second), and so on. You can just write those directly in your
* statement. But for those rare cases where it becomes difficult to track
* which number a placeholder should have, you can use a `placeholders` object
* to count and generate them in order.
*/
template<typename COUNTER = unsigned int> class placeholders
{
public:
/// Maximum number of parameters we support.
static inline constexpr unsigned int max_params{
(std::numeric_limits<COUNTER>::max)()};
placeholders()
{
static constexpr auto initial{"$1\0"sv};
initial.copy(std::data(m_buf), std::size(initial));
}
/// Read an ephemeral version of the current placeholder text.
/** @warning Changing the current placeholder number will overwrite this.
* Use the view immediately, or lose it.
*/
constexpr zview view() const &noexcept
{
return zview{std::data(m_buf), m_len};
}
/// Read the current placeholder text, as a `std::string`.
/** This will be slightly slower than converting to a `zview`. With most
* C++ implementations however, until you get into ridiculous numbers of
* parameters, the string will benefit from the Short String Optimization, or
* SSO.
*/
std::string get() const { return std::string(std::data(m_buf), m_len); }
/// Move on to the next parameter.
void next() &
{
if (m_current >= max_params)
throw range_error{pqxx::internal::concat(
"Too many parameters in one statement: limit is ", max_params, ".")};
++m_current;
if (m_current % 10 == 0)
{
// Carry the 1. Don't get too clever for this relatively rare
// case, just rewrite the entire number. Leave the $ in place
// though.
char *const data{std::data(m_buf)};
char *const end{string_traits<COUNTER>::into_buf(
data + 1, data + std::size(m_buf), m_current)};
// (Subtract because we don't include the trailing zero.)
m_len = check_cast<COUNTER>(end - data, "placeholders counter") - 1;
}
else
{
PQXX_LIKELY
// Shortcut for the common case: just increment that last digit.
++m_buf[m_len - 1];
}
}
/// Return the current placeholder number. The initial placeholder is 1.
COUNTER count() const noexcept { return m_current; }
private:
/// Current placeholder number. Starts at 1.
COUNTER m_current = 1;
/// Length of the current placeholder string, not including trailing zero.
COUNTER m_len = 2;
/// Text buffer where we render the placeholders, with a trailing zero.
/** We keep reusing this for every subsequent placeholder, just because we
* don't like string allocations.
*
* Maximum length is the maximum base-10 digits that COUNTER can fully
* represent, plus 1 more for the extra digit that it can only partially
* fill up, plus room for the dollar sign and the trailing zero.
*/
std::array<char, std::numeric_limits<COUNTER>::digits10 + 3> m_buf;
};
/// Build a parameter list for a parameterised or prepared statement.
/** When calling a parameterised statement or a prepared statement, you can
* pass parameters into the statement directly in the invocation, as
* additional arguments to `exec_prepared` or `exec_params`. But in
* complex cases, sometimes that's just not convenient.
*
* In those situations, you can create a `params` and append your parameters
* into that, one by one. Then you pass the `params` to `exec_prepared` or
* `exec_params`.
*
* Combinations also work: if you have a `params` containing a string
* parameter, and you call `exec_params` with an `int` argument followed by
* your `params`, you'll be passing the `int` as the first parameter and
* the string as the second. You can even insert a `params` in a `params`,
* or pass two `params` objects to a statement.
*/
class PQXX_LIBEXPORT params
{
public:
params() = default;
/// Pre-populate a `params` with `args`. Feel free to add more later.
template<typename... Args> constexpr params(Args &&...args)
{
reserve(sizeof...(args));
append_pack(std::forward<Args>(args)...);
}
/// Pre-allocate room for at least `n` parameters.
/** This is not needed, but it may improve efficiency.
*
* Reserve space if you're going to add parameters individually, and you've
* got some idea of how many there are going to be. It may save some
* memory re-allocations.
*/
void reserve(std::size_t n) &;
// C++20: constexpr.
/// Get the number of parameters currently in this `params`.
[[nodiscard]] auto size() const noexcept { return m_params.size(); }
// C++20: Use the vector's ssize() directly and go noexcept+constexpr.
/// Get the number of parameters (signed).
/** Unlike `size()`, this is not yet `noexcept`. That's because C++17's
* `std::vector` does not have a `ssize()` member function. These member
* functions are `noexcept`, but `std::size()` and `std::ssize()` are
* not.
*/
[[nodiscard]] auto ssize() const { return pqxx::internal::ssize(m_params); }
/// Append a null value.
void append() &;
/// Append a non-null zview parameter.
/** The underlying data must stay valid for as long as the `params`
* remains active.
*/
void append(zview) &;
/// Append a non-null string parameter.
/** Copies the underlying data into internal storage. For best efficiency,
* use the @ref zview variant if you can, or `std::move()`
*/
void append(std::string const &) &;
/// Append a non-null string parameter.
void append(std::string &&) &;
/// Append a non-null binary parameter.
/** The underlying data must stay valid for as long as the `params`
* remains active.
*/
void append(std::basic_string_view<std::byte>) &;
/// Append a non-null binary parameter.
/** Copies the underlying data into internal storage. For best efficiency,
* use the `std::basic_string_view<std::byte>` variant if you can, or
* `std::move()`.
*/
void append(std::basic_string<std::byte> const &) &;
#if defined(PQXX_HAVE_CONCEPTS)
/// Append a non-null binary parameter.
/** The `data` object must stay in place and unchanged, for as long as the
* `params` remains active.
*/
template<binary DATA> void append(DATA const &data) &
{
append(
std::basic_string_view<std::byte>{std::data(data), std::size(data)});
}
#endif // PQXX_HAVE_CONCEPTS
/// Append a non-null binary parameter.
void append(std::basic_string<std::byte> &&) &;
/// @deprecated Append binarystring parameter.
/** The binarystring must stay valid for as long as the `params` remains
* active.
*/
void append(binarystring const &value) &;
/// Append all parameters from value.
template<typename IT, typename ACCESSOR>
void append(pqxx::internal::dynamic_params<IT, ACCESSOR> const &value) &
{
for (auto &param : value) append(value.access(param));
}
void append(params const &value) &;
void append(params &&value) &;
/// Append a non-null parameter, converting it to its string
/// representation.
template<typename TYPE> void append(TYPE const &value) &
{
// TODO: Pool storage for multiple string conversions in one buffer?
if constexpr (nullness<strip_t<TYPE>>::always_null)
{
ignore_unused(value);
m_params.emplace_back();
}
else if (is_null(value))
{
m_params.emplace_back();
}
else
{
m_params.emplace_back(entry{to_string(value)});
}
}
/// Append all elements of `range` as parameters.
template<PQXX_RANGE_ARG RANGE> void append_multi(RANGE const &range) &
{
#if defined(PQXX_HAVE_CONCEPTS)
if constexpr (std::ranges::sized_range<RANGE>)
reserve(std::size(*this) + std::size(range));
#endif
for (auto &value : range) append(value);
}
/// For internal use: Generate a `params` object for use in calls.
/** The params object encapsulates the pointers which we will need to pass
* to libpq when calling a parameterised or prepared statement.
*
* The pointers in the params will refer to storage owned by either the
* params object, or the caller. This is not a problem because a
* `c_params` object is guaranteed to live only while the call is going on.
* As soon as we climb back out of that call tree, we're done with that
* data.
*/
pqxx::internal::c_params make_c_params() const;
private:
/// Recursively append a pack of params.
template<typename Arg, typename... More>
void append_pack(Arg &&arg, More &&...args)
{
this->append(std::forward<Arg>(arg));
// Recurse for remaining args.
append_pack(std::forward<More>(args)...);
}
/// Terminating case: append an empty parameter pack. It's not hard BTW.
constexpr void append_pack() noexcept {}
// The way we store a parameter depends on whether it's binary or text
// (most types are text), and whether we're responsible for storing the
// contents.
using entry = std::variant<
std::nullptr_t, zview, std::string, std::basic_string_view<std::byte>,
std::basic_string<std::byte>>;
std::vector<entry> m_params;
static constexpr std::string_view s_overflow{
"Statement parameter length overflow."sv};
};
} // namespace pqxx
#endif