ZeroTierOne/osdep/Binder.hpp

526 lines
16 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_BINDER_HPP
#define ZT_BINDER_HPP
#include "../node/Constants.hpp"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __WINDOWS__
#include <ShlObj.h>
#include <WinSock2.h>
#include <Windows.h>
#include <iphlpapi.h>
#include <netioapi.h>
#else
#include <ifaddrs.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#ifdef __LINUX__
#include <net/if.h>
#include <sys/ioctl.h>
#include <linux/if_addr.h>
#endif
#endif
#if defined(__unix__) && !defined(__LINUX__)
#include <net/if.h>
#include <netinet6/in6_var.h>
#include <sys/ioctl.h>
#endif
#include "../node/InetAddress.hpp"
#include "../node/Mutex.hpp"
#include "../node/Utils.hpp"
#include "OSUtils.hpp"
#include "Phy.hpp"
#include <algorithm>
#include <atomic>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
// Period between refreshes of bindings
#define ZT_BINDER_REFRESH_PERIOD 30000
// Max number of bindings
#define ZT_BINDER_MAX_BINDINGS 256
namespace ZeroTier {
/**
* Enumerates local devices and binds to all potential ZeroTier path endpoints
*
* This replaces binding to wildcard (0.0.0.0 and ::0) with explicit binding
* as part of the path to default gateway support. Under the hood it uses
* different queries on different OSes to enumerate devices, and also exposes
* device enumeration and endpoint IP data for use elsewhere.
*
* On OSes that do not support local port enumeration or where this is not
* meaningful, this degrades to binding to wildcard.
*/
class Binder {
private:
struct _Binding {
_Binding() : udpSock((PhySocket*)0), tcpListenSock((PhySocket*)0)
{
}
PhySocket* udpSock;
PhySocket* tcpListenSock;
InetAddress address;
};
public:
Binder() : _bindingCount(0)
{
}
/**
* Close all bound ports, should be called on shutdown
*
* @param phy Physical interface
*/
template <typename PHY_HANDLER_TYPE> void closeAll(Phy<PHY_HANDLER_TYPE>& phy)
{
Mutex::Lock _l(_lock);
for (unsigned int b = 0, c = _bindingCount; b < c; ++b) {
phy.close(_bindings[b].udpSock, false);
phy.close(_bindings[b].tcpListenSock, false);
}
_bindingCount = 0;
}
/**
* Scan local devices and addresses and rebind TCP and UDP
*
* This should be called after wake from sleep, on detected network device
* changes, on startup, or periodically (e.g. every 30-60s).
*
* @param phy Physical interface
* @param ports Ports to bind on all interfaces
* @param portCount Number of ports
* @param explicitBind If present, override interface IP detection and bind to these (if possible)
* @param ifChecker Interface checker function to see if an interface should be used
* @tparam PHY_HANDLER_TYPE Type for Phy<> template
* @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method
*/
template <typename PHY_HANDLER_TYPE, typename INTERFACE_CHECKER> void refresh(Phy<PHY_HANDLER_TYPE>& phy, unsigned int* ports, unsigned int portCount, const std::vector<InetAddress> explicitBind, INTERFACE_CHECKER& ifChecker)
{
std::map<InetAddress, std::string> localIfAddrs;
PhySocket *udps, *tcps;
Mutex::Lock _l(_lock);
bool interfacesEnumerated = true;
if (explicitBind.empty()) {
#ifdef __WINDOWS__
char aabuf[32768];
ULONG aalen = sizeof(aabuf);
if (GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_ANYCAST | GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER, (void*)0, reinterpret_cast<PIP_ADAPTER_ADDRESSES>(aabuf), &aalen) == NO_ERROR) {
PIP_ADAPTER_ADDRESSES a = reinterpret_cast<PIP_ADAPTER_ADDRESSES>(aabuf);
while (a) {
PIP_ADAPTER_UNICAST_ADDRESS ua = a->FirstUnicastAddress;
while (ua) {
// Don't bind temporary/random IPv6 addresses
if (ua->SuffixOrigin != IpSuffixOriginRandom) {
InetAddress ip(ua->Address.lpSockaddr);
char strBuf[128] = { 0 };
wcstombs(strBuf, a->FriendlyName, sizeof(strBuf));
if (ifChecker.shouldBindInterface(strBuf, ip)) {
switch (ip.ipScope()) {
default:
break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for (int x = 0; x < (int)portCount; ++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress, std::string>(ip, std::string()));
}
break;
}
}
}
ua = ua->Next;
}
a = a->Next;
}
}
else {
interfacesEnumerated = false;
}
#else // not __WINDOWS__
/* On Linux we use an alternative method if available since getifaddrs()
* gets very slow when there are lots of network namespaces. This won't
* work unless /proc/PID/net/if_inet6 exists and it may not on some
* embedded systems, so revert to getifaddrs() there. */
#ifdef __LINUX__
char fn[256], tmp[256];
std::set<std::string> ifnames;
const unsigned long pid = (unsigned long)getpid();
// Get all device names
OSUtils::ztsnprintf(fn, sizeof(fn), "/proc/%lu/net/dev", pid);
FILE* procf = fopen(fn, "r");
if (procf) {
while (fgets(tmp, sizeof(tmp), procf)) {
tmp[255] = 0;
char* saveptr = (char*)0;
for (char* f = Utils::stok(tmp, " \t\r\n:|", &saveptr); (f); f = Utils::stok((char*)0, " \t\r\n:|", &saveptr)) {
if ((strcmp(f, "Inter-") != 0) && (strcmp(f, "face") != 0) && (f[0] != 0))
ifnames.insert(f);
break; // we only want the first field
}
}
fclose(procf);
}
else {
interfacesEnumerated = false;
}
// Get IPv6 addresses (and any device names we don't already know)
OSUtils::ztsnprintf(fn, sizeof(fn), "/proc/%lu/net/if_inet6", pid);
procf = fopen(fn, "r");
if (procf) {
while (fgets(tmp, sizeof(tmp), procf)) {
tmp[255] = 0;
char* saveptr = (char*)0;
unsigned char ipbits[16];
memset(ipbits, 0, sizeof(ipbits));
char* devname = (char*)0;
int flags = 0;
int n = 0;
for (char* f = Utils::stok(tmp, " \t\r\n", &saveptr); (f); f = Utils::stok((char*)0, " \t\r\n", &saveptr)) {
switch (n++) {
case 0: // IP in hex
Utils::unhex(f, 32, ipbits, 16);
break;
case 4:
flags = atoi(f);
break;
case 5: // device name
devname = f;
break;
}
}
if ( (flags & IFA_F_TEMPORARY) != 0) {
continue;
}
if (devname) {
ifnames.insert(devname);
InetAddress ip(ipbits, 16, 0);
if (ifChecker.shouldBindInterface(devname, ip)) {
switch (ip.ipScope()) {
default:
break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for (int x = 0; x < (int)portCount; ++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress, std::string>(ip, std::string(devname)));
}
break;
}
}
}
}
fclose(procf);
}
// Get IPv4 addresses for each device
if (! ifnames.empty()) {
const int controlfd = (int)socket(AF_INET, SOCK_DGRAM, 0);
struct ifconf configuration;
configuration.ifc_len = 0;
configuration.ifc_buf = nullptr;
if (controlfd < 0)
goto ip4_address_error;
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0)
goto ip4_address_error;
configuration.ifc_buf = (char*)malloc(configuration.ifc_len);
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0)
goto ip4_address_error;
for (int i = 0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i++) {
struct ifreq& request = configuration.ifc_req[i];
struct sockaddr* addr = &request.ifr_ifru.ifru_addr;
if (addr->sa_family != AF_INET)
continue;
std::string ifname = request.ifr_ifrn.ifrn_name;
// name can either be just interface name or interface name followed by ':' and arbitrary label
if (ifname.find(':') != std::string::npos)
ifname = ifname.substr(0, ifname.find(':'));
InetAddress ip(&(((struct sockaddr_in*)addr)->sin_addr), 4, 0);
if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) {
switch (ip.ipScope()) {
default:
break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for (int x = 0; x < (int)portCount; ++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress, std::string>(ip, ifname));
}
break;
}
}
}
ip4_address_error:
free(configuration.ifc_buf);
if (controlfd > 0)
close(controlfd);
}
const bool gotViaProc = (! localIfAddrs.empty());
#else
const bool gotViaProc = false;
#endif
#if ! defined(ZT_SDK) || ! defined(__ANDROID__) // getifaddrs() freeifaddrs() not available on Android
if (! gotViaProc) {
struct ifaddrs* ifatbl = (struct ifaddrs*)0;
struct ifaddrs* ifa;
#if defined(__unix__) && !defined(__LINUX__)
// set up an IPv6 socket so we can check the state of interfaces via SIOCGIFAFLAG_IN6
int infoSock = socket(AF_INET6, SOCK_DGRAM, 0);
#endif
if ((getifaddrs(&ifatbl) == 0) && (ifatbl)) {
ifa = ifatbl;
while (ifa) {
if ((ifa->ifa_name) && (ifa->ifa_addr)) {
InetAddress ip = *(ifa->ifa_addr);
#if defined(__unix__) && !defined(__LINUX__)
// Check if the address is an IPv6 Temporary Address, macOS/BSD version
if (ifa->ifa_addr->sa_family == AF_INET6) {
struct sockaddr_in6* sa6 = (struct sockaddr_in6*)ifa->ifa_addr;
struct in6_ifreq ifr6;
memset(&ifr6, 0, sizeof(ifr6));
strcpy(ifr6.ifr_name, ifa->ifa_name);
ifr6.ifr_ifru.ifru_addr = *sa6;
int flags = 0;
if (ioctl(infoSock, SIOCGIFAFLAG_IN6, (unsigned long long)&ifr6) != -1) {
flags = ifr6.ifr_ifru.ifru_flags6;
}
// if this is a temporary IPv6 address, skip to the next address
if (flags & IN6_IFF_TEMPORARY) {
char buf[64];
#ifdef ZT_TRACE
fprintf(stderr, "skip binding to temporary IPv6 address: %s\n", ip.toIpString(buf));
#endif
ifa = ifa->ifa_next;
continue;
}
}
#endif
if (ifChecker.shouldBindInterface(ifa->ifa_name, ip)) {
switch (ip.ipScope()) {
default:
break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for (int x = 0; x < (int)portCount; ++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress, std::string>(ip, std::string(ifa->ifa_name)));
}
break;
}
}
}
ifa = ifa->ifa_next;
}
freeifaddrs(ifatbl);
}
else {
interfacesEnumerated = false;
}
#if defined(__unix__) && !defined(__LINUX__)
close(infoSock);
#endif
}
#endif
#endif
}
else {
for (std::vector<InetAddress>::const_iterator i(explicitBind.begin()); i != explicitBind.end(); ++i) {
InetAddress ip = InetAddress(*i);
for (int x = 0; x < (int)portCount; ++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress, std::string>(ip, std::string()));
}
}
}
// Default to binding to wildcard if we can't enumerate addresses
if (! interfacesEnumerated && localIfAddrs.empty()) {
for (int x = 0; x < (int)portCount; ++x) {
localIfAddrs.insert(std::pair<InetAddress, std::string>(InetAddress((uint32_t)0, ports[x]), std::string()));
localIfAddrs.insert(std::pair<InetAddress, std::string>(InetAddress((const void*)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16, ports[x]), std::string()));
}
}
const unsigned int oldBindingCount = _bindingCount;
_bindingCount = 0;
// Save bindings that are still valid, close those that are not
for (unsigned int b = 0; b < oldBindingCount; ++b) {
if (localIfAddrs.find(_bindings[b].address) != localIfAddrs.end()) {
if (_bindingCount != b)
_bindings[(unsigned int)_bindingCount] = _bindings[b];
++_bindingCount;
}
else {
PhySocket* const udps = _bindings[b].udpSock;
PhySocket* const tcps = _bindings[b].tcpListenSock;
_bindings[b].udpSock = (PhySocket*)0;
_bindings[b].tcpListenSock = (PhySocket*)0;
phy.close(udps, false);
phy.close(tcps, false);
}
}
// Create new bindings for those not already bound
for (std::map<InetAddress, std::string>::const_iterator ii(localIfAddrs.begin()); ii != localIfAddrs.end(); ++ii) {
unsigned int bi = 0;
while (bi != _bindingCount) {
if (_bindings[bi].address == ii->first)
break;
++bi;
}
if (bi == _bindingCount) {
udps = phy.udpBind(reinterpret_cast<const struct sockaddr*>(&(ii->first)), (void*)0, ZT_UDP_DESIRED_BUF_SIZE);
tcps = phy.tcpListen(reinterpret_cast<const struct sockaddr*>(&(ii->first)), (void*)0);
if ((udps) && (tcps)) {
#ifdef __LINUX__
// Bind Linux sockets to their device so routes that we manage do not override physical routes (wish all platforms had this!)
if (ii->second.length() > 0) {
char tmp[256];
Utils::scopy(tmp, sizeof(tmp), ii->second.c_str());
int fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(udps);
if (fd >= 0)
setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, tmp, strlen(tmp));
fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(tcps);
if (fd >= 0)
setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, tmp, strlen(tmp));
}
#endif // __LINUX__
if (_bindingCount < ZT_BINDER_MAX_BINDINGS) {
_bindings[_bindingCount].udpSock = udps;
_bindings[_bindingCount].tcpListenSock = tcps;
_bindings[_bindingCount].address = ii->first;
phy.setIfName(udps, (char*)ii->second.c_str(), (int)ii->second.length());
++_bindingCount;
}
}
else {
phy.close(udps, false);
phy.close(tcps, false);
}
}
}
}
/**
* @return All currently bound local interface addresses
*/
inline std::vector<InetAddress> allBoundLocalInterfaceAddresses() const
{
std::vector<InetAddress> aa;
Mutex::Lock _l(_lock);
for (unsigned int b = 0, c = _bindingCount; b < c; ++b)
aa.push_back(_bindings[b].address);
return aa;
}
/**
* Send from all bound UDP sockets
*/
template <typename PHY_HANDLER_TYPE> inline bool udpSendAll(Phy<PHY_HANDLER_TYPE>& phy, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl)
{
bool r = false;
Mutex::Lock _l(_lock);
for (unsigned int b = 0, c = _bindingCount; b < c; ++b) {
if (ttl)
phy.setIp4UdpTtl(_bindings[b].udpSock, ttl);
if (phy.udpSend(_bindings[b].udpSock, (const struct sockaddr*)addr, data, len))
r = true;
if (ttl)
phy.setIp4UdpTtl(_bindings[b].udpSock, 255);
}
return r;
}
/**
* @param addr Address to check
* @return True if this is a bound local interface address
*/
inline bool isBoundLocalInterfaceAddress(const InetAddress& addr) const
{
Mutex::Lock _l(_lock);
for (unsigned int b = 0; b < _bindingCount; ++b) {
if (_bindings[b].address == addr)
return true;
}
return false;
}
/**
* Quickly check that a UDP socket is valid
*
* @param udpSock UDP socket to check
* @return True if socket is currently bound/allocated
*/
inline bool isUdpSocketValid(PhySocket* const udpSock)
{
for (unsigned int b = 0, c = _bindingCount; b < c; ++b) {
if (_bindings[b].udpSock == udpSock)
return (b < _bindingCount); // double check atomic which may have changed
}
return false;
}
private:
_Binding _bindings[ZT_BINDER_MAX_BINDINGS];
std::atomic<unsigned int> _bindingCount;
Mutex _lock;
};
} // namespace ZeroTier
#endif