ZeroTierOne/zeroidc/vendor/ring/tests/ecdsa_tests.rs

315 lines
12 KiB
Rust

// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use ring::{
rand,
signature::{self, KeyPair},
test, test_file,
};
// ECDSA *signing* tests are in src/ec/ecdsa/signing.rs.
#[test]
fn ecdsa_from_pkcs8_test() {
test::run(
test_file!("ecdsa_from_pkcs8_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let ((this_fixed, this_asn1), (other_fixed, other_asn1)) = match curve_name.as_str() {
"P-256" => (
(
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
),
(
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
),
),
"P-384" => (
(
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
),
(
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
),
),
_ => unreachable!(),
};
let input = test_case.consume_bytes("Input");
let error = test_case.consume_optional_string("Error");
match (
signature::EcdsaKeyPair::from_pkcs8(this_fixed, &input),
error.clone(),
) {
(Ok(_), None) => (),
(Err(e), None) => panic!("Failed with error \"{}\", but expected to succeed", e),
(Ok(_), Some(e)) => panic!("Succeeded, but expected error \"{}\"", e),
(Err(actual), Some(expected)) => assert_eq!(format!("{}", actual), expected),
};
match (
signature::EcdsaKeyPair::from_pkcs8(this_asn1, &input),
error,
) {
(Ok(_), None) => (),
(Err(e), None) => panic!("Failed with error \"{}\", but expected to succeed", e),
(Ok(_), Some(e)) => panic!("Succeeded, but expected error \"{}\"", e),
(Err(actual), Some(expected)) => assert_eq!(format!("{}", actual), expected),
};
assert!(signature::EcdsaKeyPair::from_pkcs8(other_fixed, &input).is_err());
assert!(signature::EcdsaKeyPair::from_pkcs8(other_asn1, &input).is_err());
Ok(())
},
);
}
// Verify that, at least, we generate PKCS#8 documents that we can read.
#[test]
fn ecdsa_generate_pkcs8_test() {
let rng = rand::SystemRandom::new();
for alg in &[
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
] {
let pkcs8 = signature::EcdsaKeyPair::generate_pkcs8(alg, &rng).unwrap();
println!();
for b in pkcs8.as_ref() {
print!("{:02x}", *b);
}
println!();
println!();
#[cfg(feature = "alloc")]
let _ = signature::EcdsaKeyPair::from_pkcs8(*alg, pkcs8.as_ref()).unwrap();
}
}
#[test]
fn signature_ecdsa_verify_asn1_test() {
test::run(
test_file!("ecdsa_verify_asn1_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let public_key = test_case.consume_bytes("Q");
let sig = test_case.consume_bytes("Sig");
let is_valid = test_case.consume_string("Result") == "P (0 )";
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1,
("P-256", "SHA384") => &signature::ECDSA_P256_SHA384_ASN1,
("P-384", "SHA256") => &signature::ECDSA_P384_SHA256_ASN1,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let actual_result =
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
assert_eq!(actual_result.is_ok(), is_valid);
Ok(())
},
);
}
#[test]
fn signature_ecdsa_verify_fixed_test() {
test::run(
test_file!("ecdsa_verify_fixed_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let public_key = test_case.consume_bytes("Q");
let sig = test_case.consume_bytes("Sig");
let expected_result = test_case.consume_string("Result");
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let is_valid = expected_result == "P (0 )";
let actual_result =
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
assert_eq!(actual_result.is_ok(), is_valid);
Ok(())
},
);
}
#[test]
fn ecdsa_test_public_key_coverage() {
const PRIVATE_KEY: &[u8] = include_bytes!("ecdsa_test_private_key_p256.p8");
const PUBLIC_KEY: &[u8] = include_bytes!("ecdsa_test_public_key_p256.der");
const PUBLIC_KEY_DEBUG: &str = include_str!("ecdsa_test_public_key_p256_debug.txt");
let key_pair = signature::EcdsaKeyPair::from_pkcs8(
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
PRIVATE_KEY,
)
.unwrap();
// Test `AsRef<[u8]>`
assert_eq!(key_pair.public_key().as_ref(), PUBLIC_KEY);
// Test `Clone`.
#[allow(clippy::clone_on_copy, clippy::redundant_clone)]
let _: <signature::EcdsaKeyPair as KeyPair>::PublicKey = key_pair.public_key().clone();
// Test `Copy`.
let _: <signature::EcdsaKeyPair as KeyPair>::PublicKey = *key_pair.public_key();
// Test `Debug`.
assert_eq!(PUBLIC_KEY_DEBUG, format!("{:?}", key_pair.public_key()));
assert_eq!(
format!("EcdsaKeyPair {{ public_key: {:?} }}", key_pair.public_key()),
format!("{:?}", key_pair)
);
}
// This test is not a known-answer test, though it re-uses the known-answer
// test vectors. Because the nonce is randomized, the signature will be
// different each time. Because of that, here we simply verify that the
// signature verifies correctly. The known-answer tests themselves are in
// ecsda/signing.rs.
#[test]
fn signature_ecdsa_sign_fixed_sign_and_verify_test() {
let rng = rand::SystemRandom::new();
test::run(
test_file!("../src/ec/suite_b/ecdsa/ecdsa_sign_fixed_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let d = test_case.consume_bytes("d");
let q = test_case.consume_bytes("Q");
// Ignored since the actual signature will use a randomized nonce.
let _k = test_case.consume_bytes("k");
let _expected_result = test_case.consume_bytes("Sig");
let (signing_alg, verification_alg) = match (curve_name.as_str(), digest_name.as_str())
{
("P-256", "SHA256") => (
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
&signature::ECDSA_P256_SHA256_FIXED,
),
("P-384", "SHA384") => (
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
&signature::ECDSA_P384_SHA384_FIXED,
),
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let private_key =
signature::EcdsaKeyPair::from_private_key_and_public_key(signing_alg, &d, &q)
.unwrap();
let signature = private_key.sign(&rng, &msg).unwrap();
let public_key = signature::UnparsedPublicKey::new(verification_alg, q);
assert_eq!(public_key.verify(&msg, signature.as_ref()), Ok(()));
Ok(())
},
);
}
// This test is not a known-answer test, though it re-uses the known-answer
// test vectors. Because the nonce is randomized, the signature will be
// different each time. Because of that, here we simply verify that the
// signature verifies correctly. The known-answer tests themselves are in
// ecsda/signing.rs.
#[test]
fn signature_ecdsa_sign_asn1_test() {
let rng = rand::SystemRandom::new();
test::run(
test_file!("../src/ec/suite_b/ecdsa/ecdsa_sign_asn1_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let d = test_case.consume_bytes("d");
let q = test_case.consume_bytes("Q");
// Ignored since the actual signature will use a randomized nonce.
let _k = test_case.consume_bytes("k");
let _expected_result = test_case.consume_bytes("Sig");
let (signing_alg, verification_alg) = match (curve_name.as_str(), digest_name.as_str())
{
("P-256", "SHA256") => (
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
&signature::ECDSA_P256_SHA256_ASN1,
),
("P-384", "SHA384") => (
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
&signature::ECDSA_P384_SHA384_ASN1,
),
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let private_key =
signature::EcdsaKeyPair::from_private_key_and_public_key(signing_alg, &d, &q)
.unwrap();
let signature = private_key.sign(&rng, &msg).unwrap();
let public_key = signature::UnparsedPublicKey::new(verification_alg, q);
assert_eq!(public_key.verify(&msg, signature.as_ref()), Ok(()));
Ok(())
},
);
}