mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-30 09:48:54 +00:00
734 lines
24 KiB
C++
734 lines
24 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* You can be released from the requirements of the license by purchasing
|
|
* a commercial license. Buying such a license is mandatory as soon as you
|
|
* develop commercial closed-source software that incorporates or links
|
|
* directly against ZeroTier software without disclosing the source code
|
|
* of your own application.
|
|
*/
|
|
|
|
#ifndef ZT_AES_HPP
|
|
#define ZT_AES_HPP
|
|
|
|
#include "Constants.hpp"
|
|
#include "Utils.hpp"
|
|
|
|
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
|
|
#include <wmmintrin.h>
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#define ZT_AES_AESNI 1
|
|
#endif
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* AES-256 and GCM AEAD
|
|
*
|
|
* AES with 128-bit or 192-bit key sizes isn't supported here. This also only
|
|
* supports the encrypt operation since we use AES in GCM mode. For HW acceleration
|
|
* the code is inlined for maximum performance.
|
|
*/
|
|
class AES
|
|
{
|
|
public:
|
|
/**
|
|
* This will be true if your platform's type of AES acceleration is supported on this machine
|
|
*/
|
|
static const bool HW_ACCEL;
|
|
|
|
inline AES() {}
|
|
inline AES(const uint8_t key[32]) { this->init(key); }
|
|
|
|
inline ~AES()
|
|
{
|
|
Utils::burn(&_k,sizeof(_k));
|
|
}
|
|
|
|
inline void init(const uint8_t key[32])
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (HW_ACCEL) {
|
|
_init_aesni(key);
|
|
return;
|
|
}
|
|
#endif
|
|
_initSW(key);
|
|
}
|
|
|
|
inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (HW_ACCEL) {
|
|
_encrypt_aesni(in,out);
|
|
return;
|
|
}
|
|
#endif
|
|
_encryptSW(in,out);
|
|
}
|
|
|
|
inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (HW_ACCEL) {
|
|
_encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
|
|
return;
|
|
}
|
|
#endif
|
|
abort(); // TODO: software
|
|
}
|
|
|
|
inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
|
|
{
|
|
abort(); // TODO: software
|
|
return false;
|
|
}
|
|
|
|
// These are public so the software mode can always be tested in self-test.
|
|
// Normally init(), encrypt(), etc. should be used and will choose accelerated
|
|
// or software mode depending on hardware capability.
|
|
void _initSW(const uint8_t key[32]);
|
|
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
|
|
|
|
private:
|
|
#ifdef ZT_AES_AESNI
|
|
static inline __m128i _init256_1(__m128i a,__m128i b)
|
|
{
|
|
__m128i x,y;
|
|
b = _mm_shuffle_epi32(b,0xff);
|
|
y = _mm_slli_si128(a,0x04);
|
|
x = _mm_xor_si128(a,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
x = _mm_xor_si128(x,b);
|
|
return x;
|
|
}
|
|
static inline __m128i _init256_2(__m128i a,__m128i b)
|
|
{
|
|
__m128i x,y,z;
|
|
y = _mm_aeskeygenassist_si128(a,0x00);
|
|
z = _mm_shuffle_epi32(y,0xaa);
|
|
y = _mm_slli_si128(b,0x04);
|
|
x = _mm_xor_si128(b,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
x = _mm_xor_si128(x,z);
|
|
return x;
|
|
}
|
|
inline void _init_aesni(const uint8_t key[32])
|
|
{
|
|
__m128i t1,t2;
|
|
_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
|
|
_k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
|
|
_k.ni.k[2] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x01));
|
|
_k.ni.k[3] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[4] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x02));
|
|
_k.ni.k[5] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[6] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x04));
|
|
_k.ni.k[7] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[8] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x08));
|
|
_k.ni.k[9] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[10] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x10));
|
|
_k.ni.k[11] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[12] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x20));
|
|
_k.ni.k[13] = t2 = _init256_2(t1,t2);
|
|
_k.ni.k[14] = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x40));
|
|
|
|
__m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[1]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[2]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[3]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[4]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[5]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[6]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[7]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[8]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[9]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[10]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[11]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[12]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[13]);
|
|
h = _mm_aesenclast_si128(h,_k.ni.k[14]);
|
|
__m128i hswap = _swap128_aesni(h);
|
|
__m128i hh = _mult_block_aesni(hswap,h);
|
|
__m128i hhh = _mult_block_aesni(hswap,hh);
|
|
__m128i hhhh = _mult_block_aesni(hswap,hhh);
|
|
_k.ni.h = hswap;
|
|
_k.ni.hh = _swap128_aesni(hh);
|
|
_k.ni.hhh = _swap128_aesni(hhh);
|
|
_k.ni.hhhh = _swap128_aesni(hhhh);
|
|
/*
|
|
this->h = h;
|
|
h = swap128(h);
|
|
this->hh = mult_block(h, this->h);
|
|
this->hhh = mult_block(h, this->hh);
|
|
this->hhhh = mult_block(h, this->hhh);
|
|
this->h = swap128(this->h);
|
|
this->hh = swap128(this->hh);
|
|
this->hhh = swap128(this->hhh);
|
|
this->hhhh = swap128(this->hhhh);
|
|
*/
|
|
}
|
|
|
|
inline void _encrypt_aesni(const void *in,void *out) const
|
|
{
|
|
__m128i tmp;
|
|
tmp = _mm_loadu_si128((const __m128i *)in);
|
|
tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
|
|
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
|
|
}
|
|
|
|
static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
|
|
static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
|
|
{
|
|
__m128i t1,t2,t3,t4,t5,t6;
|
|
y = _swap128_aesni(y);
|
|
t1 = _mm_clmulepi64_si128(h, y, 0x00);
|
|
t2 = _mm_clmulepi64_si128(h, y, 0x01);
|
|
t3 = _mm_clmulepi64_si128(h, y, 0x10);
|
|
t4 = _mm_clmulepi64_si128(h, y, 0x11);
|
|
t2 = _mm_xor_si128(t2, t3);
|
|
t3 = _mm_slli_si128(t2, 8);
|
|
t2 = _mm_srli_si128(t2, 8);
|
|
t1 = _mm_xor_si128(t1, t3);
|
|
t4 = _mm_xor_si128(t4, t2);
|
|
t5 = _mm_srli_epi32(t1, 31);
|
|
t1 = _mm_slli_epi32(t1, 1);
|
|
t6 = _mm_srli_epi32(t4, 31);
|
|
t4 = _mm_slli_epi32(t4, 1);
|
|
t3 = _mm_srli_si128(t5, 12);
|
|
t6 = _mm_slli_si128(t6, 4);
|
|
t5 = _mm_slli_si128(t5, 4);
|
|
t1 = _mm_or_si128(t1, t5);
|
|
t4 = _mm_or_si128(t4, t6);
|
|
t4 = _mm_or_si128(t4, t3);
|
|
t5 = _mm_slli_epi32(t1, 31);
|
|
t6 = _mm_slli_epi32(t1, 30);
|
|
t3 = _mm_slli_epi32(t1, 25);
|
|
t5 = _mm_xor_si128(t5, t6);
|
|
t5 = _mm_xor_si128(t5, t3);
|
|
t6 = _mm_srli_si128(t5, 4);
|
|
t4 = _mm_xor_si128(t4, t6);
|
|
t5 = _mm_slli_si128(t5, 12);
|
|
t1 = _mm_xor_si128(t1, t5);
|
|
t4 = _mm_xor_si128(t4, t1);
|
|
t5 = _mm_srli_epi32(t1, 1);
|
|
t2 = _mm_srli_epi32(t1, 2);
|
|
t3 = _mm_srli_epi32(t1, 7);
|
|
t4 = _mm_xor_si128(t4, t2);
|
|
t4 = _mm_xor_si128(t4, t3);
|
|
t4 = _mm_xor_si128(t4, t5);
|
|
return _swap128_aesni(t4);
|
|
}
|
|
static inline __m128i _mult4xor_aesni(__m128i h1,__m128i h2,__m128i h3,__m128i h4,__m128i d1,__m128i d2,__m128i d3,__m128i d4)
|
|
{
|
|
__m128i t0,t1,t2,t3,t4,t5,t6,t7,t8,t9;
|
|
d1 = _swap128_aesni(d1);
|
|
d2 = _swap128_aesni(d2);
|
|
d3 = _swap128_aesni(d3);
|
|
d4 = _swap128_aesni(d4);
|
|
t0 = _mm_clmulepi64_si128(h1, d1, 0x00);
|
|
t1 = _mm_clmulepi64_si128(h2, d2, 0x00);
|
|
t2 = _mm_clmulepi64_si128(h3, d3, 0x00);
|
|
t3 = _mm_clmulepi64_si128(h4, d4, 0x00);
|
|
t8 = _mm_xor_si128(t0, t1);
|
|
t8 = _mm_xor_si128(t8, t2);
|
|
t8 = _mm_xor_si128(t8, t3);
|
|
t4 = _mm_clmulepi64_si128(h1, d1, 0x11);
|
|
t5 = _mm_clmulepi64_si128(h2, d2, 0x11);
|
|
t6 = _mm_clmulepi64_si128(h3, d3, 0x11);
|
|
t7 = _mm_clmulepi64_si128(h4, d4, 0x11);
|
|
t9 = _mm_xor_si128(t4, t5);
|
|
t9 = _mm_xor_si128(t9, t6);
|
|
t9 = _mm_xor_si128(t9, t7);
|
|
t0 = _mm_shuffle_epi32(h1, 78);
|
|
t4 = _mm_shuffle_epi32(d1, 78);
|
|
t0 = _mm_xor_si128(t0, h1);
|
|
t4 = _mm_xor_si128(t4, d1);
|
|
t1 = _mm_shuffle_epi32(h2, 78);
|
|
t5 = _mm_shuffle_epi32(d2, 78);
|
|
t1 = _mm_xor_si128(t1, h2);
|
|
t5 = _mm_xor_si128(t5, d2);
|
|
t2 = _mm_shuffle_epi32(h3, 78);
|
|
t6 = _mm_shuffle_epi32(d3, 78);
|
|
t2 = _mm_xor_si128(t2, h3);
|
|
t6 = _mm_xor_si128(t6, d3);
|
|
t3 = _mm_shuffle_epi32(h4, 78);
|
|
t7 = _mm_shuffle_epi32(d4, 78);
|
|
t3 = _mm_xor_si128(t3, h4);
|
|
t7 = _mm_xor_si128(t7, d4);
|
|
t0 = _mm_clmulepi64_si128(t0, t4, 0x00);
|
|
t1 = _mm_clmulepi64_si128(t1, t5, 0x00);
|
|
t2 = _mm_clmulepi64_si128(t2, t6, 0x00);
|
|
t3 = _mm_clmulepi64_si128(t3, t7, 0x00);
|
|
t0 = _mm_xor_si128(t0, t8);
|
|
t0 = _mm_xor_si128(t0, t9);
|
|
t0 = _mm_xor_si128(t1, t0);
|
|
t0 = _mm_xor_si128(t2, t0);
|
|
t0 = _mm_xor_si128(t3, t0);
|
|
t4 = _mm_slli_si128(t0, 8);
|
|
t0 = _mm_srli_si128(t0, 8);
|
|
t3 = _mm_xor_si128(t4, t8);
|
|
t6 = _mm_xor_si128(t0, t9);
|
|
t7 = _mm_srli_epi32(t3, 31);
|
|
t8 = _mm_srli_epi32(t6, 31);
|
|
t3 = _mm_slli_epi32(t3, 1);
|
|
t6 = _mm_slli_epi32(t6, 1);
|
|
t9 = _mm_srli_si128(t7, 12);
|
|
t8 = _mm_slli_si128(t8, 4);
|
|
t7 = _mm_slli_si128(t7, 4);
|
|
t3 = _mm_or_si128(t3, t7);
|
|
t6 = _mm_or_si128(t6, t8);
|
|
t6 = _mm_or_si128(t6, t9);
|
|
t7 = _mm_slli_epi32(t3, 31);
|
|
t8 = _mm_slli_epi32(t3, 30);
|
|
t9 = _mm_slli_epi32(t3, 25);
|
|
t7 = _mm_xor_si128(t7, t8);
|
|
t7 = _mm_xor_si128(t7, t9);
|
|
t8 = _mm_srli_si128(t7, 4);
|
|
t7 = _mm_slli_si128(t7, 12);
|
|
t3 = _mm_xor_si128(t3, t7);
|
|
t2 = _mm_srli_epi32(t3, 1);
|
|
t4 = _mm_srli_epi32(t3, 2);
|
|
t5 = _mm_srli_epi32(t3, 7);
|
|
t2 = _mm_xor_si128(t2, t4);
|
|
t2 = _mm_xor_si128(t2, t5);
|
|
t2 = _mm_xor_si128(t2, t8);
|
|
t3 = _mm_xor_si128(t3, t2);
|
|
t6 = _mm_xor_si128(t6, t3);
|
|
return _swap128_aesni(t6);
|
|
}
|
|
static inline __m128i _ghash_aesni(__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(h,_mm_xor_si128(y,x)); }
|
|
static inline __m128i _increment_be_aesni(__m128i x)
|
|
{
|
|
x = _swap128_aesni(x);
|
|
x = _mm_add_epi64(x, _mm_set_epi32(0, 0, 0, 1));
|
|
x = _swap128_aesni(x);
|
|
return x;
|
|
}
|
|
static inline void _htoun64_aesni(void *network,const uint64_t host) { *((uint64_t *)network) = Utils::hton(host); }
|
|
static inline void _htoun32_aesni(void *network,const uint64_t host) { *((uint32_t *)network) = Utils::hton(host); }
|
|
|
|
inline __m128i _create_j_aesni(const uint8_t *iv) const
|
|
{
|
|
uint8_t j[16];
|
|
*((uint64_t *)j) = *((const uint64_t *)iv);
|
|
*((uint32_t *)(j+8)) = *((const uint32_t *)(iv+8));
|
|
j[12] = 0;
|
|
j[13] = 0;
|
|
j[14] = 0;
|
|
j[15] = 1;
|
|
return _mm_loadu_si128((__m128i *)j);
|
|
}
|
|
inline __m128i _icv_header_aesni(const void *assoc,unsigned int alen) const
|
|
{
|
|
unsigned int blocks,pblocks,rem,i;
|
|
__m128i h1,h2,h3,h4,d1,d2,d3,d4;
|
|
__m128i y,last;
|
|
const __m128i *ab;
|
|
h1 = _k.ni.hhhh;
|
|
h2 = _k.ni.hhh;
|
|
h3 = _k.ni.hh;
|
|
h4 = _k.ni.h;
|
|
y = _mm_setzero_si128();
|
|
ab = (const __m128i *)assoc;
|
|
blocks = alen / 16;
|
|
pblocks = blocks - (blocks % 4);
|
|
rem = alen % 16;
|
|
for (i=0;i<pblocks;i+=4) {
|
|
d1 = _mm_loadu_si128(ab + i + 0);
|
|
d2 = _mm_loadu_si128(ab + i + 1);
|
|
d3 = _mm_loadu_si128(ab + i + 2);
|
|
d4 = _mm_loadu_si128(ab + i + 3);
|
|
y = _mm_xor_si128(y, d1);
|
|
y = _mult4xor_aesni(h1, h2, h3, h4, y, d2, d3, d4);
|
|
}
|
|
for (i = pblocks; i < blocks; i++)
|
|
y = _ghash_aesni(_k.ni.h,y,_mm_loadu_si128(ab + i));
|
|
if (rem) {
|
|
last = _mm_setzero_si128();
|
|
memcpy(&last, ab + blocks, rem);
|
|
y = _ghash_aesni(_k.ni.h,y,last);
|
|
}
|
|
return y;
|
|
}
|
|
inline __m128i _icv_tailer_aesni(__m128i y,size_t alen,size_t dlen) const
|
|
{
|
|
__m128i b;
|
|
_htoun64_aesni(&b, alen * 8);
|
|
_htoun64_aesni((uint8_t *)&b + sizeof(uint64_t), dlen * 8);
|
|
return _ghash_aesni(_k.ni.h, y, b);
|
|
}
|
|
inline void _icv_crypt_aesni(__m128i y,__m128i j,uint8_t *icv,unsigned int icvsize) const
|
|
{
|
|
__m128i *ks,t,b;
|
|
t = _mm_xor_si128(j,_k.ni.k[0]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[1]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[2]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[3]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[4]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[5]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[6]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[7]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[8]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[9]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[10]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[11]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[12]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[13]);
|
|
t = _mm_aesenclast_si128(t,_k.ni.k[14]);
|
|
t = _mm_xor_si128(y, t);
|
|
_mm_storeu_si128(&b, t);
|
|
memcpy(icv,&b,icvsize);
|
|
}
|
|
|
|
inline __m128i _encrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y) const
|
|
{
|
|
__m128i *ks,t,b;
|
|
memset(&b,0,sizeof(b));
|
|
memcpy(&b,in,rem);
|
|
t = _mm_xor_si128(cb,_k.ni.k[0]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[1]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[2]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[3]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[4]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[5]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[6]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[7]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[8]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[9]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[10]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[11]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[12]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[13]);
|
|
t = _mm_aesenclast_si128(t,_k.ni.k[14]);
|
|
b = _mm_xor_si128(t, b);
|
|
memcpy(out,&b,rem);
|
|
memset((u_char*)&b + rem,0,16 - rem);
|
|
return _ghash_aesni(_k.ni.h,y,b);
|
|
}
|
|
inline void _encrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize) const
|
|
{
|
|
__m128i d1,d2,d3,d4,t1,t2,t3,t4;
|
|
__m128i *ks,y,j,cb,*bi,*bo;
|
|
|
|
j = _create_j_aesni(iv);
|
|
cb = _increment_be_aesni(j);
|
|
y = _icv_header_aesni(assoc,alen);
|
|
unsigned int blocks = len / 16;
|
|
unsigned int pblocks = blocks - (blocks % 4);
|
|
unsigned int rem = len % 16;
|
|
bi = (__m128i *)in;
|
|
bo = (__m128i *)out;
|
|
|
|
unsigned int i;
|
|
for (i=0;i<pblocks;i+=4) {
|
|
d1 = _mm_loadu_si128(bi + i + 0);
|
|
d2 = _mm_loadu_si128(bi + i + 1);
|
|
d3 = _mm_loadu_si128(bi + i + 2);
|
|
d4 = _mm_loadu_si128(bi + i + 3);
|
|
t1 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t2 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t3 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t4 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[1]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[1]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[1]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[2]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[2]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[2]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[3]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[3]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[3]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[4]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[4]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[4]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[5]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[5]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[5]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[6]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[6]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[6]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[7]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[7]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[7]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[8]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[8]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[8]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[9]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[9]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[9]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[10]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[10]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[10]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[11]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[11]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[11]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[12]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[12]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[12]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[13]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[13]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[13]);
|
|
t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
|
|
t2 = _mm_aesenclast_si128(t2, _k.ni.k[14]);
|
|
t3 = _mm_aesenclast_si128(t3, _k.ni.k[14]);
|
|
t4 = _mm_aesenclast_si128(t4, _k.ni.k[14]);
|
|
t1 = _mm_xor_si128(t1, d1);
|
|
t2 = _mm_xor_si128(t2, d2);
|
|
t3 = _mm_xor_si128(t3, d3);
|
|
t4 = _mm_xor_si128(t4, d4);
|
|
y = _mm_xor_si128(y, t1);
|
|
y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,t2,t3,t4);
|
|
_mm_storeu_si128(bo + i + 0, t1);
|
|
_mm_storeu_si128(bo + i + 1, t2);
|
|
_mm_storeu_si128(bo + i + 2, t3);
|
|
_mm_storeu_si128(bo + i + 3, t4);
|
|
}
|
|
|
|
for (i=pblocks;i<blocks;++i) {
|
|
d1 = _mm_loadu_si128(bi + i);
|
|
t1 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
|
|
t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
|
|
t1 = _mm_xor_si128(t1, d1);
|
|
_mm_storeu_si128(bo + i, t1);
|
|
y = _ghash_aesni(_k.ni.h, y, t1);
|
|
cb = _increment_be_aesni(cb);
|
|
}
|
|
|
|
if (rem)
|
|
y = _encrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
|
|
y = _icv_tailer_aesni(y,alen,len);
|
|
_icv_crypt_aesni(y,j,icv,icvsize);
|
|
}
|
|
inline __m128i _decrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y)
|
|
{
|
|
__m128i *ks, t, b;
|
|
memset(&b, 0, sizeof(b));
|
|
memcpy(&b, in, rem);
|
|
y = _ghash_aesni(_k.ni.h, y, b);
|
|
t = _mm_xor_si128(cb,_k.ni.k[0]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[1]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[2]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[3]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[4]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[5]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[6]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[7]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[8]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[9]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[10]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[11]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[12]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[13]);
|
|
t = _mm_aesenclast_si128(t, _k.ni.k[14]);
|
|
b = _mm_xor_si128(t, b);
|
|
memcpy(out, &b, rem);
|
|
return y;
|
|
}
|
|
inline void decrypt_gcm256(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize)
|
|
{
|
|
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
|
|
__m128i *ks, y, j, cb, *bi, *bo;
|
|
unsigned int blocks, pblocks, rem;
|
|
|
|
j = _create_j_aesni(iv);
|
|
cb = _increment_be_aesni(j);
|
|
y = _icv_header_aesni(assoc,alen);
|
|
blocks = len / 16;
|
|
pblocks = blocks - (blocks % 4);
|
|
rem = len % 16;
|
|
bi = (__m128i *)in;
|
|
bo = (__m128i *)out;
|
|
|
|
unsigned int i;
|
|
for (i=0;i<pblocks;i+=4) {
|
|
d1 = _mm_loadu_si128(bi + i + 0);
|
|
d2 = _mm_loadu_si128(bi + i + 1);
|
|
d3 = _mm_loadu_si128(bi + i + 2);
|
|
d4 = _mm_loadu_si128(bi + i + 3);
|
|
y = _mm_xor_si128(y, d1);
|
|
y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,d2,d3,d4);
|
|
t1 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t2 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t3 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t4 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
cb = _increment_be_aesni(cb);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[1]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[1]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[1]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[2]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[2]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[2]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[3]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[3]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[3]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[4]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[4]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[4]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[5]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[5]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[5]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[6]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[6]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[6]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[7]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[7]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[7]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[8]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[8]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[8]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[9]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[9]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[9]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[10]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[10]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[10]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[11]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[11]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[11]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[12]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[12]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[12]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
|
|
t2 = _mm_aesenc_si128(t2, _k.ni.k[13]);
|
|
t3 = _mm_aesenc_si128(t3, _k.ni.k[13]);
|
|
t4 = _mm_aesenc_si128(t4, _k.ni.k[13]);
|
|
t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
|
|
t2 = _mm_aesenclast_si128(t2, _k.ni.k[14]);
|
|
t3 = _mm_aesenclast_si128(t3, _k.ni.k[14]);
|
|
t4 = _mm_aesenclast_si128(t4, _k.ni.k[14]);
|
|
t1 = _mm_xor_si128(t1, d1);
|
|
t2 = _mm_xor_si128(t2, d2);
|
|
t3 = _mm_xor_si128(t3, d3);
|
|
t4 = _mm_xor_si128(t4, d4);
|
|
_mm_storeu_si128(bo + i + 0, t1);
|
|
_mm_storeu_si128(bo + i + 1, t2);
|
|
_mm_storeu_si128(bo + i + 2, t3);
|
|
_mm_storeu_si128(bo + i + 3, t4);
|
|
}
|
|
|
|
for (i=pblocks;i<blocks;i++) {
|
|
d1 = _mm_loadu_si128(bi + i);
|
|
y = _ghash_aesni(_k.ni.h,y,d1);
|
|
t1 = _mm_xor_si128(cb, _k.ni.k[0]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
|
|
t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
|
|
t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
|
|
t1 = _mm_xor_si128(t1, d1);
|
|
_mm_storeu_si128(bo + i, t1);
|
|
cb = _increment_be_aesni(cb);
|
|
}
|
|
|
|
if (rem)
|
|
y = _decrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
|
|
y = _icv_tailer_aesni(y,alen,len);
|
|
_icv_crypt_aesni(y,j,icv,icvsize);
|
|
}
|
|
#endif
|
|
|
|
union {
|
|
#ifdef ZT_AES_AESNI
|
|
struct {
|
|
__m128i k[15]; // AES-NI expanded key
|
|
__m128i h,hh,hhh,hhhh;
|
|
} ni;
|
|
#endif
|
|
uint32_t sw[60]; // software mode expanded key
|
|
} _k;
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|