mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-23 14:52:24 +00:00
753 lines
27 KiB
C++
753 lines
27 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2015 ZeroTier, Inc.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#ifdef ZT_ENABLE_CLUSTER
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
#include "../version.h"
|
|
|
|
#include "Cluster.hpp"
|
|
#include "RuntimeEnvironment.hpp"
|
|
#include "MulticastGroup.hpp"
|
|
#include "CertificateOfMembership.hpp"
|
|
#include "Salsa20.hpp"
|
|
#include "Poly1305.hpp"
|
|
#include "Packet.hpp"
|
|
#include "Identity.hpp"
|
|
#include "Peer.hpp"
|
|
#include "Switch.hpp"
|
|
#include "Node.hpp"
|
|
|
|
namespace ZeroTier {
|
|
|
|
static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
|
|
throw()
|
|
{
|
|
double dx = ((double)x2 - (double)x1);
|
|
double dy = ((double)y2 - (double)y1);
|
|
double dz = ((double)z2 - (double)z1);
|
|
return sqrt((dx * dx) + (dy * dy) + (dz * dz));
|
|
}
|
|
|
|
Cluster::Cluster(
|
|
const RuntimeEnvironment *renv,
|
|
uint16_t id,
|
|
const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
|
|
int32_t x,
|
|
int32_t y,
|
|
int32_t z,
|
|
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
|
|
void *sendFunctionArg,
|
|
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
|
|
void *addressToLocationFunctionArg) :
|
|
RR(renv),
|
|
_sendFunction(sendFunction),
|
|
_sendFunctionArg(sendFunctionArg),
|
|
_addressToLocationFunction(addressToLocationFunction),
|
|
_addressToLocationFunctionArg(addressToLocationFunctionArg),
|
|
_x(x),
|
|
_y(y),
|
|
_z(z),
|
|
_id(id),
|
|
_zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
|
|
_members(new _Member[ZT_CLUSTER_MAX_MEMBERS])
|
|
{
|
|
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
|
|
|
|
// Generate master secret by hashing the secret from our Identity key pair
|
|
RR->identity.sha512PrivateKey(_masterSecret);
|
|
|
|
// Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
|
|
memcpy(stmp,_masterSecret,sizeof(stmp));
|
|
stmp[0] ^= Utils::hton(id);
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
memcpy(_key,stmp,sizeof(_key));
|
|
Utils::burn(stmp,sizeof(stmp));
|
|
}
|
|
|
|
Cluster::~Cluster()
|
|
{
|
|
Utils::burn(_masterSecret,sizeof(_masterSecret));
|
|
Utils::burn(_key,sizeof(_key));
|
|
delete [] _members;
|
|
}
|
|
|
|
void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
|
|
{
|
|
Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
|
|
{
|
|
// FORMAT: <[16] iv><[8] MAC><... data>
|
|
if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
|
|
return;
|
|
|
|
// 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
|
|
char keytmp[32];
|
|
memcpy(keytmp,_key,32);
|
|
for(int i=0;i<8;++i)
|
|
keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
|
|
Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
|
|
Utils::burn(keytmp,sizeof(keytmp));
|
|
|
|
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
|
|
char polykey[ZT_POLY1305_KEY_LEN];
|
|
memset(polykey,0,sizeof(polykey));
|
|
s20.encrypt12(polykey,polykey,sizeof(polykey));
|
|
|
|
// Compute 16-byte MAC
|
|
char mac[ZT_POLY1305_MAC_LEN];
|
|
Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
|
|
|
|
// Check first 8 bytes of MAC against 64-bit MAC in stream
|
|
if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
|
|
return;
|
|
|
|
// Decrypt!
|
|
dmsg.setSize(len - 24);
|
|
s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
|
|
}
|
|
|
|
if (dmsg.size() < 4)
|
|
return;
|
|
const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
|
|
unsigned int ptr = 2;
|
|
if (fromMemberId == _id) // sanity check: we don't talk to ourselves
|
|
return;
|
|
const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
|
|
ptr += 2;
|
|
if (toMemberId != _id) // sanity check: message not for us?
|
|
return;
|
|
|
|
{ // make sure sender is actually considered a member
|
|
Mutex::Lock _l3(_memberIds_m);
|
|
if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
|
|
return;
|
|
}
|
|
|
|
{
|
|
_Member &m = _members[fromMemberId];
|
|
Mutex::Lock mlck(m.lock);
|
|
|
|
try {
|
|
while (ptr < dmsg.size()) {
|
|
const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
const unsigned int nextPtr = ptr + mlen;
|
|
if (nextPtr > dmsg.size())
|
|
break;
|
|
|
|
int mtype = -1;
|
|
try {
|
|
switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
|
|
default:
|
|
break;
|
|
|
|
case STATE_MESSAGE_ALIVE: {
|
|
ptr += 7; // skip version stuff, not used yet
|
|
m.x = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
m.y = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
m.z = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
ptr += 8; // skip local clock, not used
|
|
m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
|
|
ptr += 8; // skip flags, unused
|
|
#ifdef ZT_TRACE
|
|
std::string addrs;
|
|
#endif
|
|
unsigned int physicalAddressCount = dmsg[ptr++];
|
|
m.zeroTierPhysicalEndpoints.clear();
|
|
for(unsigned int i=0;i<physicalAddressCount;++i) {
|
|
m.zeroTierPhysicalEndpoints.push_back(InetAddress());
|
|
ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
|
|
if (!(m.zeroTierPhysicalEndpoints.back())) {
|
|
m.zeroTierPhysicalEndpoints.pop_back();
|
|
}
|
|
#ifdef ZT_TRACE
|
|
else {
|
|
if (addrs.length() > 0)
|
|
addrs.push_back(',');
|
|
addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
|
|
}
|
|
#endif
|
|
}
|
|
m.lastReceivedAliveAnnouncement = RR->node->now();
|
|
#ifdef ZT_TRACE
|
|
TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
|
|
#endif
|
|
} break;
|
|
|
|
case STATE_MESSAGE_HAVE_PEER: {
|
|
try {
|
|
Identity id;
|
|
ptr += id.deserialize(dmsg,ptr);
|
|
if (id) {
|
|
RR->topology->saveIdentity(id);
|
|
|
|
{ // Add or update peer affinity entry
|
|
_PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
|
|
Mutex::Lock _l2(_peerAffinities_m);
|
|
std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
|
|
if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
|
|
i->timestamp = pa.timestamp;
|
|
} else {
|
|
_peerAffinities.push_back(pa);
|
|
std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
|
|
}
|
|
}
|
|
|
|
TRACE("[%u] has %s",(unsigned int)fromMemberId,id.address().toString().c_str());
|
|
}
|
|
} catch ( ... ) {
|
|
// ignore invalid identities
|
|
}
|
|
} break;
|
|
|
|
case STATE_MESSAGE_MULTICAST_LIKE: {
|
|
const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
|
|
const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
|
|
const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
|
|
const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
|
|
RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
|
|
TRACE("[%u] %s likes %s/%u on %.16llu",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
|
|
} break;
|
|
|
|
case STATE_MESSAGE_COM: {
|
|
CertificateOfMembership com;
|
|
ptr += com.deserialize(dmsg,ptr);
|
|
if (com) {
|
|
TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
|
|
}
|
|
} break;
|
|
|
|
case STATE_MESSAGE_RELAY: {
|
|
const unsigned int numRemotePeerPaths = dmsg[ptr++];
|
|
InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
|
|
for(unsigned int i=0;i<numRemotePeerPaths;++i)
|
|
ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
|
|
const unsigned int packetLen = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
const void *packet = (const void *)dmsg.field(ptr,packetLen); ptr += packetLen;
|
|
|
|
if (packetLen >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { // ignore anything too short to contain a dest address
|
|
const Address destinationAddress(reinterpret_cast<const char *>(packet) + 8,ZT_ADDRESS_LENGTH);
|
|
TRACE("[%u] relay %u bytes to %s (%u remote paths included)",(unsigned int)fromMemberId,packetLen,destinationAddress.toString().c_str(),numRemotePeerPaths);
|
|
|
|
SharedPtr<Peer> destinationPeer(RR->topology->getPeer(destinationAddress));
|
|
if (destinationPeer) {
|
|
if (
|
|
(destinationPeer->send(RR,packet,packetLen,RR->node->now()))&&
|
|
(numRemotePeerPaths > 0)&&
|
|
(packetLen >= 18)&&
|
|
(reinterpret_cast<const unsigned char *>(packet)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
|
|
) {
|
|
// If remote peer paths were sent with this relayed packet, we do
|
|
// RENDEZVOUS. It's handled here for cluster-relayed packets since
|
|
// we don't have both Peer records so this is a different path.
|
|
|
|
const Address remotePeerAddress(reinterpret_cast<const char *>(packet) + 13,ZT_ADDRESS_LENGTH);
|
|
|
|
InetAddress bestDestV4,bestDestV6;
|
|
destinationPeer->getBestActiveAddresses(RR->node->now(),bestDestV4,bestDestV6);
|
|
InetAddress bestRemoteV4,bestRemoteV6;
|
|
for(unsigned int i=0;i<numRemotePeerPaths;++i) {
|
|
if ((bestRemoteV4)&&(bestRemoteV6))
|
|
break;
|
|
switch(remotePeerPaths[i].ss_family) {
|
|
case AF_INET:
|
|
if (!bestRemoteV4)
|
|
bestRemoteV4 = remotePeerPaths[i];
|
|
break;
|
|
case AF_INET6:
|
|
if (!bestRemoteV6)
|
|
bestRemoteV6 = remotePeerPaths[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
Packet rendezvousForDest(destinationAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
rendezvousForDest.append((uint8_t)0);
|
|
remotePeerAddress.appendTo(rendezvousForDest);
|
|
|
|
Buffer<2048> rendezvousForOtherEnd;
|
|
remotePeerAddress.appendTo(rendezvousForOtherEnd);
|
|
rendezvousForOtherEnd.append((uint8_t)Packet::VERB_RENDEZVOUS);
|
|
const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForOtherEnd.size();
|
|
rendezvousForOtherEnd.addSize(2); // space for actual packet payload length
|
|
rendezvousForOtherEnd.append((uint8_t)0); // flags == 0
|
|
destinationAddress.appendTo(rendezvousForOtherEnd);
|
|
|
|
bool haveMatch = false;
|
|
if ((bestDestV6)&&(bestRemoteV6)) {
|
|
haveMatch = true;
|
|
|
|
rendezvousForDest.append((uint16_t)bestRemoteV6.port());
|
|
rendezvousForDest.append((uint8_t)16);
|
|
rendezvousForDest.append(bestRemoteV6.rawIpData(),16);
|
|
|
|
rendezvousForOtherEnd.append((uint16_t)bestDestV6.port());
|
|
rendezvousForOtherEnd.append((uint8_t)16);
|
|
rendezvousForOtherEnd.append(bestDestV6.rawIpData(),16);
|
|
rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
|
|
} else if ((bestDestV4)&&(bestRemoteV4)) {
|
|
haveMatch = true;
|
|
|
|
rendezvousForDest.append((uint16_t)bestRemoteV4.port());
|
|
rendezvousForDest.append((uint8_t)4);
|
|
rendezvousForDest.append(bestRemoteV4.rawIpData(),4);
|
|
|
|
rendezvousForOtherEnd.append((uint16_t)bestDestV4.port());
|
|
rendezvousForOtherEnd.append((uint8_t)4);
|
|
rendezvousForOtherEnd.append(bestDestV4.rawIpData(),4);
|
|
rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
|
|
}
|
|
|
|
if (haveMatch) {
|
|
_send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForOtherEnd.data(),rendezvousForOtherEnd.size());
|
|
RR->sw->send(rendezvousForDest,true,0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case STATE_MESSAGE_PROXY_SEND: {
|
|
const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
|
|
const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
|
|
const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
Packet outp(rcpt,RR->identity.address(),verb);
|
|
outp.append(dmsg.field(ptr,len),len);
|
|
RR->sw->send(outp,true,0);
|
|
TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
|
|
} break;
|
|
}
|
|
} catch ( ... ) {
|
|
TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
|
|
// drop invalids
|
|
}
|
|
|
|
ptr = nextPtr;
|
|
}
|
|
} catch ( ... ) {
|
|
TRACE("invalid message (outer loop), discarding");
|
|
// drop invalids
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len)
|
|
{
|
|
if (len > 16384) // sanity check
|
|
return false;
|
|
|
|
uint64_t mostRecentTimestamp = 0;
|
|
uint16_t canHasPeer = 0;
|
|
|
|
{ // Anyone got this peer?
|
|
Mutex::Lock _l2(_peerAffinities_m);
|
|
std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),_PeerAffinity(toPeerAddress,0,0))); // O(log(n))
|
|
while ((i != _peerAffinities.end())&&(i->address() == toPeerAddress)) {
|
|
uint16_t mid = i->clusterMemberId();
|
|
if ((mid != _id)&&(i->timestamp > mostRecentTimestamp)) {
|
|
mostRecentTimestamp = i->timestamp;
|
|
canHasPeer = mid;
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint64_t now = RR->node->now();
|
|
if ((now - mostRecentTimestamp) < ZT_PEER_ACTIVITY_TIMEOUT) {
|
|
Buffer<16384> buf;
|
|
|
|
InetAddress v4,v6;
|
|
if (fromPeerAddress) {
|
|
SharedPtr<Peer> fromPeer(RR->topology->getPeer(fromPeerAddress));
|
|
if (fromPeer)
|
|
fromPeer->getBestActiveAddresses(now,v4,v6);
|
|
}
|
|
buf.append((uint8_t)( (v4) ? ((v6) ? 2 : 1) : ((v6) ? 1 : 0) ));
|
|
if (v4)
|
|
v4.serialize(buf);
|
|
if (v6)
|
|
v6.serialize(buf);
|
|
buf.append((uint16_t)len);
|
|
buf.append(data,len);
|
|
|
|
{
|
|
Mutex::Lock _l2(_members[canHasPeer].lock);
|
|
_send(canHasPeer,STATE_MESSAGE_RELAY,buf.data(),buf.size());
|
|
}
|
|
|
|
TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
|
|
return true;
|
|
} else {
|
|
TRACE("sendViaCluster(): unable to relay %u bytes from %s to %s since no cluster members seem to have it!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Cluster::replicateHavePeer(const Identity &peerId)
|
|
{
|
|
{ // Use peer affinity table to track our own last announce time for peers
|
|
_PeerAffinity pa(peerId.address(),_id,RR->node->now());
|
|
Mutex::Lock _l2(_peerAffinities_m);
|
|
std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
|
|
if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
|
|
if ((pa.timestamp - i->timestamp) >= ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
|
|
i->timestamp = pa.timestamp;
|
|
// continue to announcement
|
|
} else {
|
|
// we've already announced this peer recently, so skip
|
|
return;
|
|
}
|
|
} else {
|
|
_peerAffinities.push_back(pa);
|
|
std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
|
|
// continue to announcement
|
|
}
|
|
}
|
|
|
|
// announcement
|
|
Buffer<4096> buf;
|
|
peerId.serialize(buf,false);
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
|
|
{
|
|
Buffer<2048> buf;
|
|
buf.append((uint64_t)nwid);
|
|
peerAddress.appendTo(buf);
|
|
group.mac().appendTo(buf);
|
|
buf.append((uint32_t)group.adi());
|
|
TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
|
|
{
|
|
Buffer<2048> buf;
|
|
com.serialize(buf);
|
|
TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::doPeriodicTasks()
|
|
{
|
|
const uint64_t now = RR->node->now();
|
|
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
|
|
if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
|
|
Buffer<2048> alive;
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
|
|
alive.append((uint8_t)ZT_PROTO_VERSION);
|
|
if (_addressToLocationFunction) {
|
|
alive.append((int32_t)_x);
|
|
alive.append((int32_t)_y);
|
|
alive.append((int32_t)_z);
|
|
} else {
|
|
alive.append((int32_t)0);
|
|
alive.append((int32_t)0);
|
|
alive.append((int32_t)0);
|
|
}
|
|
alive.append((uint64_t)now);
|
|
alive.append((uint64_t)0); // TODO: compute and send load average
|
|
alive.append((uint64_t)0); // unused/reserved flags
|
|
alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
|
|
for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
|
|
pe->serialize(alive);
|
|
_send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
|
|
_members[*mid].lastAnnouncedAliveTo = now;
|
|
}
|
|
|
|
_flush(*mid); // does nothing if nothing to flush
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::addMember(uint16_t memberId)
|
|
{
|
|
if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
|
|
return;
|
|
|
|
Mutex::Lock _l2(_members[memberId].lock);
|
|
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
|
|
return;
|
|
_memberIds.push_back(memberId);
|
|
std::sort(_memberIds.begin(),_memberIds.end());
|
|
}
|
|
|
|
_members[memberId].clear();
|
|
|
|
// Generate this member's message key from the master and its ID
|
|
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
|
|
memcpy(stmp,_masterSecret,sizeof(stmp));
|
|
stmp[0] ^= Utils::hton(memberId);
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
|
|
Utils::burn(stmp,sizeof(stmp));
|
|
|
|
// Prepare q
|
|
_members[memberId].q.clear();
|
|
char iv[16];
|
|
Utils::getSecureRandom(iv,16);
|
|
_members[memberId].q.append(iv,16);
|
|
_members[memberId].q.addSize(8); // room for MAC
|
|
_members[memberId].q.append((uint16_t)_id);
|
|
_members[memberId].q.append((uint16_t)memberId);
|
|
}
|
|
|
|
void Cluster::removeMember(uint16_t memberId)
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
std::vector<uint16_t> newMemberIds;
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
if (*mid != memberId)
|
|
newMemberIds.push_back(*mid);
|
|
}
|
|
_memberIds = newMemberIds;
|
|
}
|
|
|
|
bool Cluster::redirectPeer(const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
|
|
{
|
|
if (!peerPhysicalAddress) // sanity check
|
|
return false;
|
|
|
|
if (_addressToLocationFunction) {
|
|
// Pick based on location if it can be determined
|
|
int px = 0,py = 0,pz = 0;
|
|
if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
|
|
TRACE("no geolocation available for %s",peerPhysicalAddress.toIpString().c_str());
|
|
return false;
|
|
}
|
|
|
|
// Find member closest to this peer
|
|
const uint64_t now = RR->node->now();
|
|
std::vector<InetAddress> best; // initial "best" is for peer to stay put
|
|
const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
|
|
double bestDistance = (offload ? 2147483648.0 : currentDistance);
|
|
unsigned int bestMember = _id;
|
|
TRACE("%s is at %d,%d,%d -- looking for anyone closer than %d,%d,%d (%fkm)",peerPhysicalAddress.toString().c_str(),px,py,pz,_x,_y,_z,bestDistance);
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
_Member &m = _members[*mid];
|
|
Mutex::Lock _ml(m.lock);
|
|
|
|
// Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
|
|
if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
|
|
double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
|
|
if (mdist < bestDistance) {
|
|
bestDistance = mdist;
|
|
bestMember = *mid;
|
|
best = m.zeroTierPhysicalEndpoints;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best.size() > 0) {
|
|
TRACE("%s seems closer to %u at %fkm, suggesting redirect...",peerAddress.toString().c_str(),bestMember,bestDistance);
|
|
|
|
/* if (peer->remoteVersionProtocol() >= 5) {
|
|
// If it's a newer peer send VERB_PUSH_DIRECT_PATHS which is more idiomatic
|
|
} else { */
|
|
// Otherwise send VERB_RENDEZVOUS for ourselves, which will trick peers into trying other endpoints for us even if they're too old for PUSH_DIRECT_PATHS
|
|
for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
|
|
if ((a->ss_family == AF_INET)||(a->ss_family == AF_INET6)) {
|
|
Packet outp(peerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
outp.append((uint8_t)0); // no flags
|
|
RR->identity.address().appendTo(outp); // HACK: rendezvous with ourselves! with really old peers this will only work if I'm a root server!
|
|
outp.append((uint16_t)a->port());
|
|
if (a->ss_family == AF_INET) {
|
|
outp.append((uint8_t)4);
|
|
outp.append(a->rawIpData(),4);
|
|
} else {
|
|
outp.append((uint8_t)16);
|
|
outp.append(a->rawIpData(),16);
|
|
}
|
|
RR->sw->send(outp,true,0);
|
|
}
|
|
}
|
|
//}
|
|
|
|
return true;
|
|
} else {
|
|
TRACE("peer %s is at [%d,%d,%d], distance to us is %f and this seems to be the best",peerAddress.toString().c_str(),px,py,pz,currentDistance);
|
|
return false;
|
|
}
|
|
} else {
|
|
// TODO: pick based on load if no location info?
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Cluster::status(ZT_ClusterStatus &status) const
|
|
{
|
|
const uint64_t now = RR->node->now();
|
|
memset(&status,0,sizeof(ZT_ClusterStatus));
|
|
ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS];
|
|
memset(ms,0,sizeof(ms));
|
|
|
|
status.myId = _id;
|
|
|
|
ms[_id] = &(status.members[status.clusterSize++]);
|
|
ms[_id]->id = _id;
|
|
ms[_id]->alive = 1;
|
|
ms[_id]->x = _x;
|
|
ms[_id]->y = _y;
|
|
ms[_id]->z = _z;
|
|
ms[_id]->peers = RR->topology->countAlive();
|
|
for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
|
|
if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
|
|
break;
|
|
memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
|
|
}
|
|
|
|
{
|
|
Mutex::Lock _l1(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
|
|
break;
|
|
ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]);
|
|
_Member &m = _members[*mid];
|
|
Mutex::Lock ml(m.lock);
|
|
|
|
s->id = *mid;
|
|
s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
|
|
s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
|
|
s->x = m.x;
|
|
s->y = m.y;
|
|
s->z = m.z;
|
|
s->load = m.load;
|
|
for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
|
|
if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
|
|
break;
|
|
memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
Mutex::Lock _l2(_peerAffinities_m);
|
|
for(std::vector<_PeerAffinity>::const_iterator pi(_peerAffinities.begin());pi!=_peerAffinities.end();++pi) {
|
|
unsigned int mid = pi->clusterMemberId();
|
|
if ((ms[mid])&&(mid != _id)&&((now - pi->timestamp) < ZT_PEER_ACTIVITY_TIMEOUT))
|
|
++ms[mid]->peers;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
|
|
{
|
|
if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
|
|
return;
|
|
_Member &m = _members[memberId];
|
|
// assumes m.lock is locked!
|
|
if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
|
|
_flush(memberId);
|
|
m.q.append((uint16_t)(len + 1));
|
|
m.q.append((uint8_t)type);
|
|
m.q.append(msg,len);
|
|
}
|
|
|
|
void Cluster::_flush(uint16_t memberId)
|
|
{
|
|
_Member &m = _members[memberId];
|
|
// assumes m.lock is locked!
|
|
if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
|
|
// Create key from member's key and IV
|
|
char keytmp[32];
|
|
memcpy(keytmp,m.key,32);
|
|
for(int i=0;i<8;++i)
|
|
keytmp[i] ^= m.q[i];
|
|
Salsa20 s20(keytmp,256,m.q.field(8,8));
|
|
Utils::burn(keytmp,sizeof(keytmp));
|
|
|
|
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
|
|
char polykey[ZT_POLY1305_KEY_LEN];
|
|
memset(polykey,0,sizeof(polykey));
|
|
s20.encrypt12(polykey,polykey,sizeof(polykey));
|
|
|
|
// Encrypt m.q in place
|
|
s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
|
|
|
|
// Add MAC for authentication (encrypt-then-MAC)
|
|
char mac[ZT_POLY1305_MAC_LEN];
|
|
Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
|
|
memcpy(m.q.field(16,8),mac,8);
|
|
|
|
// Send!
|
|
_sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
|
|
|
|
// Prepare for more
|
|
m.q.clear();
|
|
char iv[16];
|
|
Utils::getSecureRandom(iv,16);
|
|
m.q.append(iv,16);
|
|
m.q.addSize(8); // room for MAC
|
|
m.q.append((uint16_t)_id); // from member ID
|
|
m.q.append((uint16_t)memberId); // to member ID
|
|
}
|
|
}
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif // ZT_ENABLE_CLUSTER
|