mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-27 08:22:31 +00:00
1912 lines
50 KiB
C
1912 lines
50 KiB
C
/* Copyright (c) 2020, Google Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
// Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP
|
|
// 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
|
|
// public domain. Other parts have been replaced to call into code generated by
|
|
// Fiat (https://github.com/mit-plv/fiat-crypto) in //third_party/fiat.
|
|
//
|
|
// The field functions are shared by Ed25519 and X25519 where possible.
|
|
|
|
#include <GFp/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// '=': conversion from 'int64_t' to 'int32_t', possible loss of data
|
|
#pragma warning(disable: 4242)
|
|
// '=': conversion from 'int32_t' to 'uint8_t', possible loss of data
|
|
#pragma warning(disable: 4244)
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic ignored "-Wconversion"
|
|
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
#endif
|
|
|
|
// Various pre-computed constants.
|
|
#include "./curve25519_tables.h"
|
|
|
|
#if defined(BORINGSSL_CURVE25519_64BIT)
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic ignored "-Wpedantic"
|
|
#endif
|
|
#include "../../third_party/fiat/curve25519_64.h"
|
|
#else
|
|
#include "../../third_party/fiat/curve25519_32.h"
|
|
#endif // BORINGSSL_CURVE25519_64BIT
|
|
|
|
|
|
// Low-level intrinsic operations
|
|
|
|
static uint64_t load_3(const uint8_t *in) {
|
|
uint64_t result;
|
|
result = (uint64_t)in[0];
|
|
result |= ((uint64_t)in[1]) << 8;
|
|
result |= ((uint64_t)in[2]) << 16;
|
|
return result;
|
|
}
|
|
|
|
static uint64_t load_4(const uint8_t *in) {
|
|
uint64_t result;
|
|
result = (uint64_t)in[0];
|
|
result |= ((uint64_t)in[1]) << 8;
|
|
result |= ((uint64_t)in[2]) << 16;
|
|
result |= ((uint64_t)in[3]) << 24;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Field operations.
|
|
|
|
#if defined(BORINGSSL_CURVE25519_64BIT)
|
|
|
|
// assert_fe asserts that |f| satisfies bounds:
|
|
//
|
|
// [[0x0 ~> 0x8cccccccccccc],
|
|
// [0x0 ~> 0x8cccccccccccc],
|
|
// [0x0 ~> 0x8cccccccccccc],
|
|
// [0x0 ~> 0x8cccccccccccc],
|
|
// [0x0 ~> 0x8cccccccccccc]]
|
|
//
|
|
// See comments in curve25519_64.h for which functions use these bounds for
|
|
// inputs or outputs.
|
|
#define assert_fe(f) \
|
|
do { \
|
|
for (unsigned _assert_fe_i = 0; _assert_fe_i < 5; _assert_fe_i++) { \
|
|
dev_assert_secret(f[_assert_fe_i] <= UINT64_C(0x8cccccccccccc)); \
|
|
} \
|
|
} while (0)
|
|
|
|
// assert_fe_loose asserts that |f| satisfies bounds:
|
|
//
|
|
// [[0x0 ~> 0x1a666666666664],
|
|
// [0x0 ~> 0x1a666666666664],
|
|
// [0x0 ~> 0x1a666666666664],
|
|
// [0x0 ~> 0x1a666666666664],
|
|
// [0x0 ~> 0x1a666666666664]]
|
|
//
|
|
// See comments in curve25519_64.h for which functions use these bounds for
|
|
// inputs or outputs.
|
|
#define assert_fe_loose(f) \
|
|
do { \
|
|
for (unsigned _assert_fe_i = 0; _assert_fe_i < 5; _assert_fe_i++) { \
|
|
dev_assert_secret(f[_assert_fe_i] <= UINT64_C(0x1a666666666664)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
// assert_fe asserts that |f| satisfies bounds:
|
|
//
|
|
// [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
|
|
// [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
|
|
// [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
|
|
// [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
|
|
// [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]]
|
|
//
|
|
// See comments in curve25519_32.h for which functions use these bounds for
|
|
// inputs or outputs.
|
|
#define assert_fe(f) \
|
|
do { \
|
|
for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \
|
|
dev_assert_secret(f[_assert_fe_i] <= \
|
|
((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u)); \
|
|
} \
|
|
} while (0)
|
|
|
|
// assert_fe_loose asserts that |f| satisfies bounds:
|
|
//
|
|
// [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
|
|
// [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
|
|
// [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
|
|
// [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
|
|
// [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]]
|
|
//
|
|
// See comments in curve25519_32.h for which functions use these bounds for
|
|
// inputs or outputs.
|
|
#define assert_fe_loose(f) \
|
|
do { \
|
|
for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \
|
|
dev_assert_secret(f[_assert_fe_i] <= \
|
|
((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#endif // BORINGSSL_CURVE25519_64BIT
|
|
|
|
OPENSSL_STATIC_ASSERT(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS,
|
|
"fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe");
|
|
|
|
static void fe_frombytes_strict(fe *h, const uint8_t s[32]) {
|
|
// |fiat_25519_from_bytes| requires the top-most bit be clear.
|
|
dev_assert_secret((s[31] & 0x80) == 0);
|
|
fiat_25519_from_bytes(h->v, s);
|
|
assert_fe(h->v);
|
|
}
|
|
|
|
static void fe_frombytes(fe *h, const uint8_t s[32]) {
|
|
uint8_t s_copy[32];
|
|
GFp_memcpy(s_copy, s, 32);
|
|
s_copy[31] &= 0x7f;
|
|
fe_frombytes_strict(h, s_copy);
|
|
}
|
|
|
|
static void fe_tobytes(uint8_t s[32], const fe *f) {
|
|
assert_fe(f->v);
|
|
fiat_25519_to_bytes(s, f->v);
|
|
}
|
|
|
|
// h = 0
|
|
static void fe_0(fe *h) {
|
|
GFp_memset(h, 0, sizeof(fe));
|
|
}
|
|
|
|
static void fe_loose_0(fe_loose *h) {
|
|
GFp_memset(h, 0, sizeof(fe_loose));
|
|
}
|
|
|
|
// h = 1
|
|
static void fe_1(fe *h) {
|
|
GFp_memset(h, 0, sizeof(fe));
|
|
h->v[0] = 1;
|
|
}
|
|
|
|
static void fe_loose_1(fe_loose *h) {
|
|
GFp_memset(h, 0, sizeof(fe_loose));
|
|
h->v[0] = 1;
|
|
}
|
|
|
|
// h = f + g
|
|
// Can overlap h with f or g.
|
|
static void fe_add(fe_loose *h, const fe *f, const fe *g) {
|
|
assert_fe(f->v);
|
|
assert_fe(g->v);
|
|
fiat_25519_add(h->v, f->v, g->v);
|
|
assert_fe_loose(h->v);
|
|
}
|
|
|
|
// h = f - g
|
|
// Can overlap h with f or g.
|
|
static void fe_sub(fe_loose *h, const fe *f, const fe *g) {
|
|
assert_fe(f->v);
|
|
assert_fe(g->v);
|
|
fiat_25519_sub(h->v, f->v, g->v);
|
|
assert_fe_loose(h->v);
|
|
}
|
|
|
|
static void fe_carry(fe *h, const fe_loose* f) {
|
|
assert_fe_loose(f->v);
|
|
fiat_25519_carry(h->v, f->v);
|
|
assert_fe(h->v);
|
|
}
|
|
|
|
static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS],
|
|
const fe_limb_t in1[FE_NUM_LIMBS],
|
|
const fe_limb_t in2[FE_NUM_LIMBS]) {
|
|
assert_fe_loose(in1);
|
|
assert_fe_loose(in2);
|
|
fiat_25519_carry_mul(out, in1, in2);
|
|
assert_fe(out);
|
|
}
|
|
|
|
static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) {
|
|
fe_mul_impl(h->v, f->v, g->v);
|
|
}
|
|
|
|
// static void fe_mul_llt(fe_loose *h, const fe_loose *f, const fe *g) was
|
|
// removed. This comment is here to make diffs vs. BoringSSL easier to read.
|
|
|
|
|
|
static void fe_mul_ttt(fe *h, const fe *f, const fe *g) {
|
|
fe_mul_impl(h->v, f->v, g->v);
|
|
}
|
|
|
|
static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) {
|
|
fe_mul_impl(h->v, f->v, g->v);
|
|
}
|
|
|
|
static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) {
|
|
fe_mul_impl(h->v, f->v, g->v);
|
|
}
|
|
|
|
static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) {
|
|
fe_mul_impl(h->v, f->v, g->v);
|
|
}
|
|
|
|
static void fe_sq_tl(fe *h, const fe_loose *f) {
|
|
assert_fe_loose(f->v);
|
|
fiat_25519_carry_square(h->v, f->v);
|
|
assert_fe(h->v);
|
|
}
|
|
|
|
static void fe_sq_tt(fe *h, const fe *f) {
|
|
assert_fe_loose(f->v);
|
|
fiat_25519_carry_square(h->v, f->v);
|
|
assert_fe(h->v);
|
|
}
|
|
|
|
// Replace (f,g) with (g,f) if b == 1;
|
|
// replace (f,g) with (f,g) if b == 0.
|
|
//
|
|
// Preconditions: b in {0,1}.
|
|
static void fe_cswap(fe *f, fe *g, fe_limb_t b) {
|
|
b = 0-b;
|
|
for (unsigned i = 0; i < FE_NUM_LIMBS; i++) {
|
|
fe_limb_t x = f->v[i] ^ g->v[i];
|
|
x &= b;
|
|
f->v[i] ^= x;
|
|
g->v[i] ^= x;
|
|
}
|
|
}
|
|
|
|
static void fe_mul121666(fe *h, const fe_loose *f) {
|
|
assert_fe_loose(f->v);
|
|
fiat_25519_carry_scmul_121666(h->v, f->v);
|
|
assert_fe(h->v);
|
|
}
|
|
|
|
// h = -f
|
|
static void fe_neg(fe_loose *h, const fe *f) {
|
|
assert_fe(f->v);
|
|
fiat_25519_opp(h->v, f->v);
|
|
assert_fe_loose(h->v);
|
|
}
|
|
|
|
// Replace (f,g) with (g,g) if b == 1;
|
|
// replace (f,g) with (f,g) if b == 0.
|
|
//
|
|
// Preconditions: b in {0,1}.
|
|
static void fe_cmov(fe_loose *f, const fe_loose *g, fe_limb_t b) {
|
|
// Silence an unused function warning. |fiat_25519_selectznz| isn't quite the
|
|
// calling convention the rest of this code wants, so implement it by hand.
|
|
//
|
|
// TODO(davidben): Switch to fiat's calling convention, or ask fiat to emit a
|
|
// different one.
|
|
(void)fiat_25519_selectznz;
|
|
|
|
b = 0-b;
|
|
for (unsigned i = 0; i < FE_NUM_LIMBS; i++) {
|
|
fe_limb_t x = f->v[i] ^ g->v[i];
|
|
x &= b;
|
|
f->v[i] ^= x;
|
|
}
|
|
}
|
|
|
|
// h = f
|
|
static void fe_copy(fe *h, const fe *f) {
|
|
fe_limbs_copy(h->v, f->v);
|
|
}
|
|
|
|
static void fe_copy_lt(fe_loose *h, const fe *f) {
|
|
fe_limbs_copy(h->v, f->v);
|
|
}
|
|
#if !defined(OPENSSL_SMALL)
|
|
static void fe_copy_ll(fe_loose *h, const fe_loose *f) {
|
|
fe_limbs_copy(h->v, f->v);
|
|
}
|
|
#endif // !defined(OPENSSL_SMALL)
|
|
|
|
static void fe_loose_invert(fe *out, const fe_loose *z) {
|
|
fe t0;
|
|
fe t1;
|
|
fe t2;
|
|
fe t3;
|
|
int i;
|
|
|
|
fe_sq_tl(&t0, z);
|
|
fe_sq_tt(&t1, &t0);
|
|
for (i = 1; i < 2; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_tlt(&t1, z, &t1);
|
|
fe_mul_ttt(&t0, &t0, &t1);
|
|
fe_sq_tt(&t2, &t0);
|
|
fe_mul_ttt(&t1, &t1, &t2);
|
|
fe_sq_tt(&t2, &t1);
|
|
for (i = 1; i < 5; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t1, &t2, &t1);
|
|
fe_sq_tt(&t2, &t1);
|
|
for (i = 1; i < 10; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t2, &t2, &t1);
|
|
fe_sq_tt(&t3, &t2);
|
|
for (i = 1; i < 20; ++i) {
|
|
fe_sq_tt(&t3, &t3);
|
|
}
|
|
fe_mul_ttt(&t2, &t3, &t2);
|
|
fe_sq_tt(&t2, &t2);
|
|
for (i = 1; i < 10; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t1, &t2, &t1);
|
|
fe_sq_tt(&t2, &t1);
|
|
for (i = 1; i < 50; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t2, &t2, &t1);
|
|
fe_sq_tt(&t3, &t2);
|
|
for (i = 1; i < 100; ++i) {
|
|
fe_sq_tt(&t3, &t3);
|
|
}
|
|
fe_mul_ttt(&t2, &t3, &t2);
|
|
fe_sq_tt(&t2, &t2);
|
|
for (i = 1; i < 50; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t1, &t2, &t1);
|
|
fe_sq_tt(&t1, &t1);
|
|
for (i = 1; i < 5; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(out, &t1, &t0);
|
|
}
|
|
|
|
static void fe_invert(fe *out, const fe *z) {
|
|
fe_loose l;
|
|
fe_copy_lt(&l, z);
|
|
fe_loose_invert(out, &l);
|
|
}
|
|
|
|
// return 0 if f == 0
|
|
// return 1 if f != 0
|
|
static int fe_isnonzero(const fe_loose *f) {
|
|
fe tight;
|
|
fe_carry(&tight, f);
|
|
uint8_t s[32];
|
|
fe_tobytes(s, &tight);
|
|
|
|
static const uint8_t zero[32] = {0};
|
|
return GFp_memcmp(s, zero, sizeof(zero)) != 0;
|
|
}
|
|
|
|
// return 1 if f is in {1,3,5,...,q-2}
|
|
// return 0 if f is in {0,2,4,...,q-1}
|
|
static int fe_isnegative(const fe *f) {
|
|
uint8_t s[32];
|
|
fe_tobytes(s, f);
|
|
return s[0] & 1;
|
|
}
|
|
|
|
static void fe_sq2_tt(fe *h, const fe *f) {
|
|
// h = f^2
|
|
fe_sq_tt(h, f);
|
|
|
|
// h = h + h
|
|
fe_loose tmp;
|
|
fe_add(&tmp, h, h);
|
|
fe_carry(h, &tmp);
|
|
}
|
|
|
|
static void fe_pow22523(fe *out, const fe *z) {
|
|
fe t0;
|
|
fe t1;
|
|
fe t2;
|
|
int i;
|
|
|
|
fe_sq_tt(&t0, z);
|
|
fe_sq_tt(&t1, &t0);
|
|
for (i = 1; i < 2; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t1, z, &t1);
|
|
fe_mul_ttt(&t0, &t0, &t1);
|
|
fe_sq_tt(&t0, &t0);
|
|
fe_mul_ttt(&t0, &t1, &t0);
|
|
fe_sq_tt(&t1, &t0);
|
|
for (i = 1; i < 5; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t0, &t1, &t0);
|
|
fe_sq_tt(&t1, &t0);
|
|
for (i = 1; i < 10; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t1, &t1, &t0);
|
|
fe_sq_tt(&t2, &t1);
|
|
for (i = 1; i < 20; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t1, &t2, &t1);
|
|
fe_sq_tt(&t1, &t1);
|
|
for (i = 1; i < 10; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t0, &t1, &t0);
|
|
fe_sq_tt(&t1, &t0);
|
|
for (i = 1; i < 50; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t1, &t1, &t0);
|
|
fe_sq_tt(&t2, &t1);
|
|
for (i = 1; i < 100; ++i) {
|
|
fe_sq_tt(&t2, &t2);
|
|
}
|
|
fe_mul_ttt(&t1, &t2, &t1);
|
|
fe_sq_tt(&t1, &t1);
|
|
for (i = 1; i < 50; ++i) {
|
|
fe_sq_tt(&t1, &t1);
|
|
}
|
|
fe_mul_ttt(&t0, &t1, &t0);
|
|
fe_sq_tt(&t0, &t0);
|
|
for (i = 1; i < 2; ++i) {
|
|
fe_sq_tt(&t0, &t0);
|
|
}
|
|
fe_mul_ttt(out, &t0, z);
|
|
}
|
|
|
|
|
|
// Group operations.
|
|
|
|
int GFp_x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) {
|
|
fe u;
|
|
fe_loose v;
|
|
fe v3;
|
|
fe vxx;
|
|
fe_loose check;
|
|
|
|
fe_frombytes(&h->Y, s);
|
|
fe_1(&h->Z);
|
|
fe_sq_tt(&v3, &h->Y);
|
|
fe_mul_ttt(&vxx, &v3, &d);
|
|
fe_sub(&v, &v3, &h->Z); // u = y^2-1
|
|
fe_carry(&u, &v);
|
|
fe_add(&v, &vxx, &h->Z); // v = dy^2+1
|
|
|
|
fe_sq_tl(&v3, &v);
|
|
fe_mul_ttl(&v3, &v3, &v); // v3 = v^3
|
|
fe_sq_tt(&h->X, &v3);
|
|
fe_mul_ttl(&h->X, &h->X, &v);
|
|
fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7
|
|
|
|
fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8)
|
|
fe_mul_ttt(&h->X, &h->X, &v3);
|
|
fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8)
|
|
|
|
fe_sq_tt(&vxx, &h->X);
|
|
fe_mul_ttl(&vxx, &vxx, &v);
|
|
fe_sub(&check, &vxx, &u);
|
|
if (fe_isnonzero(&check)) {
|
|
fe_add(&check, &vxx, &u);
|
|
if (fe_isnonzero(&check)) {
|
|
return 0;
|
|
}
|
|
fe_mul_ttt(&h->X, &h->X, &sqrtm1);
|
|
}
|
|
|
|
if (fe_isnegative(&h->X) != (s[31] >> 7)) {
|
|
fe_loose t;
|
|
fe_neg(&t, &h->X);
|
|
fe_carry(&h->X, &t);
|
|
}
|
|
|
|
fe_mul_ttt(&h->T, &h->X, &h->Y);
|
|
return 1;
|
|
}
|
|
|
|
static void ge_p2_0(ge_p2 *h) {
|
|
fe_0(&h->X);
|
|
fe_1(&h->Y);
|
|
fe_1(&h->Z);
|
|
}
|
|
|
|
static void ge_p3_0(ge_p3 *h) {
|
|
fe_0(&h->X);
|
|
fe_1(&h->Y);
|
|
fe_1(&h->Z);
|
|
fe_0(&h->T);
|
|
}
|
|
|
|
static void ge_precomp_0(ge_precomp *h) {
|
|
fe_loose_1(&h->yplusx);
|
|
fe_loose_1(&h->yminusx);
|
|
fe_loose_0(&h->xy2d);
|
|
}
|
|
|
|
// r = p
|
|
static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) {
|
|
fe_copy(&r->X, &p->X);
|
|
fe_copy(&r->Y, &p->Y);
|
|
fe_copy(&r->Z, &p->Z);
|
|
}
|
|
|
|
// r = p
|
|
static void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) {
|
|
fe_add(&r->YplusX, &p->Y, &p->X);
|
|
fe_sub(&r->YminusX, &p->Y, &p->X);
|
|
fe_copy_lt(&r->Z, &p->Z);
|
|
fe_mul_ltt(&r->T2d, &p->T, &d2);
|
|
}
|
|
|
|
// r = p
|
|
static void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) {
|
|
fe_mul_tll(&r->X, &p->X, &p->T);
|
|
fe_mul_tll(&r->Y, &p->Y, &p->Z);
|
|
fe_mul_tll(&r->Z, &p->Z, &p->T);
|
|
}
|
|
|
|
// r = p
|
|
static void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) {
|
|
fe_mul_tll(&r->X, &p->X, &p->T);
|
|
fe_mul_tll(&r->Y, &p->Y, &p->Z);
|
|
fe_mul_tll(&r->Z, &p->Z, &p->T);
|
|
fe_mul_tll(&r->T, &p->X, &p->Y);
|
|
}
|
|
|
|
// r = 2 * p
|
|
static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) {
|
|
fe trX, trZ, trT;
|
|
fe t0;
|
|
|
|
fe_sq_tt(&trX, &p->X);
|
|
fe_sq_tt(&trZ, &p->Y);
|
|
fe_sq2_tt(&trT, &p->Z);
|
|
fe_add(&r->Y, &p->X, &p->Y);
|
|
fe_sq_tl(&t0, &r->Y);
|
|
|
|
fe_add(&r->Y, &trZ, &trX);
|
|
fe_sub(&r->Z, &trZ, &trX);
|
|
fe_carry(&trZ, &r->Y);
|
|
fe_sub(&r->X, &t0, &trZ);
|
|
fe_carry(&trZ, &r->Z);
|
|
fe_sub(&r->T, &trT, &trZ);
|
|
}
|
|
|
|
// r = 2 * p
|
|
static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) {
|
|
ge_p2 q;
|
|
ge_p3_to_p2(&q, p);
|
|
ge_p2_dbl(r, &q);
|
|
}
|
|
|
|
// r = p + q
|
|
static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) {
|
|
fe trY, trZ, trT;
|
|
|
|
fe_add(&r->X, &p->Y, &p->X);
|
|
fe_sub(&r->Y, &p->Y, &p->X);
|
|
fe_mul_tll(&trZ, &r->X, &q->yplusx);
|
|
fe_mul_tll(&trY, &r->Y, &q->yminusx);
|
|
fe_mul_tlt(&trT, &q->xy2d, &p->T);
|
|
fe_add(&r->T, &p->Z, &p->Z);
|
|
fe_sub(&r->X, &trZ, &trY);
|
|
fe_add(&r->Y, &trZ, &trY);
|
|
fe_carry(&trZ, &r->T);
|
|
fe_add(&r->Z, &trZ, &trT);
|
|
fe_sub(&r->T, &trZ, &trT);
|
|
}
|
|
|
|
// r = p - q
|
|
static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) {
|
|
fe trY, trZ, trT;
|
|
|
|
fe_add(&r->X, &p->Y, &p->X);
|
|
fe_sub(&r->Y, &p->Y, &p->X);
|
|
fe_mul_tll(&trZ, &r->X, &q->yminusx);
|
|
fe_mul_tll(&trY, &r->Y, &q->yplusx);
|
|
fe_mul_tlt(&trT, &q->xy2d, &p->T);
|
|
fe_add(&r->T, &p->Z, &p->Z);
|
|
fe_sub(&r->X, &trZ, &trY);
|
|
fe_add(&r->Y, &trZ, &trY);
|
|
fe_carry(&trZ, &r->T);
|
|
fe_sub(&r->Z, &trZ, &trT);
|
|
fe_add(&r->T, &trZ, &trT);
|
|
}
|
|
|
|
// r = p + q
|
|
static void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) {
|
|
fe trX, trY, trZ, trT;
|
|
|
|
fe_add(&r->X, &p->Y, &p->X);
|
|
fe_sub(&r->Y, &p->Y, &p->X);
|
|
fe_mul_tll(&trZ, &r->X, &q->YplusX);
|
|
fe_mul_tll(&trY, &r->Y, &q->YminusX);
|
|
fe_mul_tlt(&trT, &q->T2d, &p->T);
|
|
fe_mul_ttl(&trX, &p->Z, &q->Z);
|
|
fe_add(&r->T, &trX, &trX);
|
|
fe_sub(&r->X, &trZ, &trY);
|
|
fe_add(&r->Y, &trZ, &trY);
|
|
fe_carry(&trZ, &r->T);
|
|
fe_add(&r->Z, &trZ, &trT);
|
|
fe_sub(&r->T, &trZ, &trT);
|
|
}
|
|
|
|
// r = p - q
|
|
static void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) {
|
|
fe trX, trY, trZ, trT;
|
|
|
|
fe_add(&r->X, &p->Y, &p->X);
|
|
fe_sub(&r->Y, &p->Y, &p->X);
|
|
fe_mul_tll(&trZ, &r->X, &q->YminusX);
|
|
fe_mul_tll(&trY, &r->Y, &q->YplusX);
|
|
fe_mul_tlt(&trT, &q->T2d, &p->T);
|
|
fe_mul_ttl(&trX, &p->Z, &q->Z);
|
|
fe_add(&r->T, &trX, &trX);
|
|
fe_sub(&r->X, &trZ, &trY);
|
|
fe_add(&r->Y, &trZ, &trY);
|
|
fe_carry(&trZ, &r->T);
|
|
fe_sub(&r->Z, &trZ, &trT);
|
|
fe_add(&r->T, &trZ, &trT);
|
|
}
|
|
|
|
static uint8_t equal(signed char b, signed char c) {
|
|
uint8_t ub = b;
|
|
uint8_t uc = c;
|
|
uint8_t x = ub ^ uc; // 0: yes; 1..255: no
|
|
uint32_t y = x; // 0: yes; 1..255: no
|
|
y -= 1; // 4294967295: yes; 0..254: no
|
|
y >>= 31; // 1: yes; 0: no
|
|
return y;
|
|
}
|
|
|
|
static void cmov(ge_precomp *t, const ge_precomp *u, uint8_t b) {
|
|
fe_cmov(&t->yplusx, &u->yplusx, b);
|
|
fe_cmov(&t->yminusx, &u->yminusx, b);
|
|
fe_cmov(&t->xy2d, &u->xy2d, b);
|
|
}
|
|
|
|
#if defined(OPENSSL_SMALL)
|
|
|
|
static void x25519_ge_scalarmult_small_precomp(
|
|
ge_p3 *h, const uint8_t a[32], const uint8_t precomp_table[15 * 2 * 32]) {
|
|
// precomp_table is first expanded into matching |ge_precomp|
|
|
// elements.
|
|
ge_precomp multiples[15];
|
|
|
|
unsigned i;
|
|
for (i = 0; i < 15; i++) {
|
|
// The precomputed table is assumed to already clear the top bit, so
|
|
// |fe_frombytes_strict| may be used directly.
|
|
const uint8_t *bytes = &precomp_table[i*(2 * 32)];
|
|
fe x, y;
|
|
fe_frombytes_strict(&x, bytes);
|
|
fe_frombytes_strict(&y, bytes + 32);
|
|
|
|
ge_precomp *out = &multiples[i];
|
|
fe_add(&out->yplusx, &y, &x);
|
|
fe_sub(&out->yminusx, &y, &x);
|
|
fe_mul_ltt(&out->xy2d, &x, &y);
|
|
fe_mul_llt(&out->xy2d, &out->xy2d, &d2);
|
|
}
|
|
|
|
// See the comment above |k25519SmallPrecomp| about the structure of the
|
|
// precomputed elements. This loop does 64 additions and 64 doublings to
|
|
// calculate the result.
|
|
ge_p3_0(h);
|
|
|
|
for (i = 63; i < 64; i--) {
|
|
unsigned j;
|
|
signed char index = 0;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
const uint8_t bit = 1 & (a[(8 * j) + (i / 8)] >> (i & 7));
|
|
index |= (bit << j);
|
|
}
|
|
|
|
ge_precomp e;
|
|
ge_precomp_0(&e);
|
|
|
|
for (j = 1; j < 16; j++) {
|
|
cmov(&e, &multiples[j-1], equal(index, j));
|
|
}
|
|
|
|
ge_cached cached;
|
|
ge_p1p1 r;
|
|
x25519_ge_p3_to_cached(&cached, h);
|
|
x25519_ge_add(&r, h, &cached);
|
|
x25519_ge_p1p1_to_p3(h, &r);
|
|
|
|
ge_madd(&r, h, &e);
|
|
x25519_ge_p1p1_to_p3(h, &r);
|
|
}
|
|
}
|
|
|
|
void x25519_ge_scalarmult_base(ge_p3 *h, const uint8_t a[32]) {
|
|
x25519_ge_scalarmult_small_precomp(h, a, k25519SmallPrecomp);
|
|
}
|
|
|
|
#else
|
|
|
|
static uint8_t negative(signed char b) {
|
|
uint32_t x = b;
|
|
x >>= 31; // 1: yes; 0: no
|
|
return x;
|
|
}
|
|
|
|
static void table_select(ge_precomp *t, int pos, signed char b) {
|
|
ge_precomp minust;
|
|
uint8_t bnegative = negative(b);
|
|
uint8_t babs = b - ((uint8_t)((-bnegative) & b) << 1);
|
|
|
|
ge_precomp_0(t);
|
|
cmov(t, &k25519Precomp[pos][0], equal(babs, 1));
|
|
cmov(t, &k25519Precomp[pos][1], equal(babs, 2));
|
|
cmov(t, &k25519Precomp[pos][2], equal(babs, 3));
|
|
cmov(t, &k25519Precomp[pos][3], equal(babs, 4));
|
|
cmov(t, &k25519Precomp[pos][4], equal(babs, 5));
|
|
cmov(t, &k25519Precomp[pos][5], equal(babs, 6));
|
|
cmov(t, &k25519Precomp[pos][6], equal(babs, 7));
|
|
cmov(t, &k25519Precomp[pos][7], equal(babs, 8));
|
|
fe_copy_ll(&minust.yplusx, &t->yminusx);
|
|
fe_copy_ll(&minust.yminusx, &t->yplusx);
|
|
|
|
// NOTE: the input table is canonical, but types don't encode it
|
|
fe tmp;
|
|
fe_carry(&tmp, &t->xy2d);
|
|
fe_neg(&minust.xy2d, &tmp);
|
|
|
|
cmov(t, &minust, bnegative);
|
|
}
|
|
|
|
// h = a * B
|
|
// where a = a[0]+256*a[1]+...+256^31 a[31]
|
|
// B is the Ed25519 base point (x,4/5) with x positive.
|
|
//
|
|
// Preconditions:
|
|
// a[31] <= 127
|
|
void GFp_x25519_ge_scalarmult_base(ge_p3 *h, const uint8_t *a) {
|
|
signed char e[64];
|
|
signed char carry;
|
|
ge_p1p1 r;
|
|
ge_p2 s;
|
|
ge_precomp t;
|
|
int i;
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
e[2 * i + 0] = (a[i] >> 0) & 15;
|
|
e[2 * i + 1] = (a[i] >> 4) & 15;
|
|
}
|
|
// each e[i] is between 0 and 15
|
|
// e[63] is between 0 and 7
|
|
|
|
carry = 0;
|
|
for (i = 0; i < 63; ++i) {
|
|
e[i] += carry;
|
|
carry = e[i] + 8;
|
|
carry >>= 4;
|
|
e[i] -= carry << 4;
|
|
}
|
|
e[63] += carry;
|
|
// each e[i] is between -8 and 8
|
|
|
|
ge_p3_0(h);
|
|
for (i = 1; i < 64; i += 2) {
|
|
table_select(&t, i / 2, e[i]);
|
|
ge_madd(&r, h, &t);
|
|
x25519_ge_p1p1_to_p3(h, &r);
|
|
}
|
|
|
|
ge_p3_dbl(&r, h);
|
|
x25519_ge_p1p1_to_p2(&s, &r);
|
|
ge_p2_dbl(&r, &s);
|
|
x25519_ge_p1p1_to_p2(&s, &r);
|
|
ge_p2_dbl(&r, &s);
|
|
x25519_ge_p1p1_to_p2(&s, &r);
|
|
ge_p2_dbl(&r, &s);
|
|
x25519_ge_p1p1_to_p3(h, &r);
|
|
|
|
for (i = 0; i < 64; i += 2) {
|
|
table_select(&t, i / 2, e[i]);
|
|
ge_madd(&r, h, &t);
|
|
x25519_ge_p1p1_to_p3(h, &r);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static void slide(signed char *r, const uint8_t *a) {
|
|
int i;
|
|
int b;
|
|
int k;
|
|
|
|
for (i = 0; i < 256; ++i) {
|
|
r[i] = 1 & (a[i >> 3] >> (i & 7));
|
|
}
|
|
|
|
for (i = 0; i < 256; ++i) {
|
|
if (r[i]) {
|
|
for (b = 1; b <= 6 && i + b < 256; ++b) {
|
|
if (r[i + b]) {
|
|
if (r[i] + (r[i + b] << b) <= 15) {
|
|
r[i] += r[i + b] << b;
|
|
r[i + b] = 0;
|
|
} else if (r[i] - (r[i + b] << b) >= -15) {
|
|
r[i] -= r[i + b] << b;
|
|
for (k = i + b; k < 256; ++k) {
|
|
if (!r[k]) {
|
|
r[k] = 1;
|
|
break;
|
|
}
|
|
r[k] = 0;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// r = a * A + b * B
|
|
// where a = a[0]+256*a[1]+...+256^31 a[31].
|
|
// and b = b[0]+256*b[1]+...+256^31 b[31].
|
|
// B is the Ed25519 base point (x,4/5) with x positive.
|
|
static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a,
|
|
const ge_p3 *A, const uint8_t *b) {
|
|
signed char aslide[256];
|
|
signed char bslide[256];
|
|
ge_cached Ai[8]; // A,3A,5A,7A,9A,11A,13A,15A
|
|
ge_p1p1 t;
|
|
ge_p3 u;
|
|
ge_p3 A2;
|
|
int i;
|
|
|
|
slide(aslide, a);
|
|
slide(bslide, b);
|
|
|
|
x25519_ge_p3_to_cached(&Ai[0], A);
|
|
ge_p3_dbl(&t, A);
|
|
x25519_ge_p1p1_to_p3(&A2, &t);
|
|
x25519_ge_add(&t, &A2, &Ai[0]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[1], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[1]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[2], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[2]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[3], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[3]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[4], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[4]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[5], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[5]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[6], &u);
|
|
x25519_ge_add(&t, &A2, &Ai[6]);
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_p3_to_cached(&Ai[7], &u);
|
|
|
|
ge_p2_0(r);
|
|
|
|
for (i = 255; i >= 0; --i) {
|
|
if (aslide[i] || bslide[i]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (; i >= 0; --i) {
|
|
ge_p2_dbl(&t, r);
|
|
|
|
if (aslide[i] > 0) {
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]);
|
|
} else if (aslide[i] < 0) {
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]);
|
|
}
|
|
|
|
if (bslide[i] > 0) {
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
ge_madd(&t, &u, &Bi[bslide[i] / 2]);
|
|
} else if (bslide[i] < 0) {
|
|
x25519_ge_p1p1_to_p3(&u, &t);
|
|
ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]);
|
|
}
|
|
|
|
x25519_ge_p1p1_to_p2(r, &t);
|
|
}
|
|
}
|
|
|
|
// int64_lshift21 returns |a << 21| but is defined when shifting bits into the
|
|
// sign bit. This works around a language flaw in C.
|
|
static inline int64_t int64_lshift21(int64_t a) {
|
|
return (int64_t)((uint64_t)a << 21);
|
|
}
|
|
|
|
// The set of scalars is \Z/l
|
|
// where l = 2^252 + 27742317777372353535851937790883648493.
|
|
|
|
// Input:
|
|
// s[0]+256*s[1]+...+256^63*s[63] = s
|
|
//
|
|
// Output:
|
|
// s[0]+256*s[1]+...+256^31*s[31] = s mod l
|
|
// where l = 2^252 + 27742317777372353535851937790883648493.
|
|
// Overwrites s in place.
|
|
void GFp_x25519_sc_reduce(uint8_t s[64]) {
|
|
int64_t s0 = 2097151 & load_3(s);
|
|
int64_t s1 = 2097151 & (load_4(s + 2) >> 5);
|
|
int64_t s2 = 2097151 & (load_3(s + 5) >> 2);
|
|
int64_t s3 = 2097151 & (load_4(s + 7) >> 7);
|
|
int64_t s4 = 2097151 & (load_4(s + 10) >> 4);
|
|
int64_t s5 = 2097151 & (load_3(s + 13) >> 1);
|
|
int64_t s6 = 2097151 & (load_4(s + 15) >> 6);
|
|
int64_t s7 = 2097151 & (load_3(s + 18) >> 3);
|
|
int64_t s8 = 2097151 & load_3(s + 21);
|
|
int64_t s9 = 2097151 & (load_4(s + 23) >> 5);
|
|
int64_t s10 = 2097151 & (load_3(s + 26) >> 2);
|
|
int64_t s11 = 2097151 & (load_4(s + 28) >> 7);
|
|
int64_t s12 = 2097151 & (load_4(s + 31) >> 4);
|
|
int64_t s13 = 2097151 & (load_3(s + 34) >> 1);
|
|
int64_t s14 = 2097151 & (load_4(s + 36) >> 6);
|
|
int64_t s15 = 2097151 & (load_3(s + 39) >> 3);
|
|
int64_t s16 = 2097151 & load_3(s + 42);
|
|
int64_t s17 = 2097151 & (load_4(s + 44) >> 5);
|
|
int64_t s18 = 2097151 & (load_3(s + 47) >> 2);
|
|
int64_t s19 = 2097151 & (load_4(s + 49) >> 7);
|
|
int64_t s20 = 2097151 & (load_4(s + 52) >> 4);
|
|
int64_t s21 = 2097151 & (load_3(s + 55) >> 1);
|
|
int64_t s22 = 2097151 & (load_4(s + 57) >> 6);
|
|
int64_t s23 = (load_4(s + 60) >> 3);
|
|
int64_t carry0;
|
|
int64_t carry1;
|
|
int64_t carry2;
|
|
int64_t carry3;
|
|
int64_t carry4;
|
|
int64_t carry5;
|
|
int64_t carry6;
|
|
int64_t carry7;
|
|
int64_t carry8;
|
|
int64_t carry9;
|
|
int64_t carry10;
|
|
int64_t carry11;
|
|
int64_t carry12;
|
|
int64_t carry13;
|
|
int64_t carry14;
|
|
int64_t carry15;
|
|
int64_t carry16;
|
|
|
|
s11 += s23 * 666643;
|
|
s12 += s23 * 470296;
|
|
s13 += s23 * 654183;
|
|
s14 -= s23 * 997805;
|
|
s15 += s23 * 136657;
|
|
s16 -= s23 * 683901;
|
|
s23 = 0;
|
|
|
|
s10 += s22 * 666643;
|
|
s11 += s22 * 470296;
|
|
s12 += s22 * 654183;
|
|
s13 -= s22 * 997805;
|
|
s14 += s22 * 136657;
|
|
s15 -= s22 * 683901;
|
|
s22 = 0;
|
|
|
|
s9 += s21 * 666643;
|
|
s10 += s21 * 470296;
|
|
s11 += s21 * 654183;
|
|
s12 -= s21 * 997805;
|
|
s13 += s21 * 136657;
|
|
s14 -= s21 * 683901;
|
|
s21 = 0;
|
|
|
|
s8 += s20 * 666643;
|
|
s9 += s20 * 470296;
|
|
s10 += s20 * 654183;
|
|
s11 -= s20 * 997805;
|
|
s12 += s20 * 136657;
|
|
s13 -= s20 * 683901;
|
|
s20 = 0;
|
|
|
|
s7 += s19 * 666643;
|
|
s8 += s19 * 470296;
|
|
s9 += s19 * 654183;
|
|
s10 -= s19 * 997805;
|
|
s11 += s19 * 136657;
|
|
s12 -= s19 * 683901;
|
|
s19 = 0;
|
|
|
|
s6 += s18 * 666643;
|
|
s7 += s18 * 470296;
|
|
s8 += s18 * 654183;
|
|
s9 -= s18 * 997805;
|
|
s10 += s18 * 136657;
|
|
s11 -= s18 * 683901;
|
|
s18 = 0;
|
|
|
|
carry6 = (s6 + (1 << 20)) >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry8 = (s8 + (1 << 20)) >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry10 = (s10 + (1 << 20)) >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
carry12 = (s12 + (1 << 20)) >> 21;
|
|
s13 += carry12;
|
|
s12 -= int64_lshift21(carry12);
|
|
carry14 = (s14 + (1 << 20)) >> 21;
|
|
s15 += carry14;
|
|
s14 -= int64_lshift21(carry14);
|
|
carry16 = (s16 + (1 << 20)) >> 21;
|
|
s17 += carry16;
|
|
s16 -= int64_lshift21(carry16);
|
|
|
|
carry7 = (s7 + (1 << 20)) >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry9 = (s9 + (1 << 20)) >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry11 = (s11 + (1 << 20)) >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
carry13 = (s13 + (1 << 20)) >> 21;
|
|
s14 += carry13;
|
|
s13 -= int64_lshift21(carry13);
|
|
carry15 = (s15 + (1 << 20)) >> 21;
|
|
s16 += carry15;
|
|
s15 -= int64_lshift21(carry15);
|
|
|
|
s5 += s17 * 666643;
|
|
s6 += s17 * 470296;
|
|
s7 += s17 * 654183;
|
|
s8 -= s17 * 997805;
|
|
s9 += s17 * 136657;
|
|
s10 -= s17 * 683901;
|
|
s17 = 0;
|
|
|
|
s4 += s16 * 666643;
|
|
s5 += s16 * 470296;
|
|
s6 += s16 * 654183;
|
|
s7 -= s16 * 997805;
|
|
s8 += s16 * 136657;
|
|
s9 -= s16 * 683901;
|
|
s16 = 0;
|
|
|
|
s3 += s15 * 666643;
|
|
s4 += s15 * 470296;
|
|
s5 += s15 * 654183;
|
|
s6 -= s15 * 997805;
|
|
s7 += s15 * 136657;
|
|
s8 -= s15 * 683901;
|
|
s15 = 0;
|
|
|
|
s2 += s14 * 666643;
|
|
s3 += s14 * 470296;
|
|
s4 += s14 * 654183;
|
|
s5 -= s14 * 997805;
|
|
s6 += s14 * 136657;
|
|
s7 -= s14 * 683901;
|
|
s14 = 0;
|
|
|
|
s1 += s13 * 666643;
|
|
s2 += s13 * 470296;
|
|
s3 += s13 * 654183;
|
|
s4 -= s13 * 997805;
|
|
s5 += s13 * 136657;
|
|
s6 -= s13 * 683901;
|
|
s13 = 0;
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = (s0 + (1 << 20)) >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry2 = (s2 + (1 << 20)) >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry4 = (s4 + (1 << 20)) >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry6 = (s6 + (1 << 20)) >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry8 = (s8 + (1 << 20)) >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry10 = (s10 + (1 << 20)) >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
|
|
carry1 = (s1 + (1 << 20)) >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry3 = (s3 + (1 << 20)) >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry5 = (s5 + (1 << 20)) >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry7 = (s7 + (1 << 20)) >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry9 = (s9 + (1 << 20)) >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry11 = (s11 + (1 << 20)) >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = s0 >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry1 = s1 >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry2 = s2 >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry3 = s3 >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry4 = s4 >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry5 = s5 >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry6 = s6 >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry7 = s7 >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry8 = s8 >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry9 = s9 >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry10 = s10 >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
carry11 = s11 >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = s0 >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry1 = s1 >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry2 = s2 >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry3 = s3 >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry4 = s4 >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry5 = s5 >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry6 = s6 >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry7 = s7 >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry8 = s8 >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry9 = s9 >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry10 = s10 >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
|
|
s[0] = s0 >> 0;
|
|
s[1] = s0 >> 8;
|
|
s[2] = (s0 >> 16) | (s1 << 5);
|
|
s[3] = s1 >> 3;
|
|
s[4] = s1 >> 11;
|
|
s[5] = (s1 >> 19) | (s2 << 2);
|
|
s[6] = s2 >> 6;
|
|
s[7] = (s2 >> 14) | (s3 << 7);
|
|
s[8] = s3 >> 1;
|
|
s[9] = s3 >> 9;
|
|
s[10] = (s3 >> 17) | (s4 << 4);
|
|
s[11] = s4 >> 4;
|
|
s[12] = s4 >> 12;
|
|
s[13] = (s4 >> 20) | (s5 << 1);
|
|
s[14] = s5 >> 7;
|
|
s[15] = (s5 >> 15) | (s6 << 6);
|
|
s[16] = s6 >> 2;
|
|
s[17] = s6 >> 10;
|
|
s[18] = (s6 >> 18) | (s7 << 3);
|
|
s[19] = s7 >> 5;
|
|
s[20] = s7 >> 13;
|
|
s[21] = s8 >> 0;
|
|
s[22] = s8 >> 8;
|
|
s[23] = (s8 >> 16) | (s9 << 5);
|
|
s[24] = s9 >> 3;
|
|
s[25] = s9 >> 11;
|
|
s[26] = (s9 >> 19) | (s10 << 2);
|
|
s[27] = s10 >> 6;
|
|
s[28] = (s10 >> 14) | (s11 << 7);
|
|
s[29] = s11 >> 1;
|
|
s[30] = s11 >> 9;
|
|
s[31] = s11 >> 17;
|
|
}
|
|
|
|
// Input:
|
|
// a[0]+256*a[1]+...+256^31*a[31] = a
|
|
// b[0]+256*b[1]+...+256^31*b[31] = b
|
|
// c[0]+256*c[1]+...+256^31*c[31] = c
|
|
//
|
|
// Output:
|
|
// s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
|
|
// where l = 2^252 + 27742317777372353535851937790883648493.
|
|
static void sc_muladd(uint8_t *s, const uint8_t *a, const uint8_t *b,
|
|
const uint8_t *c) {
|
|
int64_t a0 = 2097151 & load_3(a);
|
|
int64_t a1 = 2097151 & (load_4(a + 2) >> 5);
|
|
int64_t a2 = 2097151 & (load_3(a + 5) >> 2);
|
|
int64_t a3 = 2097151 & (load_4(a + 7) >> 7);
|
|
int64_t a4 = 2097151 & (load_4(a + 10) >> 4);
|
|
int64_t a5 = 2097151 & (load_3(a + 13) >> 1);
|
|
int64_t a6 = 2097151 & (load_4(a + 15) >> 6);
|
|
int64_t a7 = 2097151 & (load_3(a + 18) >> 3);
|
|
int64_t a8 = 2097151 & load_3(a + 21);
|
|
int64_t a9 = 2097151 & (load_4(a + 23) >> 5);
|
|
int64_t a10 = 2097151 & (load_3(a + 26) >> 2);
|
|
int64_t a11 = (load_4(a + 28) >> 7);
|
|
int64_t b0 = 2097151 & load_3(b);
|
|
int64_t b1 = 2097151 & (load_4(b + 2) >> 5);
|
|
int64_t b2 = 2097151 & (load_3(b + 5) >> 2);
|
|
int64_t b3 = 2097151 & (load_4(b + 7) >> 7);
|
|
int64_t b4 = 2097151 & (load_4(b + 10) >> 4);
|
|
int64_t b5 = 2097151 & (load_3(b + 13) >> 1);
|
|
int64_t b6 = 2097151 & (load_4(b + 15) >> 6);
|
|
int64_t b7 = 2097151 & (load_3(b + 18) >> 3);
|
|
int64_t b8 = 2097151 & load_3(b + 21);
|
|
int64_t b9 = 2097151 & (load_4(b + 23) >> 5);
|
|
int64_t b10 = 2097151 & (load_3(b + 26) >> 2);
|
|
int64_t b11 = (load_4(b + 28) >> 7);
|
|
int64_t c0 = 2097151 & load_3(c);
|
|
int64_t c1 = 2097151 & (load_4(c + 2) >> 5);
|
|
int64_t c2 = 2097151 & (load_3(c + 5) >> 2);
|
|
int64_t c3 = 2097151 & (load_4(c + 7) >> 7);
|
|
int64_t c4 = 2097151 & (load_4(c + 10) >> 4);
|
|
int64_t c5 = 2097151 & (load_3(c + 13) >> 1);
|
|
int64_t c6 = 2097151 & (load_4(c + 15) >> 6);
|
|
int64_t c7 = 2097151 & (load_3(c + 18) >> 3);
|
|
int64_t c8 = 2097151 & load_3(c + 21);
|
|
int64_t c9 = 2097151 & (load_4(c + 23) >> 5);
|
|
int64_t c10 = 2097151 & (load_3(c + 26) >> 2);
|
|
int64_t c11 = (load_4(c + 28) >> 7);
|
|
int64_t s0;
|
|
int64_t s1;
|
|
int64_t s2;
|
|
int64_t s3;
|
|
int64_t s4;
|
|
int64_t s5;
|
|
int64_t s6;
|
|
int64_t s7;
|
|
int64_t s8;
|
|
int64_t s9;
|
|
int64_t s10;
|
|
int64_t s11;
|
|
int64_t s12;
|
|
int64_t s13;
|
|
int64_t s14;
|
|
int64_t s15;
|
|
int64_t s16;
|
|
int64_t s17;
|
|
int64_t s18;
|
|
int64_t s19;
|
|
int64_t s20;
|
|
int64_t s21;
|
|
int64_t s22;
|
|
int64_t s23;
|
|
int64_t carry0;
|
|
int64_t carry1;
|
|
int64_t carry2;
|
|
int64_t carry3;
|
|
int64_t carry4;
|
|
int64_t carry5;
|
|
int64_t carry6;
|
|
int64_t carry7;
|
|
int64_t carry8;
|
|
int64_t carry9;
|
|
int64_t carry10;
|
|
int64_t carry11;
|
|
int64_t carry12;
|
|
int64_t carry13;
|
|
int64_t carry14;
|
|
int64_t carry15;
|
|
int64_t carry16;
|
|
int64_t carry17;
|
|
int64_t carry18;
|
|
int64_t carry19;
|
|
int64_t carry20;
|
|
int64_t carry21;
|
|
int64_t carry22;
|
|
|
|
s0 = c0 + a0 * b0;
|
|
s1 = c1 + a0 * b1 + a1 * b0;
|
|
s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0;
|
|
s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
|
|
s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0;
|
|
s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0;
|
|
s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0;
|
|
s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 +
|
|
a6 * b1 + a7 * b0;
|
|
s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 +
|
|
a6 * b2 + a7 * b1 + a8 * b0;
|
|
s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 +
|
|
a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0;
|
|
s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 +
|
|
a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0;
|
|
s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 +
|
|
a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0;
|
|
s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 +
|
|
a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1;
|
|
s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 +
|
|
a9 * b4 + a10 * b3 + a11 * b2;
|
|
s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 +
|
|
a10 * b4 + a11 * b3;
|
|
s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 +
|
|
a11 * b4;
|
|
s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5;
|
|
s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6;
|
|
s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7;
|
|
s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8;
|
|
s20 = a9 * b11 + a10 * b10 + a11 * b9;
|
|
s21 = a10 * b11 + a11 * b10;
|
|
s22 = a11 * b11;
|
|
s23 = 0;
|
|
|
|
carry0 = (s0 + (1 << 20)) >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry2 = (s2 + (1 << 20)) >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry4 = (s4 + (1 << 20)) >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry6 = (s6 + (1 << 20)) >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry8 = (s8 + (1 << 20)) >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry10 = (s10 + (1 << 20)) >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
carry12 = (s12 + (1 << 20)) >> 21;
|
|
s13 += carry12;
|
|
s12 -= int64_lshift21(carry12);
|
|
carry14 = (s14 + (1 << 20)) >> 21;
|
|
s15 += carry14;
|
|
s14 -= int64_lshift21(carry14);
|
|
carry16 = (s16 + (1 << 20)) >> 21;
|
|
s17 += carry16;
|
|
s16 -= int64_lshift21(carry16);
|
|
carry18 = (s18 + (1 << 20)) >> 21;
|
|
s19 += carry18;
|
|
s18 -= int64_lshift21(carry18);
|
|
carry20 = (s20 + (1 << 20)) >> 21;
|
|
s21 += carry20;
|
|
s20 -= int64_lshift21(carry20);
|
|
carry22 = (s22 + (1 << 20)) >> 21;
|
|
s23 += carry22;
|
|
s22 -= int64_lshift21(carry22);
|
|
|
|
carry1 = (s1 + (1 << 20)) >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry3 = (s3 + (1 << 20)) >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry5 = (s5 + (1 << 20)) >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry7 = (s7 + (1 << 20)) >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry9 = (s9 + (1 << 20)) >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry11 = (s11 + (1 << 20)) >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
carry13 = (s13 + (1 << 20)) >> 21;
|
|
s14 += carry13;
|
|
s13 -= int64_lshift21(carry13);
|
|
carry15 = (s15 + (1 << 20)) >> 21;
|
|
s16 += carry15;
|
|
s15 -= int64_lshift21(carry15);
|
|
carry17 = (s17 + (1 << 20)) >> 21;
|
|
s18 += carry17;
|
|
s17 -= int64_lshift21(carry17);
|
|
carry19 = (s19 + (1 << 20)) >> 21;
|
|
s20 += carry19;
|
|
s19 -= int64_lshift21(carry19);
|
|
carry21 = (s21 + (1 << 20)) >> 21;
|
|
s22 += carry21;
|
|
s21 -= int64_lshift21(carry21);
|
|
|
|
s11 += s23 * 666643;
|
|
s12 += s23 * 470296;
|
|
s13 += s23 * 654183;
|
|
s14 -= s23 * 997805;
|
|
s15 += s23 * 136657;
|
|
s16 -= s23 * 683901;
|
|
s23 = 0;
|
|
|
|
s10 += s22 * 666643;
|
|
s11 += s22 * 470296;
|
|
s12 += s22 * 654183;
|
|
s13 -= s22 * 997805;
|
|
s14 += s22 * 136657;
|
|
s15 -= s22 * 683901;
|
|
s22 = 0;
|
|
|
|
s9 += s21 * 666643;
|
|
s10 += s21 * 470296;
|
|
s11 += s21 * 654183;
|
|
s12 -= s21 * 997805;
|
|
s13 += s21 * 136657;
|
|
s14 -= s21 * 683901;
|
|
s21 = 0;
|
|
|
|
s8 += s20 * 666643;
|
|
s9 += s20 * 470296;
|
|
s10 += s20 * 654183;
|
|
s11 -= s20 * 997805;
|
|
s12 += s20 * 136657;
|
|
s13 -= s20 * 683901;
|
|
s20 = 0;
|
|
|
|
s7 += s19 * 666643;
|
|
s8 += s19 * 470296;
|
|
s9 += s19 * 654183;
|
|
s10 -= s19 * 997805;
|
|
s11 += s19 * 136657;
|
|
s12 -= s19 * 683901;
|
|
s19 = 0;
|
|
|
|
s6 += s18 * 666643;
|
|
s7 += s18 * 470296;
|
|
s8 += s18 * 654183;
|
|
s9 -= s18 * 997805;
|
|
s10 += s18 * 136657;
|
|
s11 -= s18 * 683901;
|
|
s18 = 0;
|
|
|
|
carry6 = (s6 + (1 << 20)) >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry8 = (s8 + (1 << 20)) >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry10 = (s10 + (1 << 20)) >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
carry12 = (s12 + (1 << 20)) >> 21;
|
|
s13 += carry12;
|
|
s12 -= int64_lshift21(carry12);
|
|
carry14 = (s14 + (1 << 20)) >> 21;
|
|
s15 += carry14;
|
|
s14 -= int64_lshift21(carry14);
|
|
carry16 = (s16 + (1 << 20)) >> 21;
|
|
s17 += carry16;
|
|
s16 -= int64_lshift21(carry16);
|
|
|
|
carry7 = (s7 + (1 << 20)) >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry9 = (s9 + (1 << 20)) >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry11 = (s11 + (1 << 20)) >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
carry13 = (s13 + (1 << 20)) >> 21;
|
|
s14 += carry13;
|
|
s13 -= int64_lshift21(carry13);
|
|
carry15 = (s15 + (1 << 20)) >> 21;
|
|
s16 += carry15;
|
|
s15 -= int64_lshift21(carry15);
|
|
|
|
s5 += s17 * 666643;
|
|
s6 += s17 * 470296;
|
|
s7 += s17 * 654183;
|
|
s8 -= s17 * 997805;
|
|
s9 += s17 * 136657;
|
|
s10 -= s17 * 683901;
|
|
s17 = 0;
|
|
|
|
s4 += s16 * 666643;
|
|
s5 += s16 * 470296;
|
|
s6 += s16 * 654183;
|
|
s7 -= s16 * 997805;
|
|
s8 += s16 * 136657;
|
|
s9 -= s16 * 683901;
|
|
s16 = 0;
|
|
|
|
s3 += s15 * 666643;
|
|
s4 += s15 * 470296;
|
|
s5 += s15 * 654183;
|
|
s6 -= s15 * 997805;
|
|
s7 += s15 * 136657;
|
|
s8 -= s15 * 683901;
|
|
s15 = 0;
|
|
|
|
s2 += s14 * 666643;
|
|
s3 += s14 * 470296;
|
|
s4 += s14 * 654183;
|
|
s5 -= s14 * 997805;
|
|
s6 += s14 * 136657;
|
|
s7 -= s14 * 683901;
|
|
s14 = 0;
|
|
|
|
s1 += s13 * 666643;
|
|
s2 += s13 * 470296;
|
|
s3 += s13 * 654183;
|
|
s4 -= s13 * 997805;
|
|
s5 += s13 * 136657;
|
|
s6 -= s13 * 683901;
|
|
s13 = 0;
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = (s0 + (1 << 20)) >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry2 = (s2 + (1 << 20)) >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry4 = (s4 + (1 << 20)) >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry6 = (s6 + (1 << 20)) >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry8 = (s8 + (1 << 20)) >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry10 = (s10 + (1 << 20)) >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
|
|
carry1 = (s1 + (1 << 20)) >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry3 = (s3 + (1 << 20)) >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry5 = (s5 + (1 << 20)) >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry7 = (s7 + (1 << 20)) >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry9 = (s9 + (1 << 20)) >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry11 = (s11 + (1 << 20)) >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = s0 >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry1 = s1 >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry2 = s2 >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry3 = s3 >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry4 = s4 >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry5 = s5 >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry6 = s6 >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry7 = s7 >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry8 = s8 >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry9 = s9 >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry10 = s10 >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
carry11 = s11 >> 21;
|
|
s12 += carry11;
|
|
s11 -= int64_lshift21(carry11);
|
|
|
|
s0 += s12 * 666643;
|
|
s1 += s12 * 470296;
|
|
s2 += s12 * 654183;
|
|
s3 -= s12 * 997805;
|
|
s4 += s12 * 136657;
|
|
s5 -= s12 * 683901;
|
|
s12 = 0;
|
|
|
|
carry0 = s0 >> 21;
|
|
s1 += carry0;
|
|
s0 -= int64_lshift21(carry0);
|
|
carry1 = s1 >> 21;
|
|
s2 += carry1;
|
|
s1 -= int64_lshift21(carry1);
|
|
carry2 = s2 >> 21;
|
|
s3 += carry2;
|
|
s2 -= int64_lshift21(carry2);
|
|
carry3 = s3 >> 21;
|
|
s4 += carry3;
|
|
s3 -= int64_lshift21(carry3);
|
|
carry4 = s4 >> 21;
|
|
s5 += carry4;
|
|
s4 -= int64_lshift21(carry4);
|
|
carry5 = s5 >> 21;
|
|
s6 += carry5;
|
|
s5 -= int64_lshift21(carry5);
|
|
carry6 = s6 >> 21;
|
|
s7 += carry6;
|
|
s6 -= int64_lshift21(carry6);
|
|
carry7 = s7 >> 21;
|
|
s8 += carry7;
|
|
s7 -= int64_lshift21(carry7);
|
|
carry8 = s8 >> 21;
|
|
s9 += carry8;
|
|
s8 -= int64_lshift21(carry8);
|
|
carry9 = s9 >> 21;
|
|
s10 += carry9;
|
|
s9 -= int64_lshift21(carry9);
|
|
carry10 = s10 >> 21;
|
|
s11 += carry10;
|
|
s10 -= int64_lshift21(carry10);
|
|
|
|
s[0] = s0 >> 0;
|
|
s[1] = s0 >> 8;
|
|
s[2] = (s0 >> 16) | (s1 << 5);
|
|
s[3] = s1 >> 3;
|
|
s[4] = s1 >> 11;
|
|
s[5] = (s1 >> 19) | (s2 << 2);
|
|
s[6] = s2 >> 6;
|
|
s[7] = (s2 >> 14) | (s3 << 7);
|
|
s[8] = s3 >> 1;
|
|
s[9] = s3 >> 9;
|
|
s[10] = (s3 >> 17) | (s4 << 4);
|
|
s[11] = s4 >> 4;
|
|
s[12] = s4 >> 12;
|
|
s[13] = (s4 >> 20) | (s5 << 1);
|
|
s[14] = s5 >> 7;
|
|
s[15] = (s5 >> 15) | (s6 << 6);
|
|
s[16] = s6 >> 2;
|
|
s[17] = s6 >> 10;
|
|
s[18] = (s6 >> 18) | (s7 << 3);
|
|
s[19] = s7 >> 5;
|
|
s[20] = s7 >> 13;
|
|
s[21] = s8 >> 0;
|
|
s[22] = s8 >> 8;
|
|
s[23] = (s8 >> 16) | (s9 << 5);
|
|
s[24] = s9 >> 3;
|
|
s[25] = s9 >> 11;
|
|
s[26] = (s9 >> 19) | (s10 << 2);
|
|
s[27] = s10 >> 6;
|
|
s[28] = (s10 >> 14) | (s11 << 7);
|
|
s[29] = s11 >> 1;
|
|
s[30] = s11 >> 9;
|
|
s[31] = s11 >> 17;
|
|
}
|
|
|
|
|
|
void GFp_x25519_scalar_mult_generic_masked(uint8_t out[32],
|
|
const uint8_t scalar_masked[32],
|
|
const uint8_t point[32]) {
|
|
fe x1, x2, z2, x3, z3, tmp0, tmp1;
|
|
fe_loose x2l, z2l, x3l, tmp0l, tmp1l;
|
|
|
|
uint8_t e[32];
|
|
GFp_memcpy(e, scalar_masked, 32);
|
|
// The following implementation was transcribed to Coq and proven to
|
|
// correspond to unary scalar multiplication in affine coordinates given that
|
|
// x1 != 0 is the x coordinate of some point on the curve. It was also checked
|
|
// in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2
|
|
// = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the
|
|
// underlying field, so it applies to Curve25519 itself and the quadratic
|
|
// twist of Curve25519. It was not proven in Coq that prime-field arithmetic
|
|
// correctly simulates extension-field arithmetic on prime-field values.
|
|
// The decoding of the byte array representation of e was not considered.
|
|
// Specification of Montgomery curves in affine coordinates:
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
|
|
// Proof that these form a group that is isomorphic to a Weierstrass curve:
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
|
|
// Coq transcription and correctness proof of the loop (where scalarbits=255):
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
|
|
// preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0
|
|
fe_frombytes(&x1, point);
|
|
fe_1(&x2);
|
|
fe_0(&z2);
|
|
fe_copy(&x3, &x1);
|
|
fe_1(&z3);
|
|
|
|
unsigned swap = 0;
|
|
int pos;
|
|
for (pos = 254; pos >= 0; --pos) {
|
|
// loop invariant as of right before the test, for the case where x1 != 0:
|
|
// pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero
|
|
// let r := e >> (pos+1) in the following equalities of projective points:
|
|
// to_xz (r*P) === if swap then (x3, z3) else (x2, z2)
|
|
// to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
|
|
// x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P)
|
|
unsigned b = 1 & (e[pos / 8] >> (pos & 7));
|
|
swap ^= b;
|
|
fe_cswap(&x2, &x3, swap);
|
|
fe_cswap(&z2, &z3, swap);
|
|
swap = b;
|
|
// Coq transcription of ladderstep formula (called from transcribed loop):
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
|
|
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
|
|
// x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
|
|
// x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
|
|
fe_sub(&tmp0l, &x3, &z3);
|
|
fe_sub(&tmp1l, &x2, &z2);
|
|
fe_add(&x2l, &x2, &z2);
|
|
fe_add(&z2l, &x3, &z3);
|
|
fe_mul_tll(&z3, &tmp0l, &x2l);
|
|
fe_mul_tll(&z2, &z2l, &tmp1l);
|
|
fe_sq_tl(&tmp0, &tmp1l);
|
|
fe_sq_tl(&tmp1, &x2l);
|
|
fe_add(&x3l, &z3, &z2);
|
|
fe_sub(&z2l, &z3, &z2);
|
|
fe_mul_ttt(&x2, &tmp1, &tmp0);
|
|
fe_sub(&tmp1l, &tmp1, &tmp0);
|
|
fe_sq_tl(&z2, &z2l);
|
|
fe_mul121666(&z3, &tmp1l);
|
|
fe_sq_tl(&x3, &x3l);
|
|
fe_add(&tmp0l, &tmp0, &z3);
|
|
fe_mul_ttt(&z3, &x1, &z2);
|
|
fe_mul_tll(&z2, &tmp1l, &tmp0l);
|
|
}
|
|
// here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2)
|
|
fe_cswap(&x2, &x3, swap);
|
|
fe_cswap(&z2, &z3, swap);
|
|
|
|
fe_invert(&z2, &z2);
|
|
fe_mul_ttt(&x2, &x2, &z2);
|
|
fe_tobytes(out, &x2);
|
|
}
|
|
|
|
void GFp_x25519_public_from_private_generic_masked(uint8_t out_public_value[32],
|
|
const uint8_t private_key_masked[32]) {
|
|
uint8_t e[32];
|
|
GFp_memcpy(e, private_key_masked, 32);
|
|
|
|
ge_p3 A;
|
|
GFp_x25519_ge_scalarmult_base(&A, e);
|
|
|
|
// We only need the u-coordinate of the curve25519 point. The map is
|
|
// u=(y+1)/(1-y). Since y=Y/Z, this gives u=(Z+Y)/(Z-Y).
|
|
fe_loose zplusy, zminusy;
|
|
fe zminusy_inv;
|
|
fe_add(&zplusy, &A.Z, &A.Y);
|
|
fe_sub(&zminusy, &A.Z, &A.Y);
|
|
fe_loose_invert(&zminusy_inv, &zminusy);
|
|
fe_mul_tlt(&zminusy_inv, &zplusy, &zminusy_inv);
|
|
fe_tobytes(out_public_value, &zminusy_inv);
|
|
}
|
|
|
|
void GFp_x25519_fe_invert(fe *out, const fe *z) {
|
|
fe_invert(out, z);
|
|
}
|
|
|
|
uint8_t GFp_x25519_fe_isnegative(const fe *f) {
|
|
return (uint8_t)fe_isnegative(f);
|
|
}
|
|
|
|
void GFp_x25519_fe_mul_ttt(fe *h, const fe *f, const fe *g) {
|
|
fe_mul_ttt(h, f, g);
|
|
}
|
|
|
|
void GFp_x25519_fe_neg(fe *f) {
|
|
fe_loose t;
|
|
fe_neg(&t, f);
|
|
fe_carry(f, &t);
|
|
}
|
|
|
|
void GFp_x25519_fe_tobytes(uint8_t s[32], const fe *h) {
|
|
fe_tobytes(s, h);
|
|
}
|
|
|
|
void GFp_x25519_ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a,
|
|
const ge_p3 *A, const uint8_t *b) {
|
|
ge_double_scalarmult_vartime(r, a, A, b);
|
|
}
|
|
|
|
void GFp_x25519_sc_mask(uint8_t a[32]) {
|
|
a[0] &= 248;
|
|
a[31] &= 127;
|
|
a[31] |= 64;
|
|
}
|
|
|
|
void GFp_x25519_sc_muladd(uint8_t *s, const uint8_t *a, const uint8_t *b,
|
|
const uint8_t *c) {
|
|
sc_muladd(s, a, b, c);
|
|
}
|